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Abstract—An embedded smart camera is a stand-alone unit
that not only captures images, but also includes a processor,
memory and communication interface. With battery-powered
and embedded smart cameras, it has become viable to install
many spatially-distributed cameras interconnected by wireless
links. Not requiring to have access to electrical outlets and
have wired links increase system flexibility. However, wireless
and battery-powered smart-camera networks introduce many
additional challenges since they have very limited resources, such
as power, memory and bandwidth. The algorithms running on the
camera boards should be lightweight and efficient. In addition,
the frequency of communication between camera nodes, and the
content of the message packets should be carefully designed,
since communication consumes power. In this paper, we present
a wireless embedded smart-camera system that performs peer-to-
peer object tracking and event detection. We analyze the power
consumption and performance of this system during different
parts of the algorithm execution and for different message
exchanges between camera nodes. We also present a graph of the
energy consumption for different tasks performed in a camera’s
processor. The number of instructions are also presented. The
results demonstrate the importance of the careful choice of when
and what data to transfer between cameras, and also the necessity
of having lightweight algorithms in these resource-constrained
systems.

I. INTRODUCTION

Cameras are employed in military, public and commercial
applications for surveillance and statistics gathering. Many
systems have been introduced to automatically analyze the
large amount of video data generated by multiple cameras.
However, most work in this area has considered systems that
rely on a back-end server or control center to process multiple
video inputs. Yuan et al. [31], Collins et al. [6][7], Nguyen
et al. [18], Lo et al. [17] and Krumm et al. [15] present
systems where a server/controller performs the coordination
and integration of the data from individual nodes. But, these
systems have a bandwidth scaling problem, since the central
server can quickly become overloaded with the aggregate sum
of messages/requests from the nodes. Also, the server is a
single point of failure for the whole system.

The aforementioned problems of server-based systems ne-
cessitate the use of peer-to-peer (P2P) systems, where in-
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dividual nodes communicate with each other without going
through a centralized server. Atsushi et al. [1] use multiple
cameras attached to different PCs connected to a network.
They calibrate the cameras, and send message packets between
stations. Ellis [9] also uses a network of calibrated cameras.
Velipasalar et al. [28] present a P2P multi-camera system
for multi-object tracking, wherein each camera is attached to
a different CPU. But, cameras and CPUs in these systems
are assumed to be wall-powered and/or communication is
performed over wired links. These requirements affect the
system flexibility and incur additional costs.

Battery-powered embedded smart cameras make it possible
to install many spatially-distributed cameras interconnected
by wireless links. An embedded smart camera is a stand-
alone unit that not only captures images, but also includes
a processor, memory and communication interface. However,
wireless and battery-powered smart-camera networks intro-
duce many additional challenges including limited processing
power, memory, energy and bandwidth. Limited resources
necessitate light-weight algorithms to be implemented and run
on the embedded cameras, and also careful choice of when and
what data to transfer.

Many embedded vision sensor platforms have been devel-
oped more recently [23][11][24][8][10][16][14]. The Cyclops
platform [23] has a 7.3 MHz processor. The MeshEye [11]
integrates three CMOS cameras to provide a surveillance
camera module, which has a processor with 50 MHz speed.
However, in both of these platforms the processing power
is very limited. Panoptes platform [10] hosts a 206 MHz
processor, WLAN card and a webcam, but has high energy
consumption. SensEye [16] is a multi-tier network of hetero-
geneous wireless nodes and cameras. Bramberger et al. [2]
introduce a highend platform reaching a processing power of
9600 MIPS with onboard memory of 784 MB. However, it
requires an average power consumption of 35 Watts.

We have presented a wireless embedded smart camera
system for cooperative object tracking [29] and detection
of composite and semantically high-level events spanning
multiple camera views [30]. Each camera in this system is
a CITRIC mote [5] that consists of a camera board and a
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wireless mote. The microprocessor on the camera board is a
fixed-point processor with a maximum speed of 624MHz and
256KB of internal SRAM. The wireless mote connected to and
powered by the camera board is a TelosB mote. Since local
memory for storage, and power is limited in each camera, we
designed and implemented light-weight and robust background
subtraction and tracking algorithms that are run on the camera
boards. Cameras exchange data in a P2P manner over wireless
links to track objects consistently, and also to update locations
of occluded or lost objects. Due to relatively large power con-
sumption of wireless communication, it is carefully designed
when and what data to communicate between camera nodes.
With this system, we do not transfer or save every frame or
every object trajectory. We detect events of interest so that
interesting and important video portions and trajectories can
be determined.

