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Plateau effects (i.e., weak dependence of the cross
sections for multiphoton processes on the number of
absorbed photons 

 

n 

 

in a wide range of 

 

n 

 

values) are very
interesting nonlinear phenomena in the interaction of a
strong laser field with atoms and molecules. Plateau
structures in the energy spectrum of photoelectrons in
above-threshold ionization and in the spectrum of radi-
ation appearing during the process of the generation of
higher harmonics of a laser pump have been actively
studied for more than a decade (e.g., see [1]). The pres-
ence of the plateau in the spectra of multiphoton
bremsstrahlung absorption in electron–atom scattering
was revealed for both linear [2] and circular [3] polar-
izations of the laser field by simulating the atomic
potential 

 

U

 

(

 

r

 

) by the zero-range potential. Although the
presence of the plateau allows one to observe experi-
mentally high-energy electrons and higher harmonics,
the absolute value of the 

 

n

 

-photon cross sections in the
plateau region is several orders of magnitude smaller
than that in the region of small 

 

n 

 

values. Therefore, it is
important to seek mechanisms for increasing the cross
sections in the plateau region. The cross sections for the
processes of above-threshold ionization and the gener-
ation of higher harmonics can be increased by varying
the intensity of the laser field near the threshold of the
lowest multiphoton ionization channel. As shown in [4–
6] for above-threshold ionization and in [5, 7] for the
generation of higher harmonics for the example of an
electron bound by short-range forces (negative ions),
increases are caused by known threshold phenomena
when one of the channels of a multichannel reaction is
closed [8, 9] (see also a semiclassical interpretation of
these phenomena in terms of the interference of classi-
cal electron trajectories in the laser field [10]).

Threshold phenomena can also occur in electron–
atom scattering in the laser field, because this process is
substantially multichannel: the possible up transitions
of the electron with momentum 

 

p

 

 and energy 

 

E

 

 = 

 

p

 

2

 

/2

 

m

 

to states with energies 

 

E

 

n

 

 = 

 

E

 

 + 

 

n

 

�

 

ω

 

 correspond to the
absorption (

 

n

 

 > 0), the elastic scattering (

 

n

 

 = 0), and the
induced emission (

 

n

 

 < 0) of photons. In the last case, the
number of emitted photons is limited by the threshold
value 

 

|

 

n

 

min

 

|

 

 = [

 

E

 

/

 

�

 

ω

 

] ([

 

x

 

] is the integer part of 

 

x

 

). Hence,
in contrast to above-threshold ionization and genera-
tion of higher harmonics, the threshold conditions for
the scattering are independent of the field intensity and
are achieved by varying the electron energy 

 

E

 

 (or field
frequency 

 

ω

 

) so as to satisfy the relation 

 

E

 

 = 

 

µ

 

�

 

ω

 

 (

 

µ

 

 =
1, 2, …) corresponding to the multiphoton emission
threshold with 

 

n

 

min

 

 = –

 

µ

 

. According to the general the-
ory [8, 9], threshold anomalies can exist in all channels
with 

 

n

 

 > 

 

n

 

min

 

. However, their character and the region
of 

 

n

 

 values in which the threshold modification of the
cross sections is significant depend on the type of the
process and the parameters of the problem and cannot
be determined from the general consideration.

In this work, the effective-range theory [9] for the
elastic scattering of electrons on the short-range poten-
tial 

 

U

 

(

 

r

 

) is generalized to the case of scattering in the
presence of a laser field and is used to analyze threshold
phenomena during the processes of multiphoton
bremsstrahlung absorption and emission of laser pho-
tons. In such an approach, the electron–atom interac-
tion is taken into account through the scattering length
and effective range and the interaction of the electron
with the laser field is precisely taken into account. It is
shown that the scattering amplitude as a function of the
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energy has root branch points at the thresholds of the
induced bremsstrahlung, the spectrum of scattered
electrons exhibits all of four types of threshold anoma-
lies described by Baz’ [8], and the threshold effects are
most significant in the plateau region for the multipho-
ton absorption process.

 

Scattering wavefunctions in the effective range
theory.

