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Abstract. The effects of the carrier-envelope phase (CEP) of a few-cycle
attosecond pulse on ionized electron momentum and energy spectra are
analyzed, both with and without an additional few-cycle IR pulse. In the
absence of an IR pulse, the CEP-induced asymmetries in the ionized electron
momentum distributions are shown to vary as the 3/2 power of the attosecond
pulse intensity. These asymmetries are also found to satisfy an approximate
scaling law involving the frequency and intensity of the attosecond pulse.
In the presence of even a very weak IR pulse (having an intensity of the
order of 1011–1012 W cm−2), the attosecond pulse CEP-induced asymmetries
in the ionized electron momentum distributions are found to be significantly
augmented. In addition, for higher IR laser intensities, we observe for low
electron energies peaks separated by the IR photon energy in one electron
momentum direction along the laser polarization axis; in the opposite direction,
we find structured peaks that are spaced by twice the IR photon energy. Possible
physical mechanisms for such asymmetric, low-energy structures in the ionized
electron momentum distribution are proposed. Our results are based on single-
active-electron solutions of the three-dimensional, time-dependent Schrödinger
equation including atomic potentials appropriate for the H and He atoms.
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1. Introduction

The experimental ability to produce attosecond pulses of such short duration that they comprise
only a few cycles has recently been reported [1]. Moreover, the carrier-envelope phases (CEPs)
of these attosecond pulses were reported to be stable and capable of being tuned, such as by
using aluminium foils of variable thickness [1]. Interest in CEP-dependent effects of few cycle
laser pulses has grown since the late 1990s (see, e.g. [2]–[4]). Since the first experimental
demonstrations of CEP effects on photoelectron spatial distributions produced by 5 fs few-
cycle laser pulses [5, 6], experimental and theoretical interest in CEP effects produced by sub-
10 fs few-cycle laser pulses has increased enormously (see, e.g. [7]–[9] and references therein).
In particular, analysis of asymmetric photoelectron distributions resulting from ionization by
combined few-cycle infrared (IR) and attosecond extreme ultraviolet (XUV) pulses has been
shown to allow the determination of the electric field of the few-cycle IR pulse [10, 11]
or the duration of the XUV pulse [12]. Now that few-cycle attosecond pulses have become
available with tunable CEPs, it is of interest to explore the kinds of CEP-induced effects on
ionized electron momentum and energy distributions that are possible or, in other words, the
kind(s) of control over the ionization process the CEP provides at these XUV photon energies.
An initial investigation of ionized electron momentum and energy distributions produced by
one or two (coherent) few-cycle attosecond pulses with independent, fixed CEPs has recently
appeared [13]. It was found that such CEP-induced effects require attosecond pulses having
intensities at or above the limit of current experimental capabilities (i.e. in the weak XUV
pulse case, there are no such effects). In this paper, we extend these initial investigations by
determining the scaling with frequency and intensity of the CEP-induced asymmetries in ionized
electron momentum distributions. We also investigate here the role of an additional IR laser
field on the energy and momentum distributions of electrons ionized by a few-cycle attosecond
pulse with well-defined CEP. Note that ionized electron momentum distributions produced by an
attosecond pulse train in the presence of an IR field have been recently measured experimentally
and analyzed theoretically [14, 15]. Our focus here differs in studying ionization by a single
attosecond pulse having only a few cycles, so that attosecond CEP effects are significant.
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This paper is organized as follows: in section2, we give a brief description of our
theoretical method, which is based on the exact solution (within the single-active electron
approximation) of the three-dimensional, time-dependent Schrödinger equation (TDSE)
[13, 16]. This section includes a comparison of results obtained with projection of the numerical
solution of the TDSE onto eigenstates of the field-free Hamiltonian (i.e. onto Coulomb waves)
versus projection onto plane waves. In section3, we present numerical evidence on the scaling
with frequency and intensity of the asymmetries in ionized electron momentum and energy
distributions induced by the CEP of the attosecond pulse. Results are presented for electrons
ionized from both the H atom and the He atom. In section4, we consider the effects of
an additional few-cycle IR pulse on the asymmetries in the electron momentum and energy
distributions resulting from ionization of the H atom by a few-cycle attosecond pulse with
defined CEP. In section5, we summarize our results and present some conclusions.

2. Theoretical formulation

In this section, we briefly describe our theoretical method, which is based on a direct solution
of the TDSE. Additional details about the method can be found in [13, 16]. For the H atom,
the atomic potential is simply the nuclear Coulomb potential. For the He atom, we employ the
effective one-electron potential given by Hartree [17], which has been used by others to model
the He atom in a strong laser field [18]. In this paper, all equations are given in atomic units
(h̄ = e= me = 4πε0 = 1) and the electromagnetic fields (and potentials) are assumed to be in
SI units.

2.1. Solution of the TDSE

For a neutral atom having a single active electron that is ionized by an attosecond pulse in the
presence of an additional IR pulse, the TDSE describing the active electron is

i
∂

∂t
9(r , t) = [H0(r) + HI(r , t)] 9(r , t), (1)

whereH0 is the field-free Hamiltonian, defined by

H0 = −
1
2∇

2 + VC(r )

= −
1

2

[
1

r 2

∂

∂r

(
r 2 ∂

∂r

)
−

1

r 2
L̂2

]
+ VC(r ), (2)

L̂2 is the square of the orbital angular momentum operator, andVC(r ) is the effective atomic
potential, which has a long-range Coulomb tail. For the cases of H and He,VC(r ) is given
explicitly by

