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a b s t r a c t

Recent work suggests that a dose of 200–400 mg caffeine can enhance both vigilance and the executive
control of visual attention in individuals with low caffeine consumption profiles. The present study seeks
to determine whether individuals with relatively high caffeine consumption profiles would show similar
advantages. To this end, we examined the effects of four caffeine doses (0 mg, 100 mg, 200 mg, 400 mg)
on low- and high-level visual attention in individuals with high consumption profiles (n = 36), in a dou-
ble-blind study using a repeated measures design. Results from the Attention Network Test indicated that
caffeine enhanced both vigilance and the executive control of visual attention, but only at the highest
administered dose (400 mg). We demonstrate that in habitual consumers high doses of caffeine can pro-
duce beneficial changes in visual attention. These results carry implications for the theorized interactions
between caffeine, adenosine and dopamine in brain regions mediating visual attention.

Published by Elsevier Inc.

1. Introduction

Caffeine (1,3,7-trimethylxanthine) is the most commonly con-
sumed psychoactive stimulant in the world, and is often found to
enhance human vigilance and mental alertness (Lieberman,
2001; Nehlig, Daval, & Debry, 1992; Smith, 2002; Snel, Lorist, &
Tieges, 2004). For instance, individuals are able to sustain visual
vigilance for extended periods following caffeine consumption
(Frewer & Lader, 1991; Lieberman, Wurtman, Emde, Roberts, &
Coviella, 1987; Mitchell & Redman, 1992), and also show dose-
dependent performance improvements in accuracy and speeded
responses on simple and choice reaction time tasks (Kenemans &
Lorist, 1995; Lieberman, Tharion, Shukitt-Hale, Speckman, &
Tulley, 2002; Wesensten, Killgore, & Balkin, 2005). Caffeine has
also been implicated in the enhancement of certain higher-order
cognitive processes, such as those involved in the active monitor-
ing and coordination of behavior. For instance, caffeine can reduce
response time costs during task switching (Tieges, Snel, Kok, Plat, &
Ridderinkhof, 2007; Tieges et al., 2006), enhance response inhibi-
tion (Barry et al., 2007), and reduce interference costs during the
Stroop color–word, flanker, and other selective visual attention
tasks (Brunyé, Mahoney, Lieberman, & Taylor, 2010; Kenemans,

Weileman, Zeegers, & Verbaten, 1999; Lorist, Snel, Kok, & Mulder,
1996). The effects of caffeine on such higher-order tasks, however,
are somewhat equivocal; indeed some other recent work suggests
that caffeine does not affect selective visual attention (Kenemans &
Verbaten, 1998; Lorist & Snel, 1997) or response inhibition (Tieges,
Snel, Kok, & Ridderinkhof, 2009).

There are many methodological differences between these
studies that may account for the discrepant findings. First, studies
finding no effect of caffeine on higher-order tasks (e.g., Kenemans
& Verbaten, 1998; Lorist & Snel, 1997; Tieges et al., 2009) typically
use a 3 mg/kg dose (approx. 200 mg) of caffeine in individuals with
high caffeine consumption profiles. However, the effective dosage
to elicit changes in higher-order cognitive processes may be great-
er in individuals who habitually consume 2–4 cups of coffee (170–
340 mg caffeine) per day (Juliano & Griffiths, 2004; Kenemans
et al., 1999). Indeed chronic caffeine consumption increases the
number of adenosine receptors in the brain, suggesting that higher
caffeine doses may be necessary to achieve substantial dopamine
increases in high consumers (Daval, von Lubitz, Deckert, Redmond,
& Marangos, 1989; Fastbom, Post, & Fredholm, 1990; Varani et al.,
1999). Second, caffeine effects tend to be greatest on highly prac-
ticed tasks (Loke, 1992), and thus some null effects may be par-
tially attributed to the lack of a substantial practice session
(Kenemans & Verbaten, 1998; Lorist & Snel, 1997). The present
study accounts for these methodological issues in two ways. First,
we use a more comprehensive dose–response design with four
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levels of caffeine (0 mg, 100 mg, 200 mg, 400 mg) in participants
with high caffeine consumption profiles (i.e., P500 mg per day);
we hypothesize that 200 mg may not be sufficient to modulate
higher-order cognitive processes related to the control of visual
attention (Tieges et al., 2009), but a 400 mg dose may produce sig-
nificant effects. Our design allows a test of this hypothesis. Second,
we provide participants with multiple practice sessions to increase
task familiarity and reduce training effects across sessions.