In this paper, we analyze the power consumption and perfor-
mance of this system during different parts of the algorithm ex-
ecution and for different message exchanges between camera
nodes. We also present a graph of the energy consumption for
different tasks performed in a camera’s processor. The number
of instructions are also presented. The results demonstrate the
importance of the careful choice of when and what data to
transfer between cameras, and also the necessity of having
lightweight algorithms in these resource-constrained systems.

II. THE WIRELESS EMBEDDED SMART CAMERA

PLATFORM

In this section, we provide a summary of the wireless
embedded smart camera platform employed in our system.
The details of the platform can be found in [5][30].

The wireless embedded smart camera platform [5] we use
consists of a camera board and a wireless mote, and is shown
in Fig. 1. The camera board is composed of a CMOS image
sensor, a fixed-point microprocessor, external memories and
other supporting circuits. The camera is capable of operating
at 15 frames per second (fps) in VGA and lower resolutions.
The wireless mote connected to the camera board is a TelosB
mote from Crossbow Technology. The maximum data rate of
the TelosB is 250kbps.

Each camera performs foreground detection, blob forming,
object tracking and composite event detection, and all the
processing is performed on the camera boards. The camera
board is connected to the wireless mote with a serial port.
The wireless mote is an idle mode during most of the time
while the camera is performing tracking. In other words, no
serial communication is performed between the camera board
and the wireless mote. When the camera needs necessary
information from other cameras, and needs to exchange data,
only then it performs serial communication with the wireless
mote to send and receive packets. Due to the low radio
data rate and the small buffer size of the mote, we also
need to buffer and transfer as few and as small-sized packets
as possible. The algorithms and the communication protocol
have been designed and implemented by taking this fact into
account.

III. LIGHT-WEIGHT OBJECT DETECTION AND TRACKING

ALGORITHMS

Limited processing power and limited memory in em-
bedded smart cameras necessitate the design of light-weight
vision algorithms for object detection and tracking. Lighting
variations and non-static backgrounds make the foreground
object detection problem even more challenging. The necessity
of eliminating uninteresting motion, such as swaying trees,
increases the algorithm complexity, and thus memory require-
ments.

We presented a light-weight and efficient foreground detec-
tion algorithm in [3], [4], and implemented and imported it
to the embedded smart camera nodes [30]. This algorithm is
highly robust against lighting variations and non-static back-
grounds including scenes with swaying trees, water fountains
and rain. The memory requirement for the data saved for each
pixel is very small compared to many traditional background
subtraction methods. This algorithm requires 6.25-byte mem-
ory per pixel, whereas original mixture of Gaussians [25],
Eigenbackground [19] and Codebook [13] methods require 32,
28 and 91 bytes per pixel, respectively. We also implemented
the adaptive Mixture of Gaussians (MoG) [25], which is one
of the most commonly used background subtraction methods,
on our smart camera board to compare their performances. On

Fig. 1. The wireless embedded smart camera platform employed in the presented system.



our camera boards, the MoG algorithm runs at 1.6 frames per
second (fps), and the light-weight algorithm runs at 12.5 fps
when there is one foreground object in the scene. The details
of our foreground detection algorithm can be found in [4].

We also implemented a reliable and efficient tracking algo-
rithm on the embedded smart camera nodes. The details of
this algorithm are described in [28] and [29].

In order to solve the consistent labeling problem, we employ
the field of view (FOV) lines, which were introduced by Khan
and Shah [12]. A camera also uses the FOV lines to determine
which other cameras can see an object that is in its field of
view, and thus to figure out to which cameras the request
messages should be addressed. We recover the FOV lines off-
line as described in [28]. When a new foreground object enters
in a camera’s field of view, the camera first checks if this object
can be seen by any other cameras by employing the FOV lines.
The midpoint of the bottom line of the bounding box of the
object is used as its location. If this point lies on the visible
side of all the FOV lines belonging to camera i, then it is
deduced that this object is visible by camera i. In this case, a
request for a label addressed to camera i will be sent out by
wireless communication to achieve consistent labeling.