 

 The wavefunction of the electron with energy 

 

E

 

and asymptotic momentum 

 

p

 

 in the potential 

 

U

 

(

 

r

 

) and
light field with the electric vector 

 

F

 

(

 

t

 

) = 

 

F

 

cos

 

ω

 

t

 

 has the
form 

 

Y

 

p

 

(

 

r

 

, 

 

t

 

) = exp(–

 

i

 

�

 

t

 

/

 

�

 

)

 

F

 

p

 

(

 

r

 

, 

 

t

 

), where 

 

�

 

 = 

 

E

 

 + 

 

u

 

p

 

 is
the quasi-energy, 

 

u

 

p

 

 = 

 

e

 

2

 

F

 

2

 

/4

 

m

 

ω

 

2

 

 is the average vibra-
tional energy of the electron in the field, and the time-
periodic function 

 

F

 

p

 

(

 

r

 

, 

 

t

 

) is a solution of Schrödinger
equation

(1)

Here 

 

V

 

(

 

r

 

, 

 

t

 

) = 

 

|

 

e

 

|

 

(

 

r

 

 · 

 

F

 

(

 

t

 

))

 

 

 

and

(2)

where the incident wave 

 

χ

 

p

 

(

 

r

 

, 

 

t

 

) is the periodic part of
the known wavefunction 

 

ψ

 

p

 

(

 

r

 

, 

 

t

 

) = exp(–

 

i

 

�

 

t

 

/

 

�

 

)

 

χ

 

p

 

(

 

r

 

, 

 

t

 

) of
a free electron in the field and the asymptotic expres-

sion for the scattered wave (

 

r

 

, 

 

t) determines the
amplitude �n(p, pn) and scattering cross section:

(3)

(4)

where pn = .
For the short-range potential U(r) (with the range

r ≈ rc), the solution of Eq. (1) can be obtained with the
use of a method similar to that used to calculate the
quasi-stationary states of a weakly bound electron in a
constant electric field [11, 12] and in the light-wave
field [13]. Let U(r) have a weakly bound state with the
orbital angular momentum l and energy E0 = −�2κ2/2m,
so that rc � κ–1. In this case, the following boundary
condition for the wavefunction Fp(r, t) in the range
rc � r � κ–1 can be written (cf. [13]):

(5)

where  is the Fourier coefficients of a certain peri-

odic function (t) = e–isωt that determines
the projection of Fp(r, t) onto the spherical function
Yl, m( ) and plays a central role in the further consider-

i�
∂
∂t
----- �

�
2

2m
-------∆ U r( )– V r t,( )–+ + Fp r t,( ) 0.=

Fp r t,( ) χp r t,( ) Fp
sc( ) r t,( ),+=

Fp
sc( )

Fp
sc( ) r t,( ) r ∞→ �nr 1– e

i pnr/� inωt–
,

n nmin=

∞

∑=

dσn/dΩpn
pn/ p( ) �n p pn,( ) 2

,=

2m E n�ω+( )

Fp r t,( )Yl m,* r̂( ) Ωr̂d∫
∼ r l– 1– … Bl � s�ω+( )rl+ +[ ] f s

m( )e isωt– ,
s ∞–=

∞

∑

f s
m( )

f p
m( ) f s

m( )
s∑

r̂

ations and the coefficient Bl(E) containing the scatter-
ing phase δl due to the potential U(r) is parameterized
in terms of the scattering length al and effective range rl

according to the effective range theory as

(6)

According to Eqs. (3) and (5), the scattered wave

(r, t) in Eq. (2) beyond the range of the potential
U(r) (for r > rc) should contain divergent spherical
waves at r  ∞ and have a ~r–l – 1 singularity at r 
0. Similarly to [13], such a solution of Eq. (1) with
U(r) = 0 can be represented in terms of the retarded
Green’s function G(r, t; r', t') of a free electron in the
field F(t) as

(7)

where

(8)

Here, the differential operator �l, m(∇r) is obtained
from the spherical function �l, m(r) by the substitution

r  ∇r. The equation for the function (t) follows
from the matching of the projection of function (7) onto
the spherical function Yl, m( ) with boundary condi-
tion (5) for small r values.

Below, we present the results for the most interest-
ing cases of s- (l = 0) and p-wave (l = 1) scatterings cor-
responding to scattering from atoms forming negative
ions with outer s and p electrons, respectively. In addi-
tion, we use the dimensionless quantities: the field

amplitude F is measured in units of F0 = /|e |�
and energy and frequency are measured in units of |E0 |
and |E0 |/�, respectively.

