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In this work the dynamic response is considered of a homogeneous, fully clamped
rectangular plate subject to spatially uniform thermal loads and narrow-band acoustic
excitation. In both the pre- and post-buckled regimes, the small amplitude, linear response
is confirmed. However, the primary focus is on the large amplitude, non-linear,
snap-through response, because of the obvious implications for fatigue in aircraft
components.

A theoretical model is developed which uses nine spatial modes and incorporates initial
imperfections and non-ideal boundary conditions. Because of the higher order nature of
this model, it is inherently more complicated than a one-mode buckled beam equation
(Duffing’s equation). An experimental system was developed to complement the theoretical
results, and also to measure certain system parameters for the model which are not available
theoretically.

Several analysis techniques are used to characterize the response. These include time
series, power spectra and autocorrelation functions. In addition, the fractal dimension and
Lyapunov exponents for the response are computed to address the issue of spatial
dimension and temporal complexity (chaos), respectively. Comparisons between theory and
experiment are made and show considerable agreement. However, these comparisons also
serve to point out difficulties in computing the fractal dimension and Lyapunov exponents
from experimental data.

7 1996 Academic Press Limited

1. INTRODUCTION

Structural vibrations caused by intense acoustic excitation are common in aircraft and
spacecraft. Combined with the elevated temperatures, typical steady-state oscillations may
consist of small amplitude motions about one equilibrium or large amplitude,
snap-through motions about and between multiple equilibria. In either case, structural
fatigue may result and severely reduce the life of the structure [1, 2].

Previous studies in snap-through dynamics have looked at a variety of excitations
including aerodynamic [3, 4], acoustic [5, 6], harmonic [7] and stochastic [8]. While some
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include experiments, these studies have typically focused on modelling the system and
viewing the response in the time and frequency domains.

The goal of this research endeavor is to demonstrate and characterize some typical
behavior of an acoustically excited and thermally loaded plate. Specifically, the response
is seen in terms of time series, phase plane projections, power spectra and autocorrelation
functions. In the case of periodic oscillations, these techniques are sufficient. However, for
snap-through motions, these methods provide only qualitative answers which suggest that
the motion is complex. Therefore, other quantities such as the fractal dimension and
Lyapunov exponents are used to quantify the ‘‘size’’ of the system and the temporal
complexity of the response, respectively.

2. EXPERIMENTAL FACILITIES

The experiments were conducted in the Thermal Acoustic Fatigue Apparatus (TAFA)
at the NASA Langley Research Center [9]. TAFA is a progressive wave tube facility used
to test plate structures under acoustic, thermal or combined loads. A schematic top view
of TAFA is shown in Figure 1.

Acoustic excitation is provided by a set of air modulators connected through an
exponential horn to a 6 ft×6 ft×1 ft test section which leads to an anechoic termination.
Test specimens are mounted on the side wall of the test section and are therefore subjected
to a grazing acoustic load. This system is capable of generating overall sound pressure
levels between 125 dB and 165 dB. Excitation frequencies may be either sinusoidal or
broadband in the range of 40–500 Hz.

Radiant thermal loads are generated by a set of ten quartz lamp banks situated directly
across the test section from the plate. The lamps are controlled in either a percentage power
or a temperature set point mode. A low mass airflow is also used to minimize the effects
of natural convection, thereby producing a more uniform temperature distribution across
the plate.

The clamping frame was designed specifically for high temperature applications. The
design minimizes thermal expansion of the frame during heating such that in-plane
compression of the plate results. A detailed description of this system is provided in
reference [10].

Data were acquired using high temperature strain gages at (x/a, y/b)= (0·583, 0·461),
which measured the y-direction strain (perpendicular to the direction of the acoustic wave
propagation). This location was chosen because it does not coincide with any nodal lines
in the lower modes. Strain gage data was recorded using a workstation based acquisition
system with a sampling rate of 32 768 samples/s. Measurements were DC coupled in order
to record the strains at the various equilibrium positions. The plate was also outfitted with

Figure 1. A schematic top view of the Thermal Acoustic Fatigue Apparatus (TAFA) at the NASA Langley
Research Center.
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several thermocouples to monitor the temperature and to verify that a relatively uniform
distribution was created.

The plate under consideration has dimensions 15 in×12 in×0·062 in (aspect
ratio= a/b=1·25) and was made of AISI 321 stainless steel. The material properties of
this steel are as follows: E=28×106 psi, n=0·33, a=9·6×10−6 (in/in)/°F and
r=0·29 lb/in3. Using the techniques described in reference [10], the critical temperature
rise above ambient for the flat plate (i.e., the buckling temperature) with experimental
boundary conditions was found to be DTflat

cr =21°F.

3. THEORETICAL MODEL

3.1.  

The non-linear partial differential equation of motion for this sytem is given by

9' 4w−0ab1
2

$12F
1h2 012w

1j2 +
12w0

1j2 1+
12F
1j2 012w

1h2 +
12w0

1h2 1
−2

12F
1j 1h 0 12w

1j 1h
+

12w0

1j 1h1%+
12w
1t2 + b

1w
1t

+DP=0, (1)

where w is the lateral displacement of the plate, w0 is the initial imperfection, DP is an
external load and F is the Airy stress function. Thermal effects are included in the Airy
stress function [10]. In addition, j and h are non-dimensional spatial co-ordinates, t is a
non-dimensional time and 9� 4 is a non-dimensional biharmonic operator, these being given
by

j=
x
a
, h=

y
b
, t= tX D
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where a and b are the lengths of the plate in the x- and y-directions, h is the plate thickness,
D is the flexural rigidity and r is the material density.

Compatibility between the in-plane stress and the lateral displacement, w, is assured by
satisfying

9' 4F=12(1− n2)0ab1
2

$0 12w
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+20 12w
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1j2 %, (2)

where n is the Poisson ratio. A derivation and discussion of these equations are available
in references [11–13].
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3.2.  