VC(r ) =

{
−

1
r , for H,

−
1
r [1 + (1 +βr/2) e−βr ], for He,

(3)

whereβ = 27/8 [17].
The interaction of the active electron with the attosecond and IR laser pulses is described

in equation (1) by HI(r , t), whose expression may be given in either the length gauge or the
velocity gauge. We adopt the velocity gauge in the present work, but we find that the results for
the two gauges agree well. In the velocity gauge,HI(r , t) is given by

HI(r , t) = −iAtotal(t) · ∇, (4)
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whereAtotal(t) = A(t) + AIR(t) is the total vector potential for the attosecond and IR laser pulses.
The attosecond pulse, with frequencyω and peak intensityI0, is assumed to be linearly polarized
along thez-axis. Its vector potential is given by

A(t) = A(t)ẑ = A0F(t) sin
[
w

(
t +

τ

2

)
+φ

]
ẑ, (5)

where A0 =
√

I0/Iau/ω, in which Iau is the atomic unit of intensity, i.e.Iau = 3.509×

1016 W cm−2 (which corresponds to the intensity of a monochromatic laser field having an
electric field strength of one atomic unit). The CEP isφ and the pulse duration isτ = nT (where
n is the integer number of cycles in the attosecond pulse andT = 2π/ω is the period). The XUV
pulse vector potential envelope,F(t), is given by

F(t) =

{
sin2[π(t + τ/2)/τ ], |t |6 τ/2;

0, |t | > τ/2.
(6)

The IR pulse, with frequencyωIR and peak intensityI IR, is also assumed to be linearly polarized
along thez-axis. Its vector potential is given by

AIR(t) = AIR(t)ẑ = A0
IRFIR(t) sin

[
wIR

(
t +

τIR

2

)
+φIR

]
ẑ, (7)

where A0
IR =

√
I IR/Iau/ωIR. The IR pulse duration isτIR = nIRTIR (where nIR is the integer

number of cycles in the IR pulse andT = 2π/ωIR is the period). The IR pulse phase,φIR, can
be used to control whether one puts the attosecond pulse at the zero (φIR = 0) or at the peak
(φIR = 0.5π ) of the IR vector potential att = 0. The IR vector potential envelope,FIR(t), is
given by

FIR(t) =

{
sin2[π(t + τIR/2)/τIR], |t |6 τIR/2;

0, |t | > τIR/2.
(8)

The TDSE (1) has been solved numerically in spherical coordinates using the Arnoldi
method to propagate the wavefunction [13, 16]. The ground state wavefunction can be calculated
by solving the TDSE in imaginary time as a diffusion equation (without any external fields) for
an arbitrary initial trial wavefunction (see, e.g. [19]). In all the calculations whose results are
presented below, we use the following spatial and temporal parameters: all angular momenta in
the range 06 l 6 15 are included; the radial grid spacing is1r = 0.1 au; the total number of
radial grid points isNr = 24 000; the time step for propagation is1t = 0.01 au; and the Arnoldi
propagator is of orderM = 30.

2.2. Projection onto momentum states

In order to calculate the distribution of ionized electron (asymptotic) momenta and energies in
the final state, we project the numerically calculated wavefunction onto the energy eigenstates
of the field-free Hamiltonian,H0, i.e. onto incoming Coulomb waves,9

(−)

k (r , tp), at a timetp,
which is some time after the interaction of the atom with the laser field(s) is over. The Coulomb
wavefunction satisfying incoming wave boundary conditions may be written in general as

9
(−)

k (r , t) =
1

√
k

∑
lm

il e−i[σl (k)+δl (k)]Ylm(r̂ )Y∗

lm(k̂)REl(r )e−iEt, (9)

whereσl (k) = arg0(l + 1 + iη) is the Coulomb phase shift,η = −(Z − N)/k, Z is the nuclear
charge,N is the number of electrons remaining in the ion, andδl (k) is the l th partial wave
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phase shift (with respect to Coulomb waves) due to any non-Coulomb, short-range part of the
potential. For the case of the H atom, the radial wavefunction is known analytically, so that

9
(−)

k (r , t) =

√
2

π

∑
lm

il e−iσl (k)Ylm(r̂ )Y∗

lm(k̂)e−iEt

×
2l e−(πη/2)

|0(l + 1 + iη)|

(2l + 1)!
(kr)l e−ikr

1F1(−iη + l + 1, 2l + 2, 2ikr), (10)

whereη = −1/k. The momentum space wavefunction is thus

ϒ(k) = 〈9
(−)

k (r , tp)|9(r , tp)〉. (11)

Note that the size of the radial box within which one calculates the numerical solution of the
TDSE must be large enough so that the highest momentum components of the numerically
calculated electron wave packet do not reach the box edge (and get reflected) before the
interaction of the atom with the laser fields is over.

Owing to the symmetry ofkx andky, one may setky = 0 without loss of generality. The
transition probability to the final state(kx, ky = 0, kz) is calculated according to

P(kx, kz) =
∣∣ϒ(kx, ky = 0, kz)

∣∣2
= P(E, θk), (12)

where E = (k2
x + k2

z)/2, and θk is the angle between the (asymptotic) electron momentum
k = (kx, 0, kz) and the laser polarization axis,ẑ. The total ionization probability is given by

Pt =

∫
∞

0
dE

∫ 2π

0
dθk P(E, θk)

=

∫
∞

−∞

dkx

∫ 0

−∞

dkzP(kx, kz) +
∫

∞

−∞

dkx

∫
∞

0
dkzP(kx, kz)

≡ P− + P+, (13)

whereP− (P+) is the probability for electron ionization in the negative (positive) direction ofkz.
One may also define a normalized asymmetry factor [12],

R ≡ Pd/Pt = (P− − P+)/Pt, (14)

wherePd is the difference (or asymmetry) betweenP− and P+. (Alternatively, one may define
an angle-dependent, normalized asymmetry parameter as the ratio of the difference and the sum
of electrons ejected with anglesθ andπ − θ with respect to thez-axis (as, e.g. in [20]), which
may prove simpler to measure experimentally.)