S-wave scattering. In this case, the differential
operator in Eq. (8) is absent and the result for Fp(r, t)
formally coincides with the result for the zero-range
potential [2] with the difference that the equation for

fp(t) ≡ (t) contains the effective range r0. It is
convenient to represent this equation in the form of the
system of the linear inhomogeneous algebraic equa-
tions for the Fourier coefficients fs of the function fp(t),
which separates into two uncoupled systems, the first

2l 1–( )!! 2l 1+( )!!Bl E( ) k2l 1+ δl k( )cot≡

=  1/al– rlk
2/2, k2+ 2mE/�2.=

Fp
sc( )

Fp r t,( ) χp r t,( ) F̃p
m '( )

r t,( ),
m ' l–=

l

∑+=

F̃p
m '( )

r t,( ) 2π�
2( )/ mκ( ) t 'ei� t t '–( )/�d

∞–

t

∫–=

× f p
m '( ) t '( )�l m ', ∇r '( )G r t; r ' t ', ,( ) r ' 0= .

f p
m( )

r̂

2m E0
3

f p
m 0=( )
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for the coefficients fs ≡ f2k + δ with even subscripts s (δ =
0) and the second for the coefficients with odd sub-
scripts s (δ = 1):

(9)

where Ep = E + pω and

(10)

The quantities c2k + δ in Eq. (9) are the Fourier coeffi-
cients of the function cp(t) ≡ χp(r = 0, t):

(11)

where �n(α, β) = (α)Jm(β) is the gener-
alized Bessel function [14] and θ is the angle between
p and F. The matrix elements Mk, k' in Eq. (9) can be rep-
resented in terms of one-dimensional integrals of the
Bessel functions (see [2]). However, to analyze the
threshold phenomena, it is convenient to represent them
in the form

(12)

Expression (12) is obtained with the use of the quasi-
energy representation of the Green’s function of the
electron in the light field [15, 16] instead of the nonsta-
tionary Green’s function G in the expression for Fp(r,
t) in Eq. (7).

With the known solution of the system of Eqs. (9)
(which can generally be obtained only numerically),
the function Fp(r, t) given by Eqs. (7) and (8) is com-
pletely determined and its asymptotic expression (3) in
the limit r  ∞ provides the s-wave scattering ampli-
tude

(13)

where θn is the angle between pn and F.

ζ E2k δ+( ) f 2k δ+ c2k δ+ Mk k ', Eδ( ) f 2k ' δ+ ,
k ' ∞–=

∞

∑+=

ζ E( ) i E up+– 1–
r0

2
---- 1 E up+ +( ).+=

cs is� s–
2Fp

ω2
---------- θcos

up

2ω
-------,⎝ ⎠

⎛ ⎞ ,=

Jn 2m+m ∞–=
∞∑

Mk k ', E( )

=  iδk k ', Jn
2 up

2ω
-------⎝ ⎠

⎛ ⎞ E 2 k n+( )ω+
n ∞–=

∞

∑ �–

+
1

T2
----- t t 'e

i k ' k–( )ωt nωt '–
up

ω
----- ωt ωt 'sincos+

d

0

T

∫d

0

T

∫
n ∞–=

∞

∑

× eix t t ',( ) E k k ' n+ +( )ω+ 1–
x t t ',( )

----------------------------------------------------- iδk k ', E 2kω+– ,

T 2π/ω, x t t ',( ) 4F

ω2
------- ωt

2
------ ωt '

2
-------.sinsin= =

�n
s( ) p pn,( ) in s– f s�n s–

2F pn

ω2
------------- θncos

up

2ω
-------,⎝ ⎠

⎛ ⎞ ,
s

∑=

P-wave scattering. Performing the differentiation

in Eq. (8) for the Fourier coefficients  of the func-

tion (t) with l = 1, one can obtain the system of lin-
ear equations that is similar to system (9). However, the
results are lengthy and we present only the final expres-
sion for the amplitude

(14)

where 2�n, 1(α, β) = �n + 1(α, β) + �n – 1(α, β).