The solution procedure, outlined here, is described in detail in reference [10]. This
procedure assumes an out-of-plane displacement field, w, and an initial geometric
imperfection, w0, of the form

w(j, h, t)= s
3

i=1

s
3

j=1

aij (t)Ci (j)Fj (h), w0(j, h)= ãmnC	 m (j)F	 n (h). (3)

The modal coefficients, aij (t), are the time dependent generalized co-ordinates. These
co-ordinates, along with their velocity counterparts ȧij , make up the state variables. Since
three spatial modes are assumed in each direction, there are nine aij’s and 18 state variables.
The comparison functions Ci and Fj are the cosine functions presented in reference [14]:

Ci (j)= cos ([i−1]pj)− cos ([i+1]pj), Fj (h)= cos ([j−1]ph)− cos ([j+1]ph).

(4)

The tilde (0) notation is used to indicate which terms are related to the initial imperfection.
First, the compatibility equation is considered. By substituting equation (3) into the right

side of equation (2), it becomes evident that the particular solution to the Airy stress
function, Fp , must take the form

Fp (j, h, t)= s
i

s
j

s
k

s
l

aij (t)akl (t)F I
ijkl (j, h)+ s

i

s
j

aij (t)ãmnF II
ij (j, h). (5)

Expanding the spatial terms F I
ijkl and F II

ij in the assumed mode shapes with constant
coefficients FI

pqijkl and FII
pqij gives two spatial equations:

s
p

s
q
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[2C'i F'j C	 'mF	 'n −C0i FjC	 mF	 0n −CiF0j C	 0mF	 n ]. (7)

Galerkin’s method is then applied and, from the resulting algebraic equations, the
coefficients FI

pqijkl and F II
pqij may be obtained numerically.

The particular solution, Fp , only contributes inside the domain, since it is expanded in
terms of the assumed modes (Ci =Fi =0 on the boundaries). Therefore, the homogeneous
solution, Fh , must account for the edge stress. An appropriate homogeneous solution is

Fh = 1
2(N�jh

2 +N�hj
2), (8)

where N�j and N�h are the in-plane edge stresses. These terms may be obtained by enforcing
a combined stress–displacement boundary condition. The stress is made proportional to
the average in-plane displacements:

N�j =−0ah1Kj g
1

0

Dj dh, N�h =−0bh1Kh g
1

0

Dh dj, (9)

where Kj and Kh are the equivalent in-plane boundary stiffnesses and Dj = u(1, h)− u(0, h)
and Dh = v(j, 1)− v(j, 0) represent the in-plane stretching. Expressions for the x and y
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in-plane displacements, u and v, come from combining the non-linear stress–strain and
strain–displacement relations and integrating: u= f 1

0 (1u/1j) dj and v= f 1
0 (1v/1h) dh.

Finally, the Airy stress function, F=Fp +Fh , and the displacement field (equation (3))
are then substituted into equation (1) and Galerkin’s procedure is carried out. This leaves
r× s non-linear, coupled ODE’s in the modal coefficients, aij . The rsth equation takes the
form

s
i

s
j

Sijrsäij + s
i

s
j

bijrsSijrsȧij + s
i

s
j

s
k

s
l

s
p

s
q

Bijklpqrsaijaklapq

+ s
i

s
j

s
k

s
l

Cijklrsaijakl + s
i

s
j

Dijrsaij +Ers =DPrs , (10)

where Sijrs are modal mass terms, bijrs are proportional damping coefficients and DPrs are
excitation terms. The other coefficients, Bijklpqrs , Cijklrs , Dijrs and Ers , are stiffness related. Due
to the cubic nature of the stiffness, these non-linear ODE’s may be seen as a set of higher
order, coupled Duffing’s equations.

It should be noted that three obstacles prevent the immediate use of this model. The
first two are the initial geometric imperfection (deflection), ãmn and the in-plane boundary
stiffnesses, Kj and Kh . Appropriate values were obtained using Southwell’s technique as
described in references [10] and [15]. For the 0·062 in plate, the non-dimensional in-plane
boundary stiffness is Kj =Kh =2050 and the initial imperfection was ã11 =0·04. The third
obstacle is the structural damping. The procedure to measure the damping is described in
the following section.

3.3.  

For simplicity, a linear viscous damping model is assumed. This simple model does
capture the essential behavior of the system and, provided that the damping is measured
experimentally, may be used in the structural model with a reasonable degree of
confidence.

To estimate the damping ratio, the half-power method is used [16]: z11 is found by
applying a narrow-band acoustic excitation near the first mode resonant frequency of the
plate. Using the strain gage (output) and microphone (input) signals, the transfer function
is computed. From the fundamental peak, the damping in the first mode is computed by

z11 = 1
2[(v2 −v1)/vp ], (11)

where vp is the peak frequency and v1 and v2 are the frequencies at 1/z2 of the peak.
Based on this procedure, the damping ratio is estimated as z11 =0·01.

The damping ratios in the other modes are more difficult to find using the half-power
method, because the peaks in the transfer function at higher frequencies are less distinct.
It is assumed that the remainder of the damping ratios scale with their resonant frequencies
[17]:

zij = z11(v11/vij ). (12)

However, equation (10) uses damping coefficients rather than the damping ratios. In this
case, the damping in the ijth mode of the rsth equation is

bijrs =2zijvij =2z11v11. (13)

It should be noted that the resonant frequencies are temperature dependent [10]. However,
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for simplicity, v11 in equation (13) is taken at the ambient temperature. As a result, bijrs

is constant.

3.4.  

The model is completed by considering DPrs . This excitation term results from the
acoustic field in TAFA and is obtained in a two-step procedure. First, the pressure on an
infinitely rigid plate is found. However, the flexible plate ‘‘pushes back’’ on the fluid and
the pressure field is augmented. The actual pressure field differs because of this
structural–fluid coupling. Modelling this fluid–structural coupling constitutes the second
part of the solution procedure.

