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Abstract
Background: Selenium, a micronutrient whose deficiency in diet causes immune dysfunction and
inflammatory disorders, is thought to exert its physiological effects mostly in the form of selenium-
containing proteins (selenoproteins). Incorporation of selenium into the amino acid selenocysteine
(Sec), and subsequently into selenoproteins is mediated by Sec tRNA[Ser]Sec.

Results: To define macrophage-specific selenoprotein functions, we generated mice with the Sec
tRNA[Ser]Sec gene specifically deleted in myeloid cells. These mutant mice were devoid of the
"selenoproteome" in macrophages, yet exhibited largely normal inflammatory responses. However,
selenoprotein deficiency led to aberrant expression of extracellular matrix-related genes, and
diminished migration of macrophages in a protein gel matrix.

Conclusion: Selenium status may affect immune defense and tissue homeostasis through its effect
on selenoprotein expression and the trafficking of tissue macrophages.

Background
Macrophages, a class of myeloid leukocytes with phago-
cytic activity and inflammatory signaling properties, play
a pivotal role in antimicrobial defense and tissue homeos-
tasis [1-3]. These tissue-resident immune cells express
receptors that detect the presence of signature molecules
associated with microbial infection and tissue damage
[4,5]. Such receptors signal to induce macrophage produc-
tion of cytokines and other inflammatory mediators that
effect pathogen clearance and tissue repair. Many cell-

intrinsic and -extrinsic regulatory mechanisms act to limit
inflammatory signaling in macrophages, thereby prevent-
ing excessive, self-destructive responses of the cell. Fur-
thermore, the spatial and temporal turnover of
macrophages in tissue is subject to dynamic control by the
local microenvironment and metabolic state. Uncon-
trolled macrophage recruitment and activation is associ-
ated with development of rheumatic, cardiovascular,
metabolic, and neoplastic disorders.
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Selenium is a dietary trace element that exerts both bene-
ficial and adverse effects on health depending on the spe-
cific chemical form and dose. Deficiency or excess of
dietary selenium has been linked to immune dysfunction
and inflammatory disorders [6,7] although the precise
molecular mechanisms remain to be determined. In living
organisms, selenium either exists as low-molecular weight
compounds such as selenite, selenomethionine, methyl-
selenol or selenomethylselenocysteine, or is assimilated
into selenium-containing proteins (selenoproteins) by
way of the amino acid selenocysteine (Sec). Apart from
nonspecific selenium incorporation into protein, the
pathway of Sec and selenoprotein biosynthesis requires a
unique tRNA, Sec tRNA[Ser]Sec [8,9].

Using a conditional gene knockout strategy, we have
shown that ablation of Sec tRNA[Ser]Sec results in the loss of
expression of the whole selenoprotein set, or selenopro-
teome, in hepatocytes [10], and T cells [11]. Therefore, cell
type-specific deletion of the Sec tRNA[Ser]Sec gene (Trsp)
offers a useful way to examine the physiological effects of
selenium in the form of selenoproteins in relation to the
function of a desired cell type. In this paper, we present
data from a study of mice lacking Sec tRNA[Ser]Sec in mac-
rophages and describe the molecular and cellular abnor-
malities caused by the ablation of macrophage
selenoprotein expression.

Results
Selenoprotein expression in macrophages
The mouse genome contains 24 selenoprotein genes [12].
Individual selenoproteins exhibit tissue specificity in their
expression levels and regulation patterns [13]. To examine
selenoprotein mRNA expression in primary mouse mac-
rophages, we isolated total RNA from bone marrow-
derived macrophages (BMDMs) and analyzed the expres-
sion of all 24 mouse selenoprotein genes by real-time
qPCR (Figure 1A). Compared to 3T3 fibroblasts, a non-
myeloid cell type that we used in parallel, macrophages
expressed relatively high levels of genes encoding glutath-
ione peroxidases 1 (GPx1), thioredoxin reductase 1 (TR1),
the 15-kDa selenoprotein (Sep15), and selenoproteins P,
R, K, and T (Figure 1A). To compare selenoprotein gene
expression in resting and activated macrophages, BMDMs
were subjected to RNA extraction with and without treat-
ment with lipopolysaccharide (LPS), a toll-like receptor 4
(TLR4) agonist that induces potent inflammatory
responses. TR1 gene expression was significantly
increased in BMDMs after 4 h of incubation with LPS (Fig-
ure 1B).