Note thatϒ(k) and P(E, θk) do not depend on the moment of projection,tp, because the
incoming Coulomb waves,9(−)

k , are energy eigenstates of the field-free Hamiltonian (2), i.e.
one can write

9(r , t) =

∫
dk ϒ(k)9

(−)

k (r , t) =

∫
dk ϒ(k)9

(−)

k (r)e−iEt, (15)

for any t following the end of the interaction of the atom with the laser pulse(s). This contrasts
with the Fourier transform of9(r , tp), i.e. with the projection of the numerically calculated
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solution of the TDSE onto plane waves, which are energy eigenstates of only the kinetic energy
part,−1

2∇
2, of the field-free Hamiltonian (2). In this latter case

9(r , tp) =

∫
dk ϒPW(k, tp)9

PW
k (r , tp) =

∫
dk ϒPW(k, tp)9

PW
k (r)e−iEtp, (16)

where

ϒPW(k, tp) = 〈9PW
k (r , tp)|9(r , tp)〉. (17)

The expansion of the plane-wave wavefunction in spherical harmonics is given by,

9PW
k (r , t) =

1

(2π)3/2
eikr e−iEt

=

√
2

π

∞∑
l=0

l∑
m=−l

il Ylm(r̂ )Y∗

lm(k̂)e−iEt

×
1

(2l + 1)!!
(kr)l e−ikr

1F1(l + 1, 2l + 2; 2ikr), (18)

which is the usual expansion of a plane wave in terms of spherical Bessel functions, but with
the latter expressed here in terms of the1F1 confluent hypergeometric functions. Thus, the
Fourier transform of9(r , tp), i.e. the momentum space wavefunctionϒPW(k, tp), depends on
the momenttp at which the projection is carried out. Substituting equation (15) (evaluated at
t = tp) into equation (17), one can extract this time dependence explicitly:

ϒPW(k ′, tp) =

∫
dk ϒ(k)〈9PW

k′ |9
(−)

k 〉 e−i(E−E′)tp. (19)

In figure 1, we compare the two momentum space probability distributions,|ϒ(k)|2 and
|ϒPW(k, tp)|2, where the corresponding momentum space wavefunctions are defined in
equations (11) and (17). One observes that, on average, the two probability distributions
agree well with each other, especially for larger ionized electron energies and longer times,
tp, following the end of the attosecond pulse. The rapid oscillations with increasing energy
observed in the projections onto plane waves depend on the time,tp, at which the projection
is calculated. These rapid oscillations originate from the exponential time factor in equation
(19). Thus, from equation (19) it is clear that the period of these oscillations should decrease
in proportion tot−1

p . In order to explain the fact that the amplitude of the oscillations is larger

at lower energies, one must consider the properties of the term〈9PW
k′ |9

(−)

k 〉, i.e. the projection
of the Coulomb wavefunction onto the plane wave wavefunction. For larger energies (or larger
ionized electron momenta), lim

k→∞

〈9PW
k′ |9

(−)

k 〉 → δ(k − k ′), i.e. there is little difference between a

plane wave and a Coulomb wave at high energies (compare equations (10) and (18), for k → ∞

andη → 0). Therefore, lim
k→∞

|ϒPW(k, tp)|2 → |ϒ(k)|2, which is what one sees in figure1: the

higher the energy of the ionized electron, the smaller the difference between the projection onto
Coulomb waves and the projection onto plane waves.

Note that for atoms other than hydrogen, the energy eigenstates of the field-free
Hamiltonian in equation (9) depend on radial wavefunctions,REl(r ), and partial wave phase
shifts, δl (k), that must be calculated numerically. The results for atomic hydrogen shown in
figure 1 imply that the Fourier transform of the numerically calculated solution of the TDSE
provides quite accurate results for the ionized electron probability distributions in energy (or
momentum) provided the projection is carried out at a time,tp, significantly later than the end
of the laser pulse(s). This means that in this case, propagation of the numerical solution of the
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Figure 1. Energy distributions of electrons ionized from the H atom at
the angle θk = π by a 2-cycle attosecond pulse of photon energyω =

36 eV and peak intensityI0 = 5× 1015 W cm−2. The probability distributions
calculated by projecting the numerical solution of the TDSE,9(r , tp), onto the
(continuum) energy eigenstates of the field-free Hamiltonian (dashed curves)
(cf equation (11)) are compared to the probability distributions calculated by
projecting9(r , tp) onto plane waves (solid curves) (cf equation (17)) at different
times,tp, measured from the end of the attosecond pulse: (a) 5τ , (b) 10τ , (c) 20τ
and (d) 30τ , whereτ is the duration of the attosecond pulse, as defined in the
text. Note that the dashed curve is, in principle, independent oftp (and, in fact, is
found numerically to be the same in each panel).

TDSE must be extended in time up to the chosen time,tp, following the end of the laser pulse(s).
Whether this represents more computational labor than calculating numerically the solutions of
the field-free Hamiltonian is an issue to be considered in any particular calculation. Finally,
the probability distributions predicted by projecting onto plane waves include unphysical rapid
oscillations, particularly at low energies. Thus, any investigations that seek to obtain accurate
predictions at low energies must project the solution of the TDSE onto the energy eigenstates
of the field-free Hamiltonian. In the present paper, all energy or momentum distributions for
the hydrogen atom are calculated by projecting the solution of the TDSE onto the Coulomb
eigenstates of the field-free Hamiltonian. Only one of our results, for the He atom, is obtained
by projecting the solution of the TDSE onto plane waves. However, this result for the He atom
involves probabilities that are integrated over electron momenta. Thus, the rapid oscillations as
a function of electron momentum that are introduced by the projection onto plane waves are
expected to average out to a very good approximation. (For example, integration in energy of
the two probability distributions for ionization of the H atom shown in each of the figures1(c)
and (d) give agreement within approximately 1%.)