For the infinitely rigid plate, the problem becomes one of duct acoustics. The pressure
field in TAFA is governed by the linear wave equation

92p=
1
c2

12p
1t2 , (14)

subject to the boundary conditions

qy (x, 0, z, t)=0, qy (x, Ly , z, t)=0, qz (x, y, 0, t)=0, qz (x, y, Lz , t)=0, (15)

where p is the pressure field, c is the speed of sound in the fluid (air), and qy and qz are
the fluid displacements in the y- and z-directions, respectively. Ly and Lz are the width and
height dimensions of the duct. Using these boundary conditions along with the momentum
equation allows one to find a solution to the wave equation (see reference [18]):

p(x, y, z, t)= s
m

s
n

pmn cos (mpy/Ly ) cos (npz/Lz ) ei(vt− kmnx), (16)

where

kmn =z(v/c)2 − (mp/Ly )2 − (np/Lz )2. (17)

The x-direction boundary condition must be used to compute the coefficients pmn . The fluid
displacement at x=0 is assumed to be periodic and, therefore, plane waves are created.
This can be stated qx (0, y, z, t)= q0 eivt. Combining this and equation (16) with the
x-component of the momentum equation and evaluating at the x=0 boundary gives

1qx

1t
=−

1
r

1p
1x

, q0 =
1

vr
s
m

s
n

kmnpmn cos 0mpy
Ly 1 cos 0npz

Lz 1, (18)

where r is the density of the fluid (air). Matching cosine terms on the right and left sides
yields m= n=0. Since this is the only solution, the pressure coefficients and wavenumbers
are all zero except for p00 and k00, which are

p00 = q0rv/k00, k00 =v/c. (19)

Combining these terms with equation (16) gives an expression for the entire pressure field
in the duct:

p(x, t)= p0 sin 0vt−
v

c
x1, (20)

where p0 = q0rc. Equation (20) may be used to compute the pressure on an infinitely rigid
plate.
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Next, the problem of fluid–structural coupling must be considered. One approach is to
compute the radiative impedance of the fluid for a given loading situation. The impedance
is a complex quantity relating the pressure and velocity. The real part (resistance) is
in-phase with the velocity and, hence, is damping-like. The imaginary part (reactance) is
90° out-of-phase with the velocity, making it mass-like in the low frequency,
incompressible case. As a result, computing the fluid impedance is similar to finding the
additional damping or mass which would have to be added to the structure in order to
create an equivalent loading scenario.

For the sake of this analysis, the plate is replaced by an equivalent circular piston moving
in the fluid. The word ‘‘equivalent’’ means that the piston area equals the area of the
rectangular plate. For this system, the equivalent piston has a radius r=7·5694 in.

The excitation frequency used through this study is in the vicinity of 100 Hz. This
corresponds to a wavelength of l=11·25 ft (in air at 68°F). Also, the wavenumber is
K=2p/l=0·046542 in−1.

Expressions for the radiative resistance and reactance of a baffled circular piston are well
known [18] and are given in non-dimensional form by

R1(v̄)=1−
2J1(v̄)

v̄
=

v̄2

221!2!
−

v̄4

242!3!
+ · · · ,

X1(v̄)=
4
p $v̄3 −

v̄3

32 · 5
+

v̄5

32 · 52 · 7
+ · · · %, (21)

where R1 is the resistance, X1 is the reactance, J1 is a Bessel function and v̄=2kr is the
reduced frequency, with k as the wavenumber.

For the experimental system under consideration, the reduced frequency is 2kr=0·7046.
In this low reduced frequency region, R1(v̄) and X1(v̄) can roughly be approximated by
the leading term in their series expansions. This means that the resistance is quadratic in
the reduced frequency, while the reactance is linear.

Using the low frequency reactance, an equivalent mass for the fluid may be found. In
dimensional form the reactance may be written as X= pr2rcX1. Also, the low frequency
mechanical reactance is given by vm, with v in rad/s. Combining these leads to

mv=2(pr2)(rc)X1(2kr)=2pr2r
8r
3p

. (22)

The constants for air are r=1·3587×10−6 slugs/in3, c=1125 ft/s and v= ck. The
additional factor of 2 is added because there is fluid on each side of the plate. From
equation (22) the equivalent mass of the fluid is m=0·003143 slugs, while the mass of the
plate is mplate =0·1 slugs. The effective fluid mass is two orders of magnitude smaller than
the mass of the plate (structural mass) and may be neglected without significantly affecting
the results.

The equivalent fluid damping may be computed using the dimensional resistance
R= pr2rcR1. The equivalent mechanical resistance is the damping coefficient, C. Equating
the low frequency (quadratic) fluid resistance to the equivalent mechanical resistance and
including the same factor of 2 gives

C=2(pr2)(rc)R1(2kr)=2(pr2)(rc)[1
8(2kr)2]. (23)

Using the fluid constants provided earlier, the equivalent damping is C=0·4098 slugs/s.
In terms of the damping ratio, this becomes z=C/2mvn =0·003. This value is an order
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of magnitude smaller than the structural damping. Therefore, the fluid damping may also
be ignored in this acoustic regime.

The results of this section suggest that the coupling between the plate and the air has
negligible effect on the pressure experienced by the plate. In this case, the uncoupled
pressure field given by equation (20) is a sufficient model for this system.

3.5.  

Throughout this analysis, a nine-mode expansion is assumed for the time-varying
displacement field. More specifically, the model consists of three modes in both the j and
h directions and a first mode initial imperfection. As a result, equation (10) represents one
equation, the rsth equation, of r× s=9 equations. In first order form, these equations
may be written

ẋ=[A]−1f(x). (24)

The matrix [A] is time independent and, therefore, only needs to be computed once. These
are 18 coupled, first order non-linear ODE’s which must be integrated simultaneously.