With this improved design, there are several reasons to expect
caffeine to modulate higher-order cognitive processes, particularly
the effortful control of visual attention. Studies have demonstrated
that caffeine reduces response conflicts in the classic Stroop color–
word task (Hasenfratz & Battig, 1992; Kenemans et al., 1999).
Further, meta-analyses of Stroop-related brain activation have de-
tailed a network of brain areas, including the anterior cingulate
cortex (ACC), as responsible for successful control of visual atten-
tion (Bush, Luu, & Posner, 2000; Bush et al., 1998). In fact, many
studies have identified the ACC’s critical importance for successful
control of visual attention across a variety of tasks (Botvinick,
Braver, Barch, Carter, & Cohen, 2001; Casey et al., 2000; Fan,
Flombaum, McCandliss, Thomas, & Posner, 2003; Mac Donald,
Cohen, Stenger, & Carter, 2000). The ACC receives one of the high-
est levels of dopaminergic innervation in the brain (Lumme, Aalto,
Ilonen, Någren, & Hietala, 2007), and caffeine is a highly reliable
catalyst for dopaminergic availability through its antagonistic
effects on adenosine (Garrett & Griffiths, 1997; Popoli, Reggio,
Pezzola, Fuxe, & Ferré, 1998; Solinas et al., 2002). In support of this
position, there is recent neuroimaging evidence demonstrating
that the ACC is reliably up-regulated by caffeine consumption
(Koppelstaetter et al., 2008). Given these relationships between
caffeine, adenosine, dopamine, the ACC and executive function,
we expect that high doses of caffeine may enhance the effortful
control of visual attention.

2. The present study

Given the high and increasing prevalence of caffeine consump-
tion (Malinauskas, Aeby, Overton, Carpenter-Aeby, & Barber-
Heidal, 2007; Reissig, Strain, & Griffiths, 2009), it is critical to
understand how the growing population of habitual consumers
might show modulation of executive control as a function of acute
caffeine consumption. Indeed earlier results with relatively low
frequency consumers may not be generalizable to samples with
consumption profiles that better reflect caffeine’s prevalence. To
this end, the present study assessed how four doses of our Treat-
ment variable (0 mg, 100 mg, 200 mg, 400 mg caffeine) would af-
fect habitual consumers’ performance on the Attention Network
Test (ANT; Fan, McCandliss, Sommer, Raz, & Posner, 2002). The
ANT is a composite task that reliably tests the independent func-
tioning of three theorized (Posner, 1990) visual attention net-
works: alerting, orienting, and executive control (Fan et al., 2002,
2003; Neuhaus et al., 2007; Posner & Rothbart, 2005).

Alerting involves achieving and maintaining a state of alertness
(vigilance) during task performance; the ANT tests the functioning
of this network by assessing the utility of predictive cues regarding
trial onset. Neuroimaging studies demonstrate that alerting cues
activate the thalamus and bilateral frontal and parietal brain
regions (Fan, McCandliss, Fossella, Flombaum, & Posner, 2005;
Marrocco & Davidson, 1998); given that the thalamus and prefron-
tal cortex receive dense dopaminergic innervation (Sánchez-
González, García-Cabezas, Rico, & Cavada, 2005; Williams &
Goldman-Rakic, 1995), we expected that alerting would be im-
proved as a function of caffeine dose. This hypothesis is in line with
studies demonstrating improvement in basic psychomotor speed
and vigilance performance in a positive dose–response relationship

with caffeine consumption (for reviews, see Koelega, 1993;
Lieberman, 1992, 2001; Smith, 2002; Snel et al., 2004; Spiller,
1997).