Selenoprotein expression in macrophages was further
examined by labeling BMDMs with 75Se, and analyzing
labeled selenoproteins by gel electrophoresis [14].
BMDMs expressed a distinct set of selenoproteins, whose

repertoire was largely unchanged by LPS activation (Fig-
ure 1C). However, the amount of TR1 was substantially
increased, whereas that of GPx1 was modestly decreased
in LPS-treated macrophages, which was verified by immu-
noblotting with antibodies specific to individual seleno-
proteins (Figure 1D). In addition to TR1 and GPx1,
several other selenoproteins with high mRNA abundance
in macrophages were detected as 75Se-labeled protein
bands on the gel.

Ablation of Trsp and selenoprotein expression in 
macrophages
To study the macrophage-specific functions of selenopro-
teins, we generated mutant mice in which deletion of
floxed (fl) alleles of Trsp is driven by Cre recombinase
expressed under the control of the lysozyme M (LysM)
promoter. LysMCre expression is restricted to macro-
phages and other leukocyte subpopulations of myeloid
origin [15].Trspfl/fl-LysMCre ( TrspM) mice were born at
Mendelian ratios, survived to adulthood, and displayed
no spontaneous pathology under the specific pathogen-
free condition (data not shown).

We examined the effects of Trsp deletion on selenoprotein
expression and function in macrophages. In TrspM macro-
phages, synthesis of Sec tRNA[Ser]Sec was almost com-
pletely abolished (Figure 2A). Correspondingly, the level
of 75Se-labeled selenoproteins was dramatically dimin-
ished in TrspM macrophages as compared to that of con-
trol (Trspfl/fl) cells (Figure 2B), indicating that the Sec
tRNA[Ser]Sec-mediated cotranslational mechanism is the
major pathway for selenium incorporation into protein in
macrophages. The low amounts of residual 75Se-labeled
proteins in TrspM macrophages (Figure 2B) likely repre-
sent selenoproteins derived from non-macrophage cells
contaminating the BMDM preparation and also from a
small fraction of cells that have escaped Trsp deletion.
Many selenoproteins function to quench reactive oxygen
species (ROS) and other forms of oxidants, or function to
repair oxidative damage [12]. We previously found that
selenoprotein-deficient T cells accumulated higher ROS
than control cells and failed to mount ROS-sensitive T cell
receptor responses [11]. Similarly, steady state levels of
ROS were higher in resting TrspM macrophages than in
control cells (Figure 2C and 2D). Therefore, the antioxi-
dant function of selenoproteins is required to maintain
redox homeostasis in various cell types including macro-
phages.