The integration of the equations of motion is accomplished with the routine LSODA
from the ODEPACK library [19]. This particular integration routine was selected for a
number of reasons. First, it uses an adaptive time step which greatly increases
computational efficiency. Second, it was designed to detect and account for numerical
stiffness in the equations. Stiffness occurs when there is a large disparity in the magnitudes
of the eigenvalues of the local Jacobian matrix [20] and, in physical terms, suggests that
there are both long and short time scales involved in the response. Stiff problems present
difficulties for standard integration routines and usually result in unbounded solutions.
Alternatively, stiff equation solvers tend to be slow, inefficient routines. LSODA seeks to
make the best of both worlds. Under ordinary circumstances, Geer’s method [21] is used
to integrate the equations of motion. During the integration, the eigenvalues of the
Jacobian are continuously monitored and, if the problem becomes stiff, the routine
switches to a backward difference formula (BDF) which is designed to handle stiff
problems. Once the stiffness is past, the routine switches back to Geer’s method. The plate
equations may or may not be stiff depending on what system parameters are being
considered. Furthermore, a priori information regarding the time dependent behavior of
the eigenvalues of the Jacobian is not typically available. Consequently, this particular
routine provides an efficient and reliable way to integrate the plate equations regardless
of stiffness.

4. STATIC CONSIDERATIONS

In the context of this paper, a critical state is one in which, for small perturbations of
a control parameter, multiple equilibria emerge.

A schematic of the typical static behavior of heated plates is shown in Figure 2. The
non-dimensional out-of-plane displacement is plotted against the temperature rise above
ambient, DT. The initially flat plate remains flat as the applied temperature increases until
it experiences a supercritical pitchfork bifurcation (it buckles) at the critical point A. Above
this value of DT the flat plate has two stable, symmetric equilibria and is, therefore, termed
post-critical (post-buckled).

The initially imperfect plate experiences a gradual deflection with increasing DT. Above
point B, which is another critical state, a secondary stable equilibrium branch appears. This
critical state corresponds to a saddle-node bifurcation for the secondary branch. Here, the
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Figure 2. A static equilibrium diagram for the plate as a function of temperature rise above ambient. Both
the initially flat and imperfect scenarios are shown.

equilibria are clearly unsymmetric and the presence of the imperfection actually postpones
the onset of the critical state until a higher value of DT.

An actual plate would undoubtedly contain some initial curvature and would likely
experience further deformation during clamping. Consequently, the static behavior of the
system under consideration conforms more closely to the latter case.

It is worth noting that in a static sense the secondary branch corresponds to a very
specific loading history. A typical loading scenario, which starts from the ambient
(DT=0), would leave the system on the primary branch. Only by applying a large lateral
load at a value of DT above point B would the system encounter the secondary branch.
This type of lateral load, however, is entirely possible in the dynamic case.

This equilibrium diagram is useful because it underlies the possible dynamic responses
of the system. In the pre-critical regime, both linear and non-linear responses are possible.
Due to the unique equilibrium and the additional large amplitude membrane effects, any
non-linear response would be of a hardening-spring type. In the post-critical regime, the
situation is quite different. Again, both linear and non-linear responses may occur about
either stable equilibrium but, in this case, the non-linear response would be of the
softening-spring type because of the unstable equilibrium separating the two
stable equilibria. Furthermore, in the post-critical regime, steady state snap-through
oscillations are possible if the system experiences a sustained, high level excitation.

5. LOCAL BEHAVIOR

Small amplitude (local) oscillations constitute an important aspect of plate dynamics for
a number of reasons. First, they are common at low excitation levels and at frequencies
away from resonance. Hence, they are relevant from a practical point of view.
Furthermore, the behavior of these oscillations may be viewed within the context of linear
systems theory. As a result, these linear oscillations, while being important in their own
right, serve as a necessary contrast for the large amplitude, non-linear behavior of the
snap-through dynamics.

5.1. - 

To remain in the pre-critical regime, the system was heated to DT/DTflat
cr = 1

3. The
excitation was set at a sound pressure level of 140 dB with v=63·75 Hz. This was well
below the fundamental natural frequency of approximately 112 Hz.
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The absolute displacement time history based on numerical simulation is shown in
Figure 3(a). In Figure 3(c), the experimental counterpart is shown. However, in the latter
case, the y-direction strain, eyy , is shown relative to the DT=0 clamped static equilibrium.
Hence, an appreciable static offset is evident in the simulation but not in the experiment.
Both oscillations appear periodic with a dominant period of roughly T=0·0155 s, which
is very nearly the reciprocal of the forcing frequency.

An alternative approach to viewing the motion is to plot the velocity versus the
displacement or, for the experiment, the strain against the time rate of change of strain.
This idea comes from one-degree-of-freedom oscillators where x and ẋ are the state
variables and the (x, ẋ) plane is the phase plane. Because the plate is a continuous
dynamical system with an infinite number of degrees of freedom, this type of plot as
measured from one point on the structure does not constitute a true phase plane of the
motion. Nonetheless, this pseudo-phase plane does give an indication of the complexity
of the motion.

As in many mechanical systems, it is difficult experimentally to measure ėyy . To avoid
this problem, time delay embedding is used (see reference [22]). Instead of differentiating
the strain to incorporate the effect of time, time delay embedding uses a phase lag. In other
words, the response, eyy (t), is plotted against a time delayed version of itself, eyy (t+ t). An
appropriate time delay corresponds to the first zero crossing of the autocorrelation
function as described in reference [23]. For this nearly linear response, the time delay turns
out to be approximately one-quarter of the forcing period, T/4, as will be discussed shortly.

In Figures 3(b) and (d) are shown a pseudo-phase plane for the simulation and an
embedded version based on the experiment, respectively. The static offset which is evident
in the simulation does not appear in the experiment since the strain is measured relative
to the equilibrium position. These nearly closed loop trajectories again suggest that the
response is a period-one oscillation.