New Journal of Physics 10 (2008) 025030 (http://www.njp.org/)

http://www.njp.org/


8

3. Roles of frequency and intensity on attosecond CEP effects

In this section, we present numerical results that shed light on the roles of the frequency and
intensity of a few-cycle attosecond XUV pulse with well-defined CEP in producing asymmetric
ionized electron momentum distributions.

3.1. An approximate frequency–intensity scaling law

As the carrier frequency of a few-cycle XUV pulse changes, must the intensity of the pulse also
change in order to observe similar CEP-induced asymmetries in the resulting ionized electron
momentum distributions? One may expect to observe similar CEP-induced asymmetry effects
produced by two few-cycle XUV pulses with different carrier wave frequencies provided the
two pulses have similar peak values of their corresponding vector potentials. This expectation
stems from the fact that electrons ionized at some point during a few-cycle pulse will receive an
impulse by the remainder of the pulse. The magnitude of this impulse is equal to the value of the
vector potential at the moment when the electron is ionized (see, e.g. [15, 21]). The magnitude of
the XUV pulse’s vector potential depends on the pulse’s intensity and frequency asA0∝

√
I0/ω

(cf equation (5) and the text that follows). Hence, it would seem that two few-cycle XUV pulses
having equal CEPs but different frequencies,ω1 andω2, would produce similar ionized electron
momentum distribution asymmetries provided that the peak intensities of the two XUV pulses,
I0(1) and I0(2), are related as follows:√

I0(1)/ω1 =

√
I0(2)/ω2. (20)

Two points should be mentioned in connection with this scaling law. Firstly, equation (20)
is consistent with equality of the ponderomotive potentials associated with the two XUV pulses.
Although, as noted by Lindneret al [22], ‘. . . the concept of the ponderomotive potential . . . is
questionable in the few-cycle regime,’ the concept of the vector potential becomes important
in this regime. Interestingly, the two concepts have a simple (mathematical) relationship.
Secondly, the similarity in the photoelectron energy distributions produced by XUV pulses
of very different energies may not apply for atoms whose photoionization cross-sections have
significant energy-dependent structure in the energy regions of interest. However, for atoms
such as H and He, whose photoionization cross-sections decrease smoothly and monotonically
with photon energy (as do the cross-sections for subshells of all atoms for energies far above
their thresholds), the scaling law is expected to apply.

In order to test this scaling law, in figure2, we compare the differential probability
distributions of electrons ionized from the H atom at the anglesθk = 0 and π by two
2-cycle attosecond pulses having different photon energies,ω1 = 36 eV andω2 = 72 eV, CEPs
φ = 0.5π , and various pairs of peak intensities,I0(1) andI0(2), which are indicated in the figure,
with the intensity pairs in each row satisfying the scaling law in equation (20). Specifically,
since the frequencies of the two XUV pulses differ by a factor of 2, the intensities must
differ by a factor of 4. The asymmetries of the electron distributions are barely visible at
the lowest pair of intensities. As the peak intensitiesI0(1) and I0(2) increase, respectively, to
5× 1014 W cm−2 in (b) and 2× 1015 W cm−2 in (e), one observes clearly the differences between
the θk = 0 andπ energy distributions. At even higher pairs of peak intensities, as in (c) and
(f), the differences become quite significant. As these numerical results indicate, the scaling
law in equation (20) appears to be approximately satisfied, i.e. the asymmetries in the electron
momentum distributions appear to have approximately similar shapes.
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Figure 2. Comparison of the energy distributions of electrons ionized from
the H atom at the anglesθk = 0 (solid curve) andθk = π (dashed curve) by a
2-cycle attosecond pulse having a CEP of 0.5π for two different photon energies:
ω = 36 eV ((a)–(c)) and 72 eV ((d)–(f)). For each photon energy, results are
shown for three different attosecond pulse intensities (in W cm−2), which are
indicated in each plot. Note that the intensities for the two photon energies in
each row (i.e. (a) and (d), (b) and (e), and (c) and (f)) correspond to the two
attosecond pulses having the same peak value of the vector potential, i.e. they
satisfy the approximate scaling law in equation (20).

Other features of the curves in figure2 may be understood qualitatively. Consider first
the energy spread of the electron momentum distribution. One observes that the higher the
frequency, the larger is the energy spread of the electron momentum distribution. Using the
uncertainty principle, for pulses having the same number of cycles, the energy uncertainty
(calculated for an uncertainty in time equal to the pulse duration) is proportional to the frequency
of each pulse. Thus, one expects the width in energy of the electron energy spectrum to be
roughly proportional to the frequency of the few cycle pulse. One observes in figure2 that indeed
for frequencies differing by a factor of two, the spread in energy of the electron momentum
distributions also differ roughly by a factor of two. Consider next the decrease in ionization
probability with frequency. This is not so easily explained in a hand-waving way. However, one
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Figure 3. Comparison of the total ionization probabilityPt (◦), the probability
differencePd (4), and the asymmetry factorR = Pd/Pt (�) (cf equations (13)
and (14)) as a function of the attosecond pulse peak intensity,I0, for (a) the H
atom and (b) the He atom. The dashed lines are drawn through the data points
to guide the eye. For H and He, the slopes ofR, Pt andPd for H (He) are 0.526
(0.498), 0.995 (0.993) and 1.521 (1.491), respectively; see text for discussion.

may show that the decrease is consistent with the decrease in the H atom photoionization cross-
section as a function of frequency (taking into account also the spread in energy of the electron
momentum distribution) given that the number of photons in each pair of pulses in figure2 is
approximately constant.