Inflammatory responses in ΔTrspM macrophages and mice
Macrophages contribute to the initiation of inflammation
by producing cytokines in response to microbial infection
and tissue injury. LPS and other inflammatory stimuli
bring about transient ROS accumulation as part of cellular
signaling events [16,17]. Selenoproteins such as GPx iso-
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Profiling of selenoprotein gene expression in macrophagesFigure 1
Profiling of selenoprotein gene expression in macrophages. (A) Selenoprotein gene expression in macrophages 
(BMDMs) and fibroblasts (NIH3T3 embryonic fibroblasts) was analyzed by real-time qPCR and is shown as relative mRNA level 
to GUSB (β-glucuronidase; internal control). (B) Macrophages left unstimulated (None) and stimulated with LPS (100 ng/ml; 4 
h) were subjected to RNA extraction and real-time qPCR. Data represent mean ± standard deviation (n = 4). *, p < 0.05. (C) 
75Se-labeled selenoproteins in macrophages are visualized by autoradiography after SDS electrophoresis. Macrophages were 
left unstimulated (None) and stimulated with LPS (100 ng/ml; 6 h) before protein extraction. The identities of the major, 
labeled selenoproteins are designated on the right of panel. CBB, Coomassie Brilliant Blue. (D) Whole cell lysates from macro-
phages treated with LPS as in (C) were analyzed by immunoblotting with antibodies against the proteins indicated on the left. 
PS, Ponceau S.
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Characterization of TrspM macrophagesFigure 2
Characterization of TrspM macrophages. (A) The levels of tRNA[Ser]Sec and tRNASer in macrophages (BMDMs) derived 
from control and TrspM mice as determined by Northern blotting are shown. (B) 75Se-labeled selenoproteins are visualized by 
autoradiography after SDS electrophoresis as in Figure 1B. CBB, Coomassie Brilliant Blue. (C) ROS production was analyzed 
by confocal microscopy following DCFDA staining. Fluorescence (left panels) and phase contrast (right panels) images are 
shown. (D) ROS production was analyzed by flow cytometry following DCFDA staining.
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forms were previously shown to regulate inflammatory
responses [18,19]. We therefore explored the effect of
selenoprotein deficiency and the resultant redox imbal-
ance on the macrophage inflammatory response. Signal-
ing to the transcription factor NF-κB, and the mitogen-
activated protein kinase (ERK, JNK and p38) cascades are
crucial for cellular responses to inflammatory stimuli. In
LPS-treated macrophages, degradation and replenishment
of IκBα, both indicative of NF-κB activation, occurred
independently of selenoprotein status (Figure 3A). Induc-
tion of phosphorylated ERK, JNK and p38, the active
forms of the protein kinases, by LPS was also normal in
TrspM macrophages (Figure 3A). We also compared LPS-
induced inflammatory gene expression in control and
TrspM macrophages. The magnitude and kinetics of
expression of the genes encoding the cytokines tumor
necrosis factor-α and interleukin-1β, and the chemokines
KC and macrophage inflammatory protein-2 (Tnf, Il1b,
Cxcl1, and Cxcl2, respectively) were similar in both mac-
rophage groups (Figure 3B).

To assess the effects of myeloid-specific selenoprotein
deficiency on in vivo pathology, control and TrspM mice
were subjected to different models of the inflammatory
response. The models employed in our study include LPS
endotoxemia, chemical irritant (12-O-tetradecanoylphor-
bol-13-acetate [TPA]) dermatitis, and zymosan-induced
peritonitis. In these experimentally induced inflammatory
responses, TrspM mice manifested rates of mortality, and
levels of cytokine production, local edema formation, and
neutrophil infiltration that are comparable to those seen
in control animals (Figure 4). Hence, despite selenopro-
tein deficiency and deregulated ROS generation in macro-
phages, TrspM mice appeared normal in macrophage-
mediated inflammatory responses.

Changes in gene expression in ΔTrspM macrophages
A recent study that used independently created Trsp
mutant mouse lines also showed that Sec tRNA[Ser]Sec abla-
tion resulted in elevated ROS generation in macrophages
and hepatocytes, yet its effects on cell survival and func-
tion were masked by compensatory induction of a cyto-
protective transcription program mediated by NF-E2-
related factor 2 [20]. The lack of discernable inflammatory
phenotypes in TrspM mice may be attributable to such
redundancy in cellular antioxidant mechanisms. We rea-
soned that, in addition to their known activities, seleno-
proteins expressed in macrophages provide other,
nonredundant functions, the loss of which may be trans-
lated into gene expression patterns. To test this idea, we
analyzed global gene expression profiles of control and
TrspM macrophages. Mouse whole-genome DNA microar-
rays were used to determine mRNA levels in the two mac-
rophage groups that were left unstimulated and
stimulated with LPS. Specific sets of genes showed signif-

icantly higher or lower expression in TrspM macrophages
(Figure 5A and data not shown). The data obtained from
the DNA microarray experiments were verified by real-
time qPCR analysis (Figure 5B).