The motion may also be considered in the frequency domain. The power spectral
densities (PSD’s) for the responses are given in Figures 4(a) and (c). The numerical power
spectra indicate the response is dominated by the peak at 64 Hz, while having small
contributions at 125 Hz and 185 Hz. This agrees well with the experimental spectra in that

Figure 3. The unique, small amplitude response of the plate at (j,h)= (0·583,0·416) with DT/DTflat
cr =0·333,

DP=140dB and v=63·75Hz; (a,b) numerical and (c,d) experimental.
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Figure 4. Numerical (a,b) and experimental (c,d) power spectra and correlation functions for the response
in Figure 3.

the peaks occur at the same frequencies and are of similar amplitude. The experimental
results also indicate a low level continuous distribution of energy throughout the frequency
range, which can be attributed to the noise generation system in TAFA.

The temporal complexity of a response may also be measured using the autocorrelation
function (see reference [24]). The autocorrelation function for the simulation, shown in
Figure 4(b), confirms that the response is periodic; while the experiment (see Figure 4(d))
experiences a mild loss in correlation, indicating that the response is very nearly periodic.
Both of these results suggest that the first zero crossing of the autocorrelation function
is at about 0·004 s, or about a quarter of the forcing cycle. This characteristic time scale
is used as an appropriate embedding delay in Figure 3(d) [23].

These results convey several important facts. First, at these parameter values, the
agreement between the theoretical model and the experiment is good. This suggests that
the non-linear model is capable, at the very least, of describing the small amplitude
temporal behavior of the pre-critical plate. Also, the system response may be classified as
linear (harmonic), in part, because the response is periodic and dominated by the excitation
frequency. This assertion is further supported by the first zero crossing time of the
autocorrelation function. The first zero crossing of a harmonic oscillation is exactly T/4,
which is roughly the result found both numerically and experimentally.

5.2. - 

To enter the post-critical regime, the system was heated to DT/DTflat
cr =1·762. A

harmonic acoustic excitation was provided at a sound pressure level of 130 dB and a
frequency of v=120 Hz, driving the plate at the experimentally measured fundamental
frequency at this temperature.

The responses at these parameter values for the simulation (a, b) and the experiment
(c, d) are shown in Figure 5. Each figure uses two sets of data to show the coexisting
oscillations. Clearly, both of these oscillations are small amplitude events and are a
considerable distance apart, suggesting that they reside in separate regions of the phase
space. In both the simulation and experiment, the primary and secondary oscillations
appear to be periodic. Also, these oscillations are not quite symmetric about the origin,
which is in agreement with the mild asymmetry of the equilibrium branches in Figure 2.
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Figure 5. Coexisting small amplitude oscillations of the plate at (j,h)= (0·583,0·416) with DT/DTflat
cr =1·76,

DP=130dB and v=120Hz; (a,b) numerical and (c,d) experiments.

In Figure 6 are shown the power spectra and correlation functions corresponding to the
primary branch oscillation shown in Figure 2. The PSD of the displacement for the
numerical case indicates that the primary response frequency is equal to the excitation
frequency. There is, however, a small contribution at 245 Hz. The experiments confirm
these results with slight exceptions. The strain spectrum shown in Figure 6(c) shows a
distinct peak at 240 Hz, in agreement with the simulation. As before, the experiment
exhibits higher peaks at the fundamental frequency and its harmonics, and a low level
continuous distribution of energy throughout the frequency range.

The correlation function for the simulation shows that the response is periodic with a
first zero crossing time of approximately 0·0021 s. The experimental correlation function
experiences a slight decay. However, as found in the simulation, the experimental

Figure 6. Numerical (a,b) and experimental (c,d) power spectra and correlation functions for the response
in Figure 5.
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Figure 7. The experimental snap-through response of the plate at (j,h)= (0·583,0·416) for DT/DTflat
cr =1·53,

DP=155dB and v=115Hz.

characteristic time is almost a quarter of a forcing period and is used as the embedding
lag in Figure 5(d).

6. GLOBAL BEHAVIOR

Acoustically excited snap-through motions, often a contributing factor to sonic fatigue,
are global oscillations in the sense that they occur about and between multiple equilibria.
Furthermore, these vibrations are often complicated and, as a result, difficult to
characterize. Here, a variety of techniques is employed to quantify the temporal and, to
some extent, the spatial behavior of typical snap-through oscillations. These include the
time and frequency domain approaches discussed in sections 5.1 and 5.2, fractal
dimensions, and Lyapunov exponents.

In the following sections a temperature ratio of DT/DTflat
cr =1·53 is applied along with

a harmonic acoustic excitation at a sound pressure level of 155 dB and a frequency of
v=115 Hz. The experimentally measured fundamental frequency of the primary branch
was 106 Hz.

6.1.     

In Figure 7 is shown 0·6 s of an experimental snap-through time series. This particular
test was allowed to run for over a minute before data was taken to ensure that the response
was in a steady state. In the 0·6 s shown, there are numerous oscillations about and
between the two stable equilibria and there is no discernible periodicity to the response.

The numerical (a) and experimental (c) time series are compared on a more appropriate
time scale in Figure 8. Both show seemingly aperiodic oscillations, with a high frequency
component that is not apparent in Figure 7. The accompanying pseudo-phase planes are
shown for the simulation and experiment in Figures 8(b) and (d), respectively. Again, the
experimental result is obtained using time delay embedding with a time lag obtained from
the first crossing of the autocorrelation function. Both plots show tangled trajectories
commonly associated with complex motion. However, this is not sufficient to classify the
motion as chaotic. Because this system is spatially extended, the complex trajectory could
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Figure 8. The snap-through response at (j,h)= (0·583,0·416) for (a,b) simulation and (c,d) experiment.

simply result from projecting the modal contributions in N dimensions down to two
dimensions.

The power spectra and autocorrelation functions for this response are shown in Figure 9.
Both the simulation (a) and experiment (c) show broadband characteristics, with distinct
peaks at the excitation frequency. In addition, both show similar behavior over the low
and intermediate frequency range. Broad peaks appear in the high frequency range for the
experimental spectra, but do not appear in the simulation. As in the periodic responses,
the levels are similar in the low frequency range, but in the high frequency range the
experiment contains more energy.