3.2. Intensity dependence of CEP-induced asymmetries

In order to investigate further the physical mechanisms of the CEP effects predicted in figure2,
it is useful to compare the total ionization probability,Pt, the probability difference,Pd, and
the asymmetry factorR (cf equations (13) and (14) and the surrounding text), as a function of
the peak intensity of the attosecond pulse. In figure3, such comparisons are shown for both the
H and the He atoms ionized by a 2-cycle attosecond pulse with photon frequencyω = 36 eV
and CEPφ = 0.5π . One can deduce the slopes ofPt, Pd and R versus intensity from the log–
log plots to be approximately 1.0, 1.5 and 0.5, respectively, for both H and He. These results
imply that, although the total ionization probabilityPt is mainly a one-photon process owing to
its linear dependence on intensity, the probability differencePd between the directionskz < 0
andkz > 0 is due to a nonlinear process owing to its dependence on the intensity raised to the
power 1.5. A possible origin for the asymmetries induced by the attosecond CEP is therefore
interference between one-photon and two-photon ionization processes.

Previous studies for other systems have indicated that asymmetries resulting from probes
with few cycle pulses stem from nonlinear effects. In particular, control of the direction of
emission of photoexcited electrons in semiconductors was demonstrated experimentally in [23].
In that work, the asymmetry of the electron emission was shown to result from quantum
interference of electrons produced by one- and two-photon bound-free intersubband transitions
in AlGaAs/GaAs quantum well superlattices. More recently, asymmetries in ionization of
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Rydberg atoms by few-cycle radio-frequency pulses were attributed to interference between
ionization amplitudes involving odd and even numbers of photons [24]. Most recently, Roudnev
and Esry [25] have presented a general framework for understanding CEP effects in a quantum
system interacting with an intense short laser pulse. Within their framework, all CEP asymmetry
effects are interpreted as due to interference between transition amplitudes involving odd and
even numbers of photons. Our numerical findings for the intensity dependences shown in
figure3 for ionization of the H and He atoms with few-cycle XUV pulses are consistent with
results of these other references.

4. Role of an additional IR laser pulse

Recently, we have investigated CEP-induced asymmetries in the momentum and energy
distributions of electrons ionized from both H and He atoms by either a single few-cycle
attosecond pulse or two time-delayed attosecond pulses [13]. Additional insights into the CEP-
induced asymmetries in the momentum and energy distributions of electrons ionized by a single
few-cycle attosecond pulse have been provided in the prior section of this paper. Experimentally,
isolated attosecond XUV pulses are typically synthesized from high-order harmonics generated
by an intense IR laser pulse [1, 26]. Based on our demonstrated CEP-induced asymmetries
in electron momentum and energy distributions produced by one or two few-cycle attosecond
pulses, it is consequently of interest to examine what effect, if any, there will be on these
attosecond pulse CEP-induced asymmetries in the presence of an additional IR pulse. We
examine this question in this section, i.e. we investigate the momentum and energy distributions
of electrons ionized by a single attosecond pulse in the presence of an additional IR pulse. We
examine first the case of a weak, few-cycle IR pulse, which we find augments the attosecond
pulse CEP-induced asymmetries. We then examine the case of a more intense, few-cycle IR
pulse and find that it introduces additional asymmetries for low energy electrons, which we
explore in some detail. In all our calculations, we assume the IR laser has a wavelength
λIR = 750 nm and a duration of four cycles,τIR = 4TIR, unless otherwise stated. The value of
the IR CEP phase,φIR, is set equal to either 0 or 0.5π in order that if the peak of the attosecond
pulse occurs at the peak of the envelope of the IR pulse, then it will occur at either a zero or the
peak of the IR carrier wave’s vector potential.

It is important to note that it is not necessary to have either a few-cycle or an intense
attosecond pulse to produce asymmetric photoelectron distributions in the presence of an IR
pulse (see, e.g. [10]–[12]). The (additional) asymmetry induced by an IR pulse is directly
related to the value of the IR field’s vector potential at the time of ionization by the XUV pulse.
Our focus here, however, remains on exploring the sensitivity of the asymmetric photoelectron
momentum and energy distributions, produced in the presence of both IR and few-cycle XUV
pulses, on the CEP of the XUV pulse.

4.1. Augmentation of attosecond pulse CEP effects by a weak, few-cycle IR pulse

In figure4, we show the energy distributions of electrons ionized from the H atom in opposite
directions along the laser polarization axis (i.e. at the anglesθk = 0 andθk = π ) by a 2-cycle
attosecond pulse with photon energyω = 36 eV and peak intensityI0 = 5× 1015 W cm−2 in the
presence of an additional IR pulse of intensityI IR = 5× 1011 W cm−2. In the left-hand column
of figure 4, the attosecond pulse is put at the zero of the IR vector potential (cf figure4(e)).
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Figure 4. Energy distributions of electrons ionized from the H atom at the angles
θk = 0 (solid curve) andθk = π (dashed curve) by a 2-cycle attosecond pulse,
having photon energyω = 36 eV and peak intensityI0 = 5× 1015 W cm−2, in the
presence of an additional 4-cycle IR laser pulse with wavelengthλIR = 750 nm
and peak intensityI IR = 5× 1011 W cm−2. The CEP of the attosecond pulse is
indicated in each plot. The attosecond pulse is positioned at the zero of the IR
vector potential in the first column and at its peak in the second column. In panels
(e) and (f), we show the vector potentials of the attosecond pulse (solid curve)
and (the central part of) the IR pulse (long dash curve) corresponding to the
results shown in (c) and (d), respectively.