IV. WIRELESS COMMUNICATION BETWEEN CAMERAS

Due to relatively large power consumption of wireless
communication, it is very important to carefully design when
to communicate and what to communicate, and to employ
algorithms that do not require transfer of large data between
cameras. In the presented system, cameras exchange small-size
packets in a P2P manner over wireless links.

A camera will need to communicate with other cameras
when (a) a new object appears in its FOV, (b) a tracker cannot
be matched to its target object, and (c) a primitive event
that is part of a pre-defined composite event scenario occurs
in its FOV. These three cases are referred to as New label,
Lost label and Primitive occurred cases, respectively.

The system can perform detection of semantically high-
level events. We define composite and semantically high-level
events as a sequence of primitive events, and these primitives
can be defined on different camera views [30]. The existing
primitive events are motion detection and trip-wire crossing.
An example event scenario of interest could be detecting a
car entering the scene in the first camera view, and then going
through a region of interest in the second camera view, and
then parking in a region defined on the second camera view.
When a camera detects a primitive event, it sends a message
addressed to the next camera in the sequence to let it know
the occurrence of this primitive event, and the label of the
object performing the primitive event. Since the primitives
and their sequence are all pre-defined, we already know which
primitive is defined on which camera view. When a primitive
event occurs in one camera, it will address the message to the
next camera in the sequence.

In the New label and Lost label cases, before sending the
request, the current camera checks the visibility of the target
by other cameras by employing the FOV lines. If it is deduced

that this object is visible by another camera, the ID of that
camera will be included in the request message. This way,
when a camera receives a broadcasted message, it will drop
the message if the target ID in the message does not match
its own ID.

A. What data to communicate

Small-sized packets are exchanged between cameras to re-
duce power consumption and delay. The contents of messages
for different scenarios are described in following subsections.
In all the messages below, Target ID is the wireless mote ID
of the camera to which a message is addressed, and My ID is
the ID of the camera sending the message.

1) New label request: When a new object appears in the
current camera view, a tracker is created for it. If it is de-
termined that another camera can see this object, a temporary
label is assigned to the object and a request message, addressed
to that camera, is created, which has the following format:

Target ID My ID Pkt type x y Tmp label

where Pkt type is an unsigned character indicating that this
packet is for a new label request, and x and y are the coor-
dinates of the object in the current camera view. Tmp label
is the temporary label assigned to this newly found object.
When a reply is received, this temporary label is replaced by
the received label. In this case, we need 1 byte each for the
Target ID and My ID, 1 byte for the Pkt type, 2 bytes for x,
1 byte for y (the width of the frame is greater than 256 and
the height of the frame is less than 256), and 1 byte for the
Tmp label. Thus, we only use 7 bytes for a new label request.

2) New label reply: When a camera receives a packet that
is addressed to itself, and finds that it is for a new label
request, it will calculate the object’s corresponding location
in its own view by using the received coordinates and the
homography matrix calculated off-line. Then, it will find the
distance of the closest tracker to the calculated location. If this
distance is smaller than a threshold, it will send the label of
this tracker as reply in the following packet form:

Target ID My ID Pkt type Tmp label Ans label

where Pkt type is an unsigned character indicating that this
packet is for a new label reply. Tmp label is the temporary
label the requesting camera is using, and Ans label is the reply
label. In this case, we only use 5 bytes in the packet.

3) Lost label request: For a tracker that cannot be matched
to its object, a camera that can see the most recent location of
this tracker is found by using the FOV lines. Then, a lost label
request packet is formed, which has the following format:

Target ID My ID Pkt type Lost label

where Pkt type is an unsigned character indicating that this
packet is for a lost label request, and Lost label is the label
of the tracker which could not be matched to an object. We
only use 4 bytes for a lost label request.



4) Lost label reply: When a camera receives a packet that
is addressed to itself, and finds that it is a lost label request,
it sends the current location of the tracker, whose label is the
same as the Lost label entry of the request message, as reply.
The reply packet has the following format:

Target ID My ID Pkt type Lost label x y

where Pkt type is an unsigned character indicating that this
packet is for a lost label reply. Lost label is the label of
the tracker received from the requester, and x and y are the
coordinates of the object. In this case, we use 7 bytes in the
lost label reply packet.