For both simulation (Figure 9(b)) and experiment (Figure 9(d)) there is a dramatic loss
of autocorrelation, which provides some quantitative confirmation that the response is

Figure 9. Numerical (a,) and experimental (c,d) power spectra and correlation functions for the time series
in Figure 8.
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temporally complex. The autocorrelation function also provides a measure for a
characteristic time scale associated with the response via the first zero crossing. This time
is also used as the embedding lag time. The first crossing for the simulation occurs at
tcr =0·0038 s. Because the experimental correlation function curves up before crossing, an
appropriate measure of tcr may be obtained by extending a straight line along the initial
descent of the function. The intersection of this line with the zero axis serves as the first
crossing. This occurs at approximately tcr =0·0048 s.

Considerable information regarding this typical response has been gained. In both
theory and experiment, the snap-through response of the plate appears to be temporally
complex which suggests that the motion may be chaotic. However, the techniques
employed thus far provide only a qualitative measure for chaos and are insufficient to
conclude that the motion is chaotic. Consequently, a fractal dimension and Lyapunov
exponent calculation are undertaken in the following sections.

6.2.  

The dimension of a set of points provides a measure for the number of co-ordinates
which are necessary to describe the set. In the case of plate dynamics, the set of points
under consideration is the plate’s trajectory in the phase space and the dimension
represents the minimum number of co-ordinates (or modal coefficients) required to
represent the motion. For example, a static situation corresponds to one point in the phase
space and, consequently, has dimension zero. No modes are needed to describe the motion,
since there is no motion. Periodic orbits form a closed curve and thus have dimension one.
Chaotic orbits, on the other hand, form a complex geometric structure (fractal) which
requires a non-integer dimension to describe it. Furthermore, the dimension indicates the
‘‘size’’ of the subspace within the original phase space on which the attractor lies. Examples
of fractal geometric structure abound, as do estimates of their dimension (see references
[25–28]).

The reason for computing the fractal dimension for the snap-through response is
two-fold. First, it shows that this complex motion does exist on an attractor of finite size.
This is in contrast to a truly random signal, the dimension of which increases without
bound. Second, it indicates the minimum number of times that the signal must be
embedded to adequately recreate the phase space for the attractor. For example, a system
with dimension 3·8 would require at least four successive embeddings to represent the
motion. Also, knowing the minimum number of embeddings is needed to compute the
Lyapunov exponents for the motion.

It should be pointed out that while a fractal dimension calculation provides a measure
for the number of modes involved, it does not indicate what these modes are. In this sense,
it only provides a measure for the spatial complexity of the motion but does not suggest
what the attractor ‘‘looks like’’.

The correlation dimension is one common measure of the dimension of a response [26].
This approach takes a time series, embeds it (to a specified dimension) and computes the
number of points, C(r), falling within a radius r in this embedded space. The dimension
then relates the behavior of C(r) to r, and is defined as

dc =lim
r:0

log (C(r))
log (r)

. (25)

The reason for such a definition is somewhat more evident if written

C(r)Ardc. (26)
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Figure 10. The fractal dimension and slopes for the periodic orbits of Figure 3; (a,b) numerical and (c,d)
experimental. Various embeddings are shown: ——, 6-D; – – –, 5-D; –×–, 4-D; –+–, 3-D; –w–, 2-D.

This agrees with our previous examples. For a point (dc =0), the number of points C(r)
does not increase with r. For a closed orbit (dc =1), the number of points C(r) increases
linearly with r.

However, the dimension computed can never exceed the dimension of the reconstructed
orbit (i.e., the specified embedding dimension). For example, a signal which has been
embedded twice cannot render a dimension any larger than two. The common remedy to
this problem is to compute the correlation dimension for a variety of different embedding
dimensions. At some number of embeddings, the correlation dimension settles to a final
value and is insensitive to additional embeddings.

The correlation dimension was first developed by Grassberger and Procaccia [26] and
discussed further in reference [27]. The algorithm used throughout this study is described
in reference [29]. There are fundamental limitations placed on the data sets used to
compute the fractal dimension and, in the next section, the Lyapunov exponents. It has
been shown that there are restrictions placed on the length of the time series required if
meaningful results are to be obtained (see references [26, 27, 30–32]). For example, if the
time series is too short, it will not encompass enough of the attractor and the resulting
dimension will not be a representative value for the entire attractor. A ‘‘rule of thumb’’
often employed is that the minimum number of points is approximately Ne 10d, where
d is the dimension of the attractor. The results that follow are based on 32 768 (=215) data
points and, as such, the maximum dimension that may be obtained with any certainty is
approximately 4·5.

To begin with, consider the pre-critical, linear response shown in Figure 3. The
dimension of this simple closed orbit should be one. Based on equation (25), the correlation
dimension is given as the local slope of this log–log plot. The local slopes may be computed
for each point based on its two nearest neighbors. The numerical dimension results and
slopes for the simulation are shown in Figures 10(a) and (b). As expected, the dimension
levels off at dc =1 for all embedding dimensions attempted (2–6). The experimental
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dimension results, shown in Figures 10(c) and (d), are quite different. From Figure 10(d),
it appears that the dimension estimate changes dramatically with subsequent embeddings,
and it might be tempting to conclude that either the response is random (a low signal to
noise ratio) or that it has a high dimensional attractor. Clearly, this response is not random
nor is it high dimensional, as evidenced by Figures 3 and 4. The poor convergence behavior
is a result of having some noise in the signal, albeit at a low level. It has been shown that
by adding low level white noise to a periodic orbit of a one-degree-of-freedom oscillator,
the correlation dimension does not converge with subsequent embeddings [33]. In fact, the
results in reference [33] appear very similar to those shown in Figures 10(c) and (d). This
suggests that, at the very least, this particular algorithm is sensitive to the presence of even
low level noise. This establishes the quality of results we may expect from both numerical
and experimental data.