In this case, the electron energy distributions are almost identical with those obtained in the
absence of an IR laser pulse (e.g. compare figures2(c) and4(c)). However, when the attosecond
pulse is put at the peak of the vector potential (cf figure4(f)), as in the results shown in the
right-hand column of figure4, the asymmetries between the two emission angles are greatly
increased, both for an attosecond CEP ofφ = 0 (figure 4(b)) and one of 0.5π (figure 4(d)).
However, the asymmetry is clearly larger whenφ = 0.5π , as is the case when there is no IR
laser field.
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Figure 5. The same as figure4 except that the IR pulse has a peak intensity of
I IR = 5× 1012 W cm−2.

In figure 5, we show similar ionized electron energy distributions for the case of a
somewhat greater IR pulse peak intensity,I IR = 5× 1012 W cm−2. In the case that the attosecond
pulse is put at the zero of the IR vector potential (shown in the left-hand panels of figure5), we
again observe that the electron distributions and their asymmetries are similar to the case in
which there is no IR field (e.g. compare figures2(c) and5(c)), at least for electron kinetic
energies above approximately 6 eV. In contrast to this largely null effect of the IR pulse, in the
case that the attosecond pulse is put at the peak of the IR vector potential (shown in the right-
hand panels of figure5), the asymmetries between the two emission angles are significantly
augmented compared with those in figures4(b) and (d). Comparing figures5(b) and (d), we
see that the ionized electron momentum distributions are still sensitive to the CEP of the XUV
pulse; however, the augmented asymmetries in the presence of the IR pulse are so large that
one must look carefully to see the sensitivity of the distributions to the XUV CEP. The low-
energy structures in the electron energy distributions that appear in figure5 but not in figure4
are examined in detail in the next section.
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Figure 6. Momentum distribution of electrons ionized from the H atom by a 2-
cycle attosecond pulse with photon energyω = 36 eV and peak intensityI0 =

5× 1015 W cm−2 in the presence of an 8-cycle IR pulse with wavelengthλIR =

750 nm and peak intensityI IR = 2× 1013 W cm−2. The CEP of the attosecond
pulse is 0.5π . The attosecond pulse is positioned at the peak of the IR vector
potential, as shown (for a different IR pulse peak intensity) in figure5(f).

4.2. Low-energy structures appearing in the presence of an intense IR pulse

As shown in figure5, the energy distributions of electrons ionized from the H atom by a few-
cycle XUV pulse in the presence of a moderately intense few-cycle IR pulse develop clearly
visible structures for electron kinetic energies less than approximately 6 eV. These structures
are not present in the absence of the IR pulse (cf figure2); neither are they present in the case
of a weak IR pulse (cf figure4). In order to investigate these new features, we further increase
the IR laser peak intensity to 2× 1013 W cm−2 and also double the IR pulse duration to 8 cycles.
The resulting ionized electron momentum distributions in thekx–kz-plane are shown in figure6.
The momentum distributions clearly exhibit ring or arc structures for bothkz > 0 andkz < 0.
It is also clear that these ring or arc structures have different spacings forkz > 0 andkz < 0.
Consequently, they may result from different physical mechanisms, as discussed below.

The results in figure6 show clearly that the electrons escape predominantly in thekz < 0
direction. The entire asymmetric spectrum is shifted down by the IR vector potential towards
negative values ofkz. The ring or arc structures observed in figure6 are reminiscent of the
interference patterns that have been observed or predicted between electron wave packets
produced by two or more attosecond pulses [13]–[15] or even between electron wave packets
produced by each half cycle of a few-cycle femtosecond laser pulse [21]. Neither of those
situations, however, apply in the present case. Firstly, we only have one few-cycle attosecond
pulse and not two. Secondly, even though we have a few-cycle (XUV) pulse, as shown in
figure2, there are no interference patterns in the electron momentum distributions in the absence
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of the IR pulse (as might be expected, owing to the large energies of the electron wave packets
produced by XUV pulses as compared to those produced by few-cycle femtosecond pulses).

The ring or arc structures observed in figure6 originate from production of ionized
electrons by a few-cycle attosecond XUV pulse in the presence of an IR pulse. Moreover, the
IR pulse must have some minimum intensity for the rings or arcs to occur, as comparison of
figures4 and5 shows. One must keep in mind also that the rings or arcs occur in a region of low
electron energies, so that the Coulomb field of the nucleus should exert a significant influence.
In fact, we have done exploratory strong field approximation (SFA) calculations (which ignore
the Coulomb potential) and find that the ring or arc structures are absent in the SFA results
for ionized electron momenta. Hence, it seems that the Coulomb field plays an important role
or even more than one role. The possible roles of the Coulomb field include rescattering of the
low-energy electrons driven by the IR field and/or allowing absorption of IR field photons when
electrons pass near the nuclear potential. (According to our estimates, the IR field is too weak
to ionize electrons significantly from the ground state of the H atom.)

Regarding IR field-driven rescattering of low-energy electrons, we observe that there is an
asymmetry in such rescattering in this problem. As shown in figure6, the IR field shifts the
kz > 0 part of the ionized electron spectrum closer tokz = 0 and shifts the lowest energy part
to negative values,kz < 0. A corresponding shift occurs in coordinate space, i.e. the ionized
electrons are shifted toward negativez. Thus, there may be significant rescattering by the
Coulomb potential of some of the low-energy electrons (i.e. the ones ionized initially with
kz > 0, but shifted by the IR field tokz < 0), assisted by the IR laser electric field. If so, the
electrons that are thus rescattered (and that thus take positive values of momentum once again)
may interfere withkz > 0 electrons that are shifted by the IR pulse to lower positive momenta
but which do not rescatter from the Coulomb potential. Having two groups of electrons with the
same positive momenta that arrive at these momenta in different ways leads to interference of
their respective transition amplitudes. This may be the mechanism for the structures appearing
in thekz > 0 part of the momentum spectrum.