When the requesting camera receives the reply, it calculates
the corresponding location of the object in its own view, and
updates the tracker’s location.

5) Primitive occurred message: In the Primitive occurred
case, the camera nodes send out messages to inform the next
camera node in the defined event sequence. Thus, they do
not need replies. The event scenarios of interest are defined
beforehand, and they are composed of primitive events. When
the first primitive event occurs in the view on which it was
defined, this camera sends a message addressed to the camera
that is responsible to detect the next primitive event in the
sequence. Once the second primitive occurs, and if the third
primitive is defined on a different camera view, the second
camera sends a message addressed to that camera. The form
of the packet for the Primitive occurred message is:

Target ID My ID Pkt type Prim ID Obj label

where Pkt type is an unsigned character indicating that this
packet is a message informing the occurrence of a primitive
event. Prim ID is the order number of the primitive event
in the sequence, and Obj label is the label of the object
performing this event. In this case, we only use 5 bytes for
the Primitive occurred message.

V. POWER CONSUMPTION ANALYSIS OF THE SYSTEM

We analyzed the power consumption of the system over
time, where the time and power consumption are measured in
milliseconds and watts, respectively.

An experiment was performed where remote controlled cars
were tracked cooperatively by two embedded smart cameras.
A composite event composed of two primitive events was
defined on two different camera views. The event of interest is

detecting a car crossing a tripwire in the first camera view, and
then parking in a region defined on the second camera view.
Figure 2(a) shows an example of detecting the first primitive
event on the first camera view, where the yellow line is the
pre-defined trip-wire. When the car crosses this line, the first
camera sends a Primitive occurred message to the second
camera, and this message includes the label of the car (10)
performing the event. The second primitive event occurs when
an object is detected in the specified region for longer than a
specified period. Figures 2(b) and (c) show the car entering the
region of interest and remaining there. The second primitive
event occurs, and thus the whole composite event is detected.

When an object enters into the view of a camera, the object
is assigned a temporary label. As seen in Fig. 2(c), a new car
enters into the FOV of the second camera, and it is assigned the
temporary label 0. Then FOV lines are employed to determine
if any of the other cameras in the system can see this object.
If the object can be seen by another camera, this camera will
send a New label request addressed to that camera, and will
continue tracking this object with the temporary label until
receiving a reply. In the example seen in Fig. 2(c), the second
camera sends a New label request to the first one. Once the
correct label (11) is received, the requesting camera replaces
the temporary label with the correct one, as seen in Fig. 2(d).

During the experiment, there were multiple instances of a
new object entering into a camera’s FOV, and then a New label
request being generated. Figures 3 and 4 show two other cases
of successful consistent labeling.

The power consumption of one of the cameras was analyzed
over time for this scenario. Fig. 5 shows the plot of the
consumed power (in Watts) versus time (milliseconds). In this
plot, yellow corresponds to receiving a Primitive occurred
message, green corresponds to sending a New label request,
while red corresponds to receiving a New label reply. The blue
color represents the average power consumed by the camera
board when tracking different number of objects. The power
consumed by the camera board increases with increasing
number of tracked objects or vice versa.

As stated before, two primitive events were defined in this
scenario. When the first camera detects the first primitive
event, it sends a Primitive occurred message to the second
camera. The yellow peak in Fig. 5 indicates the reception of
this message in the second camera. During this time, there

(a) Camera 1 (b) Camera 2 (c) Camera 2 (d) Camera 2
Fig. 2. Composite event detection and consistent labeling: (a) The first primitive event is detected on the first camera view, (b)-(c) second
primitive event, and thus the composite event scenario is detected, (d) the correct label of the new object is received from the first camera.