Figure 11(a) is a plot of log (C(r)) versus log (r) for the numerical snap-through
response. A variety of embedding dimensions, ranging from 2 to 6, is shown. From
Figure 11(b), it is evident that the dimension saturates for the two- and three-dimensional
embeddings, since there are distinct plateaus at 2 and 3, respectively, for the intermediate
range of log (r). For higher-dimensional embeddings, the slopes do not level off to an
obvious fixed plateau. However, the rate of change of the slopes with increased embedding
dimension does decrease, suggesting that the motion lies on a low-dimensional attractor.
The dimension is bounded and it can be estimated to be in the range of 3·5E dc E 4·5.

The experimental snap-through results are shown in Figure 11(c) and the local slopes
appear in Figure 11(d). Again, the dimension saturates for the two- and three-dimensional
embeddings. However, the dimension increases significantly with each additional
embedding and it appears that the dimension is beyond 4·5 (the maximum dimension we
can compute with any confidence). To this point, all that can be said is that the dimension
is not below 4·5. In fact, there is no evidence that this oscillation exists on a
finite-dimensional attractor; i.e., it could be random data resulting from a poor signal to

Figure 11. The fractal dimension and slopes for the snap-through oscillations of Figure 8; (a,b) numerical and
(c,d) experiment. Various embeddings are shown: ——, 6-D; – – –, 5-D; –×–, 4-D; –+–, 3-D; –w–, 2-D.
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Figure 12. The fractal dimension and corresponding slopes for randomized signals; (a,b) numerical and (c,d)
experimental. Various embeddings are shown: ——, 6-D; – – –, 5-D; –×–, 4-D; –+–, 3-D; –w–, 2-D.

noise ratio. This is not the case for this experiment since the levels, seen in Figure 7, are
on the order of hundreds of micro-strain while the noise level is on the order of one.
Nonetheless, the dimension estimate does not indicate this.

It has been suggested, in cases like this, that the dimension of the signal should be
compared to the dimension of filtered noise [34]. If a significant difference arises, then it
can be assumed that the failure of the original dimension to converge is because the signal
is complex and lies on a high-dimensional attractor rather than being filtered white noise.
The ‘‘random’’ signal may be obtained by taking the Fourier transform of the original
signal, randomizing the phase and inverting the transform back to the time domain. In
this way, the time series of the two signals are vastly different but their power spectra are
the same (the magnitude of the FFT has not been changed).

For completeness, this procedure is carried out on both the numerical and experimental
time series. The dimension results for the randomized numerical signals are shown in
Figures 12(a) and (b). Comparing Figure 12(b) with Figure 11(b), there are obvious
differences. Most notably, the slopes of the randomized signal continue to increase with
successive embeddings, while the slopes from the original data increase much more slowly,
suggesting a lower-dimensional attractor.

The dimension results for the randomized experimental signal are shown in Figures 12(c)
and (d). Again, the slopes of the randomized signal continue to increase with embedding
dimension and the rate of increase does not appear to be decreasing. This is consistent
with the results for the dimension of the randomized numerical signal. However, in
contrast to the results of numerical simulation, the slopes from the raw signal and the
randomized signal do not differ significantly. As a result, a stronger statement about the
fractal dimension of the experimental signal cannot be made. So, although the experiment
is not noisy (because of the large signal to noise ratio), the dimension results are not
dissimilar to random data. In effect, it must be concluded that either the experimental
oscillation has a complex, high-dimensional attractor which cannot be measured from this
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finite data set or the algorithm is too sensitive to low level noise to produce a satisfactory
result. In either case, the dimension is not evident from this data.

The conclusion is that the dimension of the numerical response is 3·5E dc E 4·5, while
the dimension of the experimental response is still unknown. More importantly, these
results underscore the need for caution in computing and interpreting dimension results
obtained from experimental data.

6.3.  

One underlying characteristic of chaotic motion is the average exponential divergence
of nearby trajectories for short times in the phase space. Because the motion remains
bounded, this average divergence occurs only for short times. The separation of the two
trajectories in the ith direction of the phase space is given by

pi (t)= pi (0) eli t, (27)

where li is the ith Lyapunov exponent (L.E.). If a response has at least one positive
Lyapunov exponent, trajectories diverge in the unstable direction and the motion is
chaotic.

The methods for computing the Lyapunov exponents for simulation and experiment are
quite different, and have been the subject of considerable research. Although a brief
description of these techniques is presented here, the reader is encouraged to consult
references [23] and [35–37]. Based on these works, a code was developed by the authors
to compute the Lyapunov exponents for the plate from numerical simulation. The
experimental Lyapunov exponents, on the other hand, were computed using the public
software LCE-EXP+ [38].

In the approach used for the simulation results, the system is integrated with the full
non-linear equations until a steady state response is attained. At this point, the motion
is considered to be frozen at t= t0. The point in the phase space occupied by the non-linear
flow is termed the ‘‘fiducial’’ point. Nineteen initial conditions are defined along the 18
phase space directions and the time axis at a small distance p(0) from the fiducial point.
These initial conditions may be seen as the principal axes of a 19-dimensional sphere
centered at the fiducial point. The integration is then continued using the full non-linear
equations to integrate the fiducial point. Simultaneously, the principal axes are integrated
using a set of equations linearized about the fiducial trajectory. As the integration
proceeds, the phase space is distorted under the influence of the manifolds. Periodically,
the relative stretching or compression of these axes may be computed by the formula

li =
1

(t− t0)
ln 0pi (t)

pi (0)1. (28)

One complication arises if an unstable direction exists. In this case, the linearized
trajectories tend to align themselves with the unstable direction. As a result, if the
integration time between L.E. calculations, t− t0, is too long, the different trajectories
become indistinguishable and the L.E.’s cannot be calculated. To remedy this problem,
a Gram–Schmidt re-orthonormalization procedure is performed several times during the
interval t− t0. The entire procedure is carried out numerous times, so that the exponents
may be averaged over the attractor.