The most salient feature of the genes showing aberrant
expression in selenoprotein-deficient macrophages was
that many were functionally related to the formation and
remodeling of and cellular interaction with the extracellu-
lar matrix (ECM). In both resting and LPS-stimulated
TrspM macrophages, these ECM-related genes were
expressed at higher levels relative to control cells (Figure
5C), and included those that encode ECM components
(collagen chains, extracellular proteoglycans, and secreted
glycoproteins; Col1a1, Col5a2, Bgn, Ctgf and Sparc), inhib-
itors of ECM proteolysis (metalloendopeptidase and ser-
ine-type endopeptidase inhibitors; Timp3, and Serpinh1),
and ECM-induced cytoskeletal remodeling (actin binding
proteins; Tagln, Enah, and Cald1). A few other genes were
detected as being expressed at lower levels in LPS-treated
TrspM macrophages, but their repertoire did not point to
any particular shared attributes (Figure 5C).

Effects of selenoprotein deficiency on macrophage 
invasiveness
The DNA microarray data obtained from the analysis of
TrspM macrophages suggested that loss of selenoprotein
expression alters macrophage-ECM interactions in such a
way as to decrease matrix remodeling, and in favor of rein-
forcing the surrounding ECM. Those effects would also
affect macrophage migration through the ECM and base-
ment membrane. We tested this idea by comparing the
invasiveness of control and TrspM macrophages in a pro-
tein gel matrix (Matrigel). Macrophages devoid of seleno-
protein expression showed substantially reduced
migration in gel-laden transwell chambers (Figure 6A).
We also tested whether the gel invasion phenotype arised
from a cell-intrinsic motility defect by repeating the assay
without the gel in the transwell chamber; migration of
TrspM macrophages in gel-free media was not reduced and
rather slightly higher than that of control macrophages
(Figure 6B). Thus, the changes of ECM-related gene
expression in macrophages appear to impair the cells'
migration properties only in an environment comprising
ECM components.

Discussion
The immune regulatory effects exerted by dietary sele-
nium are complex, and appear to be determined by mul-
tiple variables associated not only with the micronutrient
but also with the immune system. Despite the epidemio-
logical link between selenium deficiency and inflamma-
tory disorders, little insight has been gained as to the role
of selenium and selenoproteins in the pathology, and the
cell types wherein they serve protective and self-destruc-
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Inflammatory signaling and inflammatory gene expression in selenoprotein-deficient macrophagesFigure 3
Inflammatory signaling and inflammatory gene expression in selenoprotein-deficient macrophages. (A) Whole 
cell lysates from BMDMs treated with LPS were prepared after the indicated durations of stimulation and analyzed by immuno-
blotting with antibodies against the proteins indicated on the left. Data are representative of five experiments. (B) BMDMs 
were treated with LPS (100 ng/ml) for the indicated durations, and gene expression was analyzed by qPCR. Data are represent-
ative of three experiments. There were no statistically significant differences in the genes tested.
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Inflammatory responses in TrspM miceFigure 4
Inflammatory responses in TrspM mice. (A) LPS (50 mg/kg) was intraperitoneally injected into mice. Mortality of the ani-
mals was determined at the indicated time points (n = 9 for control mice; n = 11 for TrspM mice). (B) Serum samples were col-
lected 2 h after intraperitoneal LPS injection, and cytokine concentrations were measured. Data represent mean ± standard 
error (n = 3). There were no statistically significant differences in the cytokines tested. (C) Changes in ear thickness of individ-
ual mice after TPA treatment were determined on the indicated days. Data represent mean ± standard error (n = 8). (D) Neu-
trophils recruited to the peritoneal cavity following zymosan injection were recovered and counted. Data represent mean ± 
standard error (n = 3).