On the other hand, those ionized electrons that are initially ionized with negative momenta,
kz < 0, will be shifted by the IR pulse to even greater negative momenta. Since ionization occurs
at the peak of the IR pulse envelope, when the IR pulse electric field eventually changes sign,
its magnitude will be insufficient to rescatter the electrons (initially produced with negative
momenta) from the nuclear Coulomb potential. In this case, the Coulomb field can only facilitate
absorption of IR field photons by low energy electrons located initially near the nucleus.

The foregoing observations and speculations on the origins of the low energy ring or arc
structures in figure6 seem plausible. However, a more careful examination of the low energy
structures and their dependence on the various parameters in the problem is necessary. In what
follows, we present some additional results that provide further information on the problem.

In order to see the low-energy structures clearly, we plot in figure7 the ionized electron
energy distributions at the anglesθk = 0 and θk = π corresponding to the ionized electron
momentum distribution shown in figure6. Examination of this figure shows that the prominent
ring or arc structures are spaced in energy by 2ωIR for θk = 0 (cf figure7(a)) and byωIR for
θk = π (cf figure 7(b)). For electron kinetic energies smaller than approximately 3.0 eV, there
exist small, more closely spaced peaks in both cases. Forkz < 0 (cf figure 7(b)), the peaks
for energies above about 3.0 eV are structureless, while forkz > 0 (cf figure 7(a)) the three
peaks above about 3.0 eV each have sidebands on each side of the main peak. Forkz > 0, the
spacing of the main peaks by 2ωIR is reminiscent of observations of such spacing when the
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Figure 7. Energy distributions of electrons ionized from the H atom (by an
attosecond XUV pulse in the presence of an IR pulse) in opposite directions
along the laser field polarization axis: (a)θk = 0 and (b) θk = π . All laser
parameters are the same as in figure6. For greater clarity, only the parts of the
energy spectra below 40 eV are shown. Dashed lines (meant to guide the eye) are
spaced by 2ωIR in (a) and byωIR in (b); see text for discussion.

ionized electrons are produced by two attosecond pulses spaced by half an IR field period [15].
Here, of course, we have only a single attosecond pulse. However, could rescattering of low-
energy ionized electrons by the Coulomb field, driven every half cycle by the IR field, lead
to the interference suggested above that would produce such spacing by 2ωIR? Interestingly,
exactly halfway between the peaks that are spaced by 2ωIR, thekz > 0 spectrum shows minima.
This possible destructive interference of a peak halfway between others separated by 2ωIR

is reminiscent of interference effects studied by Véniardet al [27] in photoelectron spectra
produced by neighboring odd harmonics in the presence of the IR field that produced the
harmonics. It was found that the strength of the even harmonic between the two neighboring
odd harmonics was very sensitive to the relative phases of the three light fields (i.e. both
constructive and destructive interference were demonstrated). Of course, in our case we have
a very broad XUV pulse in the presence of an IR field and not a harmonic spectrum of the IR
field; also, the structures we observe occur only for low electron energies and differ significantly
for positive and negative electron momenta along thez-axis. For these reasons, we expect that
any interference is more likely to be due to laser-assisted electron scattering effects (and, in
particular, to laser-induced electron rescattering effects, which occur in only one direction) than
to three-color interference effects such as those investigated in [27].
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Figure 8. Energy distributions of electrons ionized from the H atom at the angles
θk = 0 (solid curve) andθk = π (dashed curve) by a 2-cycle attosecond pulse
with photon energyω = 36 eV and peak intensityI0 = 5× 1015 W cm−2 in the
presence of an additional 4-cycle IR laser pulse with wavelengthλIR = 750 nm
at four different peak intensitiesI IR (W cm−2), shown in each plot. The CEP of
the attosecond pulse is 0.5π . The attosecond pulse is positioned at the peak of
the IR vector potential, as shown (for different field parameters) in figure5(f).

In figure 8, we show how the low energy structures evolve with increasing IR pulse
intensity. One sees the beginning of some structure close to zero momentum in figure8(c)
corresponding to an IR peak intensity ofI IR = 1× 1012 W cm−2. When the IR peak intensity
is increased to 1× 1013 W cm−2, one sees in figure8(d) that the low energy structures are
well developed. The results in this figure also show how the attosecond pulse CEP-induced
asymmetries in the ionized electron momentum and energy distributions are progressively
augmented by the IR field as its peak intensity increases.

In figure 9, we show how the ionized electron momentum and energy spectra vary with
increasing XUV pulse intensity for the case of a fixed, intense IR pulse. One sees that the
magnitudes of the probabilities for ionization scale linearly with the XUV pulse intensity, as
expected for a predominantly one-photon process. In particular, the low-energy structures scale
in magnitude with the XUV pulse intensity as well. For this case of a relatively intense IR
pulse (but not so intense that ionization before the XUV pulse is significant), one sees that the
asymmetries in the spectra for positive and negative electron momenta are largely due to the
interaction with the IR pulse, in particular, because in this figure the XUV CEP is zero.
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Figure 9. Energy distributions of electrons ionized from the H atom at the angles
θ = 0 (solid curve) andθ = π (dashed curve) by a 2-cycle attosecond pulse
with photon energyω = 36 eV and four different peak intensitiesI0 (W cm−2)
(indicated in each plot) in the presence of an additional 4-cycle IR laser pulse
with wavelengthλIR = 750 nm and peak intensityI IR = 1× 1013 W cm−2. The
CEP of the attosecond pulse is 0. The attosecond pulse is positioned at the peak
of the IR vector potential.