(a) Camera 1 (b) Camera 2 (c) Camera 1

Fig. 3. Receiving the correct label of a new object entering the FOV: (a) The yellow car enters the FOV of the first camera, it is assigned a
temporary label, and a New label request is sent to the second camera; (b) the object is being tracked by the second camera, which sends
the correct label 11 to the first camera; (c) the temporary label is replaced by the correct label 11 in the first camera.

are no objects in the view of the second camera yet, and
the camera board consumes an average of 1.515 watts by
grabbing a frame and doing background subtraction and model
update. Then a car enters into the FOV of the second camera,
and the second camera sends a New label request to the first
camera at time t = 25486 ms. The reply of the first camera
arrives in approximately 90ms to the second camera. As can
be seen in the figure, after the car enters into the FOV of the
second camera, the power consumption of the camera board
increases from 1.515 to 1.627 watts, since the camera has
started to track this object. Subsequently, at time t = 97286
ms, another car enters into the FOV of the second camera.
Once more, a New label request is sent to the first camera,
and the corresponding reply is received. Since there are now
two objects in the FOV of this camera, the consumed power
increases to 1.657 watts. At time t = 199317 ms, a third car
enters into the view, and the required power increases to 1.787
watts.

The green peaks in Fig. 5 correspond to the power that is
required to transmit a New label request message, whereas the
red peaks correspond to the power that is consumed to parse a
received message. Power formulas have been used to calculate
the power consumption of the wireless communication. As
stated above, in the presented system, small-sized message
packets are sent between camera nodes for different scenar-
ios, namely New label request, New label reply, Lost label
request, Lost label reply, and Primitive occurred cases. Table

I summarizes the number of bytes in each of these messages.
Additionally, a default header of 14 bytes, due to the MAC
protocol, is added to encapsulate the information.

TABLE I
NUMBER OF BYTES IN DIFFERENT MESSAGE PACKETS

New label Lost label Primitive event

Request 7 bytes 4 bytes 5 bytes
Reply 5 bytes 7 bytes

Figure 6 shows the energy consumed for transmitting re-
quest and receiving reply messages. The energy is calculated
based on the packet size. Power = V × I where V is the
nominal voltage, which is 3V for the TelosB. The current I is
taken from the data sheet [22]. The typical current for recep-
tion (21.8 mA) is larger than the current for transmission (19.5
mA). The time that takes to send each packet is computed
using the following formula:

time =
NT × 8
D

(1)

where NT is the number of bytes to be send, D is the nominal
data rate, which is 250 Kbps for the CC2420 radio chip. Thus,
based on this formula, it takes 0.672ms to transmit a 21-byte
(14+7 bytes) New label request message. The energy required
is E = P × T = 19.5mA× 3V × 0.672ms = 39.312μJ.

On the other hand, the power consumption of the camera
board depends highly on the amount of activity in the scene.

(a) Camera 2 (b) Camera 2 (c) Camera 1 (d) Camera 1

Fig. 4. (a) The second camera labels a new object entering in its FOV, (b) the second camera issues a New label request after assigning
a temporary label to the object entering from the left, (c) the first camera replies with the correct label 11, (d) the second camera updates
the label of the target object.



Fig. 5. Power consumption over time.

Fig. 6. Energy required to transmit and receive different message types.

Different number of objects in the scene causes variations
in the operating current of the camera board. The current
increases or decreases based on the workload of the processor
(number of instructions per task), the supply voltage source
and the frequency at which the processor is working. Thus,
we measured the operating current when there were different
number of objects in the scene. To measure the current, we
used a precise oscilloscope and a 1-ohm resistor configuration
placed at the input of the supply source. Figure 7 shows
the variations in the current during the processing of frames
containing different number of tracked objects. The measures
in the oscilloscope have to be scaled by 10.

The system takes an average of 87ms to process one
frame. Figure 8 shows a bar graph of the energy consumption
for different tasks performed in the camera’s processor. The
number of instructions are also presented. All the computations
were done when there is one tracker. This plot can help us to
extrapolate the energy consumption for more than one tracker
if needed.

In the above discussion, we did not consider the power
consumption of the UART protocol between the camera mote
and the TelosB, since this process only requires a current in
the order of 15 to 50 μA and the time to send the packets is in

the order of 20μs. Thus, the energy consumed is very small.

VI. CONCLUSIONS

In this paper, we analyzed the power consumption and
performance of a wireless embedded smart camera system
performing object detection, tracking and event detection. We
made the analysis during different parts of the algorithm ex-
ecution and for different message exchanges between camera
nodes. The power consumption of the camera board depends
highly on the amount of activity in the scene. Thus, we
measured the operating current when there were different
number of objects in the scene. To measure the current, we
used a precise oscilloscope and a 1-ohm resistor configuration.
We also presented a graph of the energy consumption for
different tasks performed in a camera’s processor together with
the number of instructions.
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