BMC Immunology 2009, 10:57 http://www.biomedcentral.com/1471-2172/10/57

Page 8 of 12
(page number not for citation purposes)

Altered gene expression in TrspM macrophagesFigure 5
Altered gene expression in TrspM macrophages. (A) Genes upregulated (red spots) and downregulated (green spots) in 
TrspM BMDMs were shown in the scatter plots. Numbers on the ordinate and abscissa represent logarithmic values of the 
intensity of signal of individual microarray spots. The cut-off lines indicate the margins of gene expression ratio: 3-fold or higher 
(upregulated genes; red) and 3-fold or lower (downregulated genes; green). (B) The expression levels of genes identified in 
DNA microarray analysis were validated by real-time qPCR. Shown is the relative expression of genes in BMDMs left untreated 
and treated with LPS (100 ng/ml; 4 h). Data are representative of two experiments. All genes presented exhibited statistically 
significant differences in their expression levels in WT and TrspM BMDMs. (C) Genes and protein products whose expression 
is regulated by selenoproteins.
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tive functions. Inflammation is driven by multiple types
of leukocytes and parenchymal cells of the immune sys-
tem. We previously reported that T cells lacking Sec

tRNA[Ser]Sec and selenoprotein expression were defective in
T cell receptor-induced proliferation, a key step for activat-
ing T cell-mediated immune responses [11]. In the current

Reduced invasion of TrspM macrophages in a protein gel matrixFigure 6
Reduced invasion of TrspM macrophages in a protein gel matrix. (A) Migration of BMDMs was analyzed by a transwell 
assay with a protein gel matrix (Matrigel) layer in the upper chamber. The number below each of the panels indicates relative 
macrophage migration and represents mean ± standard deviation (n = 3). *, p = 0.0003. The number in parenthesis indicates 
percentage of cell migration in the TrspM sample relative to the control sample. (B) Macrophage migration was analyzed by a 
transwell assay and the data presented as in A. but in the absence of a Matrigel layer. *, p = 0.0002.
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study, we determined the selenoproteins abundantly
expressed in resting and activated macrophages, and iden-
tified a role for selenoproteins in macrophage gene regu-
lation and invasive behavior.

Redox regulation is an inherent component of inflamma-
tory signaling in macrophages [21]. In accord with the
antioxidant activities of many selenoproteins, we
observed elevated ROS generation in selenoprotein-defi-
cient macrophages. However, this ROS dysregulation did
not lead to overt phenotypes in the mouse models of
inflammation that were used in this study. These results
may imply that the levels of ROS and oxidative damage
increased in TrspM macrophages are subthreshold for
effects on inflammatory responses. Alternatively, there
may exist fail-safe mechanisms in macrophages that act to
maintain inflammatory events in the absence of seleno-
protein function. It was indeed shown by others that cyto-
protective enzymes that are induced in a manner
dependent on the transcription factor NF-E2-related fac-
tor 2 can counter oxidative stress in Sec tRNA[Ser]Sec-defi-
cient cells and thereby compensate for the loss of
selenoproteins [20]. Whichever the case may be, seleno-
protein function is likely dispensable for the onset as well
as the termination of inflammatory responses, at least
under the specific experimental settings employed in our
tests. Of note, the selenoprotein deficiency of TrspM mac-
rophages resulted in increased expression of ECM-related
genes. Therefore, although the precise mechanism
remains to be determined, selenoproteins serve nonre-
dundant gene regulatory functions in macrophages.

Cell migration in vivo entails proteolytic remodeling of
ECM. Matrix metalloproteinases (MMPs) and other
groups of protein-degrading enzymes are well known for
their role in cellular ECM invasion. Amongst the ECM-
related genes overexpressed in TrspM macrophages are
Tagln and Timp3, whose protein products were shown to
inhibit the expression or activity of MMPs and thus sup-
press cell invasive activity [22,23]. In keeping with the
high expression of these genes, TrspM macrophages dis-
played greatly diminished invasion in a protein gel
matrix. Other ECM-related genes identified in our DNA
microarray experiments are also likely to contribute to this
phenotype. Invasive macrophages play a central patho-
genic role in certain chronic inflammatory lesions: most
notably foam cells in atherosclerotic plaques, and tumor-
associated macrophages. Therefore, TrspM mice may show
an altered severity or kinetics of disease in as-yet-unex-
plored experimental conditions, and serve as animal
models of chronic human diseases that are associated
with selenium deficiency.

Conclusion
Selenium and selenoproteins may regulate immunity and
tissue homeostasis through ECM-related gene expression
and macrophage invasiveness.