Analysis of the threshold phenomena. To analyze

the dependence of the amplitude (p, pn) on the
energy E near the thresholds E = µω of the µ-photon
emission, we first analyze the matrix element Mk, k'(E)
in Eq. (12). It can be shown that the even terms of the
expansion of the exponential including E in the inte-
grand in Eq. (12) do not contribute to the integrals with
respect to t and t'. Thus, Mk, k'(E) is a square-root func-
tion of the energy E and the first correction to the
threshold value Mk, k'(E = µω) can be obtained by
expanding the integrand in Eq. (12) in the powers of
(E – µω)1/2 with the subsequent analytical calculation
of the integrals with respect to t and t'. As a result, the

matrix element (E) ≡ Mk, k'(E) – δk, k'ζ(E) near
E = µω is given by the expression

(15)

As above, δ = 0 (1) for even (odd) s and s' values and
the parities of µ and δ should be the same. This means

that the behavior of the amplitude (p, pn) near the
threshold of the emission of an even (odd) number of
photons is governed by the even (odd) Fourier coeffi-
cients f2k + δ of the function fp(t).

The equations for the correction ~  to the

threshold coefficients  ≡ fs(E = µω),

(16)

f s
m '( )

f p
m '( )

�n
p( ) p pn,( ) in 1– i–( )s f s

m( )

s

∑
m 1–=

1

∑=

× �1 m, pn( )�n s–
2F pn

ω2
------------- θncos

up

2ω
-------,⎝ ⎠

⎛ ⎞

– δm0
F
ω
---- 3

4π
------�n s– 1,

2F pn

ω2
------------- θncos

up

2ω
-------,⎝ ⎠

⎛ ⎞ ,

�n
s( )

M̃k k ',

M̃k k ', Eδ( ) M̃k k ', µ δ+( )ω( ) i E µω– ∆M̃k k ', ,+≈

∆M̃k k ', 1–( )k k '– J
k

µ δ+
2

------------+

up

2ω
-------⎝ ⎠

⎛ ⎞ J
k ' µ δ+

2
------------+

up

2ω
-------⎝ ⎠

⎛ ⎞ .=

�n
s( )

E µω–

f s
µ( )

f s E( ) E µω→ f s
µ( ) i E µω– ∆ f s,+≈
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are obtained by the substitution of Eqs. (15) and (16)
into Eq. (9):

This system of equations for ∆fs is significantly simpli-
fied in the low-frequency approximation, because the

off-diagonal matrix elements  can be neglected in
this case [2]. Moreover, the threshold coefficients

 in this case can also be taken in the zeroth
approximation [neglecting the off-diagonal matrix ele-
ments Mk, k' in Eq. (9)]:

(17)

As a result, the correction ∆fs is given by the expression

(18)

The scattering amplitude in Eq. (13), as well as fs(E)
[see Eq. (16)], has the root branch points at the thresh-
olds:

(19)

which lead to the threshold features in the cross sec-
tions dσn/d  in the channels with various n values
according to the general theory of threshold phenom-
ena [8, 9].

Numerical results and discussion. Figure 1a
shows the spectrum of the scattered electrons for the
energies near the threshold value E = 16�ω for scatter-
ing from the hydrogen atom (a0κ = 1.453, r0κ = 0.623,
and the binding energy of the ion H– is |E0 | = 0.755 eV)
in the field of the CO2 laser with an intensity of I =
1.44 × 1011 W/cm2. According to the figure, the cross
sections dσn/d  change strongly (by one order of
magnitude) when the energy is changed by only
±0.01 eV near E = 16�ω in the plateau region, whereas
the threshold anomalies are absent for small n values.
The threshold phenomena are also small for induced
emission processes (see Fig. 2), where they give rise to
a noticeable change in the cross sections only in the two
channels nearest to the closed channel. Figure 3a shows
the spectrum of p-wave scattering of electrons from the
fluorine atom [a1κ3 = 0.784, r1κ–1 = –4.553, and
|E0(F−)| = 3.4 eV] in the field with I = 2.2 × 1012 W/cm2

and �ω = 0.688 eV for the energy E ≈ 17�ω. As com-
pared to the s-wave scattering, the threshold increases
in the cross sections are more pronounced and are more
than an order of magnitude. For both s- and p-wave
scatterings, both increases and decreases in the cross
sections are observed at the threshold energies in the

M̃k k ', µ δ+( )ω( )∆ f 2k ' δ+

k '

∑ ∆M̃k k ', f 2k ' δ+
µ( ) .

k '

∑–=

M̃k k ',

f 2k ' δ+
µ( )

f 2k δ+
µ( ) c2k δ+

µ( ) /M̃k k, µ δ+( )ω( ).–≈

∆ f 2k δ+
1

M̃k k, µ δ+( )ω( )
--------------------------------------

∆M̃k k ', c2k ' δ+
µ( )

M̃k ' k ', µ δ+( )ω( )
----------------------------------------.

k ' k≠
∑≈

�n p pn,( ) E µω→ �n
µ( )

i E µω– ∆�n,+≈

Ωpn

Ωpn

plateau region for various n values. This is due to the
different energy dependences of the cross sections for
different n values near E = µω: as seen in Figs. 1b and
3b, this dependence can have the form of cusps or steps
in agreement with the Baz’ theory [8, 9].