Orienting involves selectively attending to cued regions of space
in anticipation of stimulus onset; the ANT tests the functioning of
this network by assessing the utility of predictive relative to
non-predictive spatial cues regarding an upcoming trial location.
Neuroimaging studies demonstrate that orienting involves the
activation of the superior parietal lobe (Corbetta, Kincade, Ollinger,
McAvoy, & Shulman, 2000; Fan et al., 2005). Given sparse dopami-
nergic innervations of the parietal lobes (Lidow, Goldman-Rakic,
Rakic, & Innis, 1989; Tassin et al., 1978), and recent work demon-
strating only marginal effects of caffeine on orienting function in
low caffeine consumers (Brunyé et al., 2010), we expected that caf-
feine consumption would not affect orienting function in a sample
of habitual consumers.

The executive control of visual attention involves the resolution
of conflicts between potential responses to a presented stimulus;
the ANT tests the functioning of this network by assessing response
time decrements produced as a function of response-incongruent
information flanking a target stimulus. Neuroimaging studies dem-
onstrate that this type of visual executive control process activates
the anterior cingulate cortex (ACC) and lateral prefrontal cortices
(Botvinick et al., 2001; Bush et al., 2000; Casey et al., 2000; Fan
et al., 2005). Given recent work demonstrating improvement in vi-
sual executive control in low consumers (Brunyé et al., 2010),
dense dopaminergic innervations in the ACC and prefrontal brain
regions (Lumme et al., 2007), and the fact that dopamine binding
in the ACC moderates executive function (Ko et al., 2009), we ex-
pected that a high dose (e.g., 400 mg) of caffeine would produce
similar effects in individuals with high consumption profiles.

For both alerting and executive control, a competing hypothesis
is offered by research demonstrating increased adenosine receptor
densities in the habitual consumer brain (Daval et al., 1989;
Fastbom et al., 1990; Varani et al., 1999), which may limit the
dopaminergic response to our range of caffeine doses. If this is
the case, then results will not demonstrate modulation of execu-
tive control as a function of caffeine dosage.

3. Method

3.1. Participants

Thirty-six high caffeine consuming (M = 592.3 mg/day) under-
graduate students (10 male; mean age 20.11; mean BMI 23.06)
participated for monetary compensation ($10 USD/h). All partici-
pants were non-nicotine users, in good health, and did not use pre-
scription medication other than oral contraceptives. Written
informed consent was obtained, and all procedures were jointly
approved by the Tufts University Institutional Review Board and
the Human Use Review Committee of the US Army Research Insti-
tute for Environmental Medicine.

3.2. Design

We used a within-participants design with four levels of a dou-
ble-blind independent variable, Treatment (0 mg, 100 mg, 200 mg,
400 mg caffeine). The 400 mg dose was chosen given that 20 oz
coffees sold at major franchise coffee houses typically contain from
350 to 450 mg caffeine (McCusker, Goldberger, & Cone, 2003). Caf-
feine (99.8% pure anhydrous USP-grade powder) and placebo
(physiologically inert microcrystalline cellulose powder) were
administered in identical capsule form with water, and Treatment
order was counterbalanced across participants in a Latin square.
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3.3. Materials

3.3.1. Manipulation check
To assess the effectiveness of caffeine in modulating participant

affective arousal, we administered the Brief Mood Introspection
Scale (BMIS; Mayer & Gaschke, 1988) both pre-caffeine and post-
metabolism. This scale involves rating a series of 16 affective adjec-
tives (e.g., peppy, tired, active, calm) on scales that range from 1
(definitely do not feel) to 4 (definitely feel).