Methods
Mice and primary macrophages
A C57BL/6 mouse line carrying floxed Trsp (Trspfl/fl; desig-
nated as control) was described previously [24]. A trans-
genic C57BL/6 line carrying the Lysozyme M-Cre transgene
[15] was from the Jackson Laboratory. These lines were
mated to obtain TrspM mice. The maintenance and care of
all mice were conducted under IACUC-approved proto-
cols and in accordance with the National Institutes of
Health institutional guidelines under the expert direction
of Dr. John Dennis (NCI, NIH, Bethesda, MD, U.S.A.).
BMDMs and PEMs were prepared and cultured as
described [25]. The extent of Trsp deletion in each cell
preparation were determined by qPCR analysis of the
floxed region of the gene.

75Se-labeling and analysis of selenoproteins
Macrophages were incubated with 25 μCi/ml of 75Se for
24 h, lysed, the resulting protein extractions electro-
phoresed on gels, gels stained with Coomassie Blue R-
250, vacuum dried and exposed to a PhosphorImager as
described [14,26].

Protein, mRNA, and ROS analysis
The level of IκBα, ERK, JNK, and p38 activation was deter-
mined by immunoblotting with antibodies specific to
total and phosphorylated proteins (Cell Signaling Tech-
nology). Secreted proteins in culture media were assayed
by SearchLight protein array analysis (Pierce). Total RNA
was isolated using Trizol (Invitrogen). Microarray analysis
was performed with GeneChip Mouse 430 2.0 Array
(Affymetrix) at the Molecular Technology Microarray Lab-
oratory (Frederick, MD). The data were normalized and
statistically analyzed using software tools (Expression
Console; Affymetrix) provided by the National Cancer
Institute, Center for Cancer Research in collaboration
with the National Institutes of Health, Center for Informa-
tion Technology, Bioinformatics and Molecular Analysis
Section. All microarray data discussed in this paper are
available at the GEO repository at NCBI under the acces-
sion number GSE15610. Genes showing significantly dif-
ferent expression levels (p < 0.01) in WT versus TrspM

macrophages in three independent hybridizations were
chosen for validation by real-time qPCR, which was per-
formed as described [25]. ROS were measured by flow
cytometry and confocal microscopy using oxidation sen-
sitive dye DCFDA as described [11].
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Inflammatory response in vivo
LPS endotoxemia was induced by intraperitoneal injec-
tion of Escherichia coli 055:B5 LPS (50 mg/kg; Sigma) in
phosphate-buffered saline (PBS). For acute edema forma-
tion, the right auricle was irritated by topical treatment
with 2 μg of TPA in 20 μl of acetone. For control irritation,
20 μl of acetone was applied to the left auricle of the same
animal. Ear thickness was measured using a dial thickness
gauge (Mitutoyo). Changes in ear thickness were deter-
mined base on the following formula: Ear swelling on day
X after TPA treatment = (thickness of the right ear on day
X - thickness of the right ear on day 0) - (thickness of the
left ear on day X - thickness of the left ear on day 0). To
induce acute neutrophil infiltration, 0.5 mg of zymosan
(Sigma) in 0.5 ml of PBS was injected intraperitoneally.
Peritoneal exudate was recovered 4 h following injection
and the number of neutrophils in the exudate was
counted under bright-field microscopy.

Cell invasion and migration assay
3 × 105 BMDMs in 200 μl of culture medium containing
0.5% fetal bovine serum were loaded onto the upper
chamber of either a protein gel-coated BD BioCoat
Matrigel Invasion Chamber (pore size, 8.0 μm; BD Bio-
sciences) or a non-coated transwell plate (pore size, 8.0
μm; Corning). For invasion assay, 600 μl of culture
medium containing 10% fetal bovine serum was placed in
the lower well, and cells were incubated for 24 hr. The
lower surface of the membrane was stained with 0.09%
crystal violet and macrophages counted under bright-field
microscopy. The numbers of macrophages in three inde-
pendent image fields of the same size were counted to
obtain the means and standard deviations.

Statistical analysis
P-values between a pair of datasets were obtained from
two-tailed Student's t-test using GraphPad Prism 4.0.
Gene expression data are shown as the average ± standard
deviation.
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