To interpret the results presented in Figs. 1–3, note
that, according to Eq. (19), the threshold modification

Fig. 1. Differential cross section dσn/dΩ for e–H scattering
at zero angle θ = θn = 0 (along the direction of the linear
polarization) for a CO2 laser with �ω = 0.117 eV (λ =

10.6 µm) and intensity I = 1.44 × 1011 W/cm2. (a) The cross
section versus the number of absorbed photons, n, for ener-
gies E of the incident electron presented in the figure. The
dotted and dashed lines are the results obtained by Bunkin
and Fedorov [17] and Kroll and Watson [18]. (b) The cross
section versus energy E near the even (µ = 16) and odd (µ =
15) thresholds of induced emission for a number of n values
presented in the figure.

Fig. 2. Same as in Fig. 1a, but for induced bremsstrahlung
in e–H scattering.

�ω
�ω
�ω

E/�ω

e–H

e–H

�ω
�ω
�ω
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of the cross sections is most significant for n values

such that the regular part of the amplitude ( ) is

comparable with the correction ~ . The quan-
tity ∆�n is small for all n values, because it is deter-

mined by small off-diagonal matrix elements ∆  in
Eq. (18). In our approach, the off-diagonal matrix ele-
ments Mk, k' describe the effects of the coupling between
the scattering channels with different numbers n of
absorbed/emitted photons. According to Eq. (9), these
matrix elements describe the influence of the effects of
higher orders in the interaction of the scattered electron
with the atomic potential on the Fourier coefficients fs

of the function fp(t) and, hence, on the scattering ampli-
tude with different n values [according to Eqs. (13) and
(14)]. Moreover, the plateau effects appear due to the
interchannel coupling induced by the laser field and
disappear when system (9) for the coefficients fs is
solved in the diagonal approximation Mk, k' ≈ Mk, kδk, k'

[2]. The total contribution of these coefficients provides
the scattering amplitudes �n(p, pn) that decrease rap-
idly as n increases and describe only the low-energy
part of the electron spectrum in Figs. 1a and 3a. As seen
in Fig. 1a, this spectral range is also well approximated
by the known Bunkin–Fedorov [17] and Kroll–Watson
[18] formulas, where the effects of the coupling
between channels are disregarded.1 Therefore, the scat-
tering amplitude in the plateau region is determined

1 Results [17] and [18] in Fig. 1a differ from each other, because
the applicability condition for the Born approximation [17]
(|E0 |/E ≈ 0.40) in this case is worse than the condition for the
low-frequency approximation [18] (�ω/|E0 | ≈ 0.15).

�n
µ( )

E µω–

M̃k k ',

only by small corrections to fs that originate from the
off-diagonal matrix element Mk, k' in the system of
Eqs. (9). As a result, the scattering cross section in the
plateau region are several orders of magnitude smaller

than those for small n values and  and ∆�n in
Eq. (19) become comparable, leading to an anoma-
lously large threshold effect in this region.

The above results constitute a rare example of the
semianalytical solution of the problem of multichannel
scattering with the exact inclusion of the effects of the
coupling between the channels. This example shows
that the threshold phenomena accompanying the open-
ing/closing of the lowest bremsstrahlung channel can
anomalously change (by several orders of magnitude!)
the scattering cross sections in the channels with n-pho-
ton absorption. Together with the results for above-
threshold ionization and the generation of higher har-
monics [4–7], our analysis shows that threshold phe-
nomena are typical for the plateau region in the cross
sections for all atomic photoprocesses in a strong laser
field. The threshold increases in the scattering cross
sections appear at both even and odd thresholds of mul-
tiphoton emission, whereas the threshold anomalies in
above-threshold ionization and the generation of higher
harmonics appear only when an even (odd) channel of
the multiphoton ionization from a bound state with the
orbital angular momentum l = 0 (1) is closed [5, 6].
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