In an experimental situation, the response of the system is measured in terms of a single
observable quantity. In this application, the strain response at one point on the plate is
used. To compute the Lyapunov exponents, the phase space is reconstructed using time
delay embeddings. Unfortunately, the minimum number of embedding corresponds to the
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fractal dimension and, as shown in the previous section, a reliable dimension could not
be determined. Nonetheless, for the remainder of this section a five-dimensional embedding
is presumed to be sufficient. However, the results of the experimental Lyapunov exponent
calculation should be viewed with some skepticism.

The experimental data are embedded five times with a delay time corresponding to the
first crossing of the correlation function. Next, a fiducial point is chosen and a line search
(in time) is conducted through the embedded phase space to locate nearby points. Since
‘‘nearby’’ is a fairly subjective term, a trial and error approach was taken to determine
an appropriate length scale. The length used is 25 m-strain. In addition, there is a certain
time interval, close to the fiducial point, over which points may not be used to avoid
autocorrelation effects. As recommended in reference [38], this time was set equal to one
forcing period. Having obtained nearby points in the phase space, the local behavior of
these trajectories is monitored and the Lyapunov exponents are computed by fitting (in
a least square sense) an exponential function to the separation. This procedure is carried
out for a number of fiducial points so that the exponents may be averaged over the
reconstructed attractor.

In Figure 13(a) all 19 numerical Lyapunov exponents are shown as functions of the total
number of local exponents computed. These results show that there are positive Lyapunov
exponents, which guarantees that the response is chaotic. In fact, because there are multiple

Figure 13. Numerical Lyapunov exponents for the snap-through response: (a) all 19 exponents and (b) the
positive and zero exponents.
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Figure 14. Experimental Lyapunov exponents computed by LCE-EXP+ using a five-dimensional embedding.

positive Lyapunov exponents, in this case two, this motion is an example of ‘‘hyper-chaos’’
[25]. The convergence behavior of these positive exponents, as they are averaged over the
attractor, is more clearly demonstrated in Figure 13(b).

From these results, several important observations should be made. Although positive
Lyapunov exponents assure a chaotic response, the magnitude of the exponents indicates
the relative ‘‘strength’’ of the chaos involved. In other words, large exponents lead to more
rapid exponential divergence and, hence, a faster loss of predictability. Similarly, multiple
positive exponents suggest a stronger chaotic phenomenon. Based on these numerical
results, the snap-through response of the plate is strongly chaotic.

From Figure 13(a) it is evident that the sum of the Lyapunov exponents is negative. This
is consistent with the fact that, to preserve boundedness, volumes in the phase space must
contract despite the exponential divergence in certain directions [39]. This is easily shown
by considering an N-volume given by the product of the pi (t)’s:

p1 · p2 · · · pN =(p(0)N) e(l1 + l2 + · · ·+ lN ). (29)

The expression governing the volume contraction is

L= s li Q 0.

Another important feature of these results is the zero Lyapunov exponent. This
exponent corresponds to the principal direction along the time axis. This direction is
expected to be unstretched and uncompressed under the action of the differential
equations, since the right side of the time equation is uncoupled from the other state
variables (i.e., dx19/dt=1). A somewhat more intuitive argument is that the evolution of
time (the behavior along the time axis) is independent of the physical evolution of the
motion.

In Figure 14 the Lyapunov exponents computed in LCE-EXP+ are shown for the
experimental snap-through response of the plate having embedded the data five times.
Several features stand out. First, there are two positive exponents, which suggests that the
motion is hyperchaotic. Second, the sum of the exponents are negative, in keeping with
the boundedness restriction. Finally, there is no zero exponent. This fact is anticipated,
since all of the embedding dimensions behave like a physical dimension of the attractor
rather than the time dimension.

From these results, the numerical time responses may be properly classified as
hyperchaotic based on the multiple positive Lyapunov exponents. Less can be said with
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certainty about the experimental time series. Although it also has two positive
exponents, suggesting hyperchaos, there is no evidence that the data were embedded a
sufficient number of times. The only reasonable conclusion is that it appears to be
hyperchaotic.

7. CONCLUSIONS

Theoretical and experimental results were presented to characterize the dynamic
response of homogeneous, fully clamped, rectangular plates under narrow-band acoustic
excitation and uniform thermal loads. Small amplitude oscillations about the pre- and
post-critical regimes were shown to be linear using time series, pseudo-phase planes, power
spectra and autocorrelation functions. Considerable agreement between simulation and
experiment was evident.

In both simulation and experiment, the snap-through response appeared to be aperiodic
with broadband power spectra and a dramatic loss of correlation. However, differences
arose in the fractal dimension calculation.

While dimension estimates for the numerical snap-through response (Figure 11(b))
did not yield a fixed dimension (plateau), they do appear changing more slowly with
successive embedding and, hence, are converging in the vicinity of 3·5 E dc E 4·5.
These results are supported by the fact that the slopes increased without bound for
the randomized numerical data (Figure 12(b)). This contrasts with the dimension estimates
for the numerical periodic signal (Figure 10(b)), which clearly converged to a value of
dc =1.

The experimental dimension is a more complicated situation. The dimension
(Figure 11(d)) does not appear to converge and, in fact, is virtually indistinguishable
from the randomized signal (Figure 12(d)). However, the original signal is the result
of purely deterministic (non-random) inputs and there is a high signal to noise ratio.
It is believed that the low level background noise is responsible for corrupting the
dimension estimate. This is also demonstrated by the dimension estimate for the small
amplitude experimental periodic signal (Figure 10(c)) where, again, the results do not
converge.

The Lyapunov exponent calculation confirms that the snap-through simulation has two
positive exponents and, as such, is an example of higher-dimensional chaos. In other
words, it is hyperchaotic. Less confidence may be placed in the experimental Lyapunov
exponents since the embedding dimension is in question. However, based on a
five-dimensional reconstructed phase space (embedded), the experimental snap-through
motion also appears to be hyperchaotic.
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