Finally, in figure10, we show how the ionized electron momentum and energy spectra vary
with the energy of the XUV pulse for two different XUV pulse lengths. As may be expected,
the difference in ionized electron probabilities for positive and negative momenta is greater for
lower XUV energies, since the relative effect of the IR pulse on the ionized electrons is greater
the slower the electrons. Remarkably, the results for 4-cycle XUV pulses show no evidence of
any low energy structure. This is so because the XUV pulse energy is large enough that its width
in energy for the case of a 4-cycle pulse does not result in production of electrons with energies
near zero energy. Hence, rescattering of slow electrons by the IR pulse in this case is apparently
not possible (or at least not significant), unlike the case of a 2-cycle XUV pulse. The 4-cycle
results also show that ATI of ground state electrons by the IR pulse during ionization by the
attosecond XUV pulse is not significant, since no IR ATI structure is visible.

To summarize our interpretation of the low-energy structures observed in figures6–10,
it seems likely that they originate from the different dynamics experienced by negative and
positive momentum electrons as a result of their interaction with the attractive Coulomb field
and the few-cycle IR laser pulse both during and subsequent to their ionization by the attosecond
XUV pulse. For the polarization direction of the IR electric field that we have chosen at the time
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Figure 10. Comparison of energy distributions of electrons ionized from the H
atom at the anglesθk = 0 (solid curves) andθk = π (dashed curves) by a single
attosecond pulse with two different photon energies,ω = 36 eV ((a) and (c))
and 93 eV ((b) and (d)), in the presence of an additional 4-cycle IR laser pulse
with wavelengthλIR = 750 nm and peak intensityI IR = 1× 1013 W cm−2. The
attosecond pulse, with CEPφ = 0 and peak intensityI0 = 5× 1015 W cm−2, is
positioned at the peak of the IR vector potential. The number of cycles of the
attosecond pulse isn = 2 in the upper row andn = 4 in the lower row.

of ionization by the XUV pulse, newly ionized electrons having initially negative momenta will
be accelerated by the IR field for half an IR period towards larger negative momenta. In contrast,
newly ionized electrons having positive momentum will be decelerated for half an IR period
toward smaller positive momenta or even toward negative momenta (if their initial positive
momentum is small). Since the attosecond XUV pulse gives most electrons a substantial energy
and momentum, it is to be expected that most electrons having initially negative momenta
(which are shifted initially by the IR potential to even larger negative momenta) will not be
rescattered by the nuclear Coulomb potential when the electric field of the IR pulse changes
sign. Moreover, absorption of IR photons by low-energy electrons as they leave the vicinity of
the nucleus may produce the peaks spaced byωIR that are observed in the momentum spectrum
for kz < 0.

The situation appears to be quite different for thekz > 0 electron energy spectrum.
Although all electrons having an initially positive momentum will be shifted by the IR pulse
to smaller momentum values (i.e. they experience a negative impulse), most will still have
positive momenta at the time the IR electric field changes sign. The electrons having initially
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the smallest positive momenta may, however, be shifted to negative momenta by the negative
impulse of the IR electric field. In this case, they may be elastically scattered by the nuclear
Coulomb potential to positive momenta. Thus, the rescattered electrons having small positive
momenta may interfere with electrons that were ‘downshifted’ by the IR pulse from larger
positive momenta to the same small values of positive momenta. The transition amplitudes for
these two different groups of electrons will thus interfere. Since this process is expected to
happen within a half-cycle of the IR pulse, this hypothetical scenario may be consistent with
the 2ωIR spacing predicted numerically in figure7(a). Of course, slow electrons in this scenario
may also be expected to absorb IR photons as they rescatter from the nuclear Coulomb potential.
Why there exist minima between the prominent peaks that are spaced by 2ωIR is unclear to us;
nor are we able to explain the origin of the sidebands on either side of the prominent peaks.
Clearly, understanding the role of rescattering of low energy electrons in producing these low-
energy structures in the momentum distributions warrants further investigations.

5. Summary and conclusions

In summary, in this paper, we have investigated the role of the CEP of a few-cycle
attosecond pulse on ionized electron momentum and energy distributions. We have proposed
an approximate scaling law relating the frequency and intensity of the few-cycle attosecond
pulse that allows one to expect similarly-shaped asymmetries in ionized electron momentum
and energy spectra as either the frequency or the intensity of the attosecond pulse is varied. We
have also determined the intensity dependence of these asymmetries. Finally, we have presented
a detailed examination of the role of an additional few-cycle IR pulse.

We conclude that our numerical results are consistent with the interpretation that CEP-
induced asymmetries originate from interference between one- and two-photon ionization
transition amplitudes for the attosecond pulse even though the total ionization rate is consistent
with a single-photon process. Our scaling law for the frequency and intensity of the attosecond
pulse (for a fixed number of cycles per pulse) allows one to estimate approximately how the
CEP-induced asymmetries in ionized electron momentum and energy spectra will change with
varying attosecond pulse parameters. Finally, we have shown how even a weak additional
IR pulse can significantly augment the CEP-induced asymmetries of an attosecond pulse. In
addition, for short attosecond pulses producing an electron energy spectrum having significant
numbers of low-energy electrons, we have shown that the IR field may allow one to explore
rescattering of the ionized electron from the ionic core of the ionized atom.
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