3.3.2. Attention Network Test
The ANT involves responding to the direction of a central arrow

that faces either left or right. On some trials the presentation of the
arrow is preceded by cues that alert participants to the onset of a
trial, and on some trials participants also receive a cue that orients
them to a particular region of the screen (above or below fixation).
The central arrow appears with two flanking stimuli on either side,
either in the form of neutral lines or arrows facing either a congru-
ent or incongruent direction relative to the central arrow. Accuracy
and response time are measured when the participant responds to
the facing direction of the central arrow. Alerting is measured as
the extent to which a cue can alert the participant to trial onset,
relative to when no cue is provided. Orienting is measured as the
extent to which a spatially-determinate cue can orient a partici-
pant to the appropriate screen region where the central arrow will
appear (above or below fixation) relative to when a spatially-
indeterminate cue is provided. Executive control is measured as
the extent to which incongruent flanking arrows interfere with a
participant’s response relative to when flanking arrows are congru-
ent with the facing direction of the central arrow. The ANT involves
three blocks of 96 trials each, presented in random order; for a
more complete task description refer to Fan et al. (2002). Partici-
pants are instructed to respond to the facing direction of the cen-
tral arrow as quickly and accurately as possible; they are also
told that on certain trials they would receive cues that indicate
when the trial was about to begin (alerting) and/or where it would
appear on the screen (orienting).

3.4. Procedure

Participants visited the laboratory on five separate sessions,
each separated by at least 3 days: one normal consumption session
and four test sessions. All sessions took place in the morning at a
consistent time within participants. During the normal consump-
tion session, participants practiced a full version of the ANT and
completed all tasks in the same order as during the test sessions;
for this session only, participants were instructed to consume their
normal amounts of caffeine prior to coming to the laboratory, and
did not consume a capsule. The four subsequent test sessions fol-
lowed a 12-h water-only fast wherein participants were instructed
not to consume any substance other than water; note that a 12-h
fast is a sufficient wash-out period for caffeine given research dem-
onstrating mean plasma and elimination half-lives of 2.5–5 h in
healthy participants (Arnaud, 1987; Culm-Merdek, von Moltke,
Harmatz, & Greenblatt, 2005; IOM, 2001; Statland & Demas,
1980). Participants were instructed not to use any over-the-
counter medications or herbal supplements for 24 h prior to test-
ing; to encourage compliance with these instructions we collected
saliva samples upon arrival for each test session (not further ana-
lyzed herein; see also Brunyé et al., 2010; Tieges et al., 2009).

During each test session, participants completed the BMIS upon
arrival, provided a saliva sample, consumed their assigned Treat-
ment capsule along with a cup of water, and took a 20-min break
(to allow for sufficient plasma concentrations of caffeine; Arnaud,
1987). They then completed a 3-min practice session of the ANT,

performed the full ANT (approximately 15 min), and then again
completed the BMIS.

4. Results

Two participants were removed from further analysis for not
completing the ANT during one or more test sessions.

4.1. Self-reported mood state

We performed a repeated-measures ANOVA on adjective rat-
ings following caffeine consumption. As detailed in Table 1, we
confirmed the effectiveness of our Treatment manipulation, with
significant increases in participants’ ratings of how Lively, Jittery,
Peppy, Nervous and Active they felt as a function of Treatment level;
conversely, there were significant decreases in ratings of Tired,
Drowsy, and Calm. Table 1 lists Dunnett’s test (comparing each
dose to the 0 mg condition) results for adjectives with significant
ANOVA effects.

4.2. Attention Network Test

4.2.1. Treatment effects on Attention Networks
To evaluate the effect of caffeine on ANT performance, we calcu-

lated difference scores (i.e., Fan et al., 2002, 2005; Redick & Engle,
2006) to independently assess the functioning of each attention
network: alerting, orienting, and executive control. Alerting differ-
ence scores were calculated by subtracting mean RTs during trials
with double-cue configuration from mean RTs from trials with no
cues (higher scores indicate more efficient alerting function). Ori-
enting difference scores were calculated by subtracting mean RTs
during spatial cue trials (top versus bottom cue) from trials with
a center cue only (higher scores indicate more efficient orienting
function). Finally, executive control scores were calculated by sub-
tracting mean RTs during congruent flanker trials (i.e., flanking ar-
rows matching facing direction of central arrow) from trials with
incongruent flankers (i.e., flanking arrows mismatching facing
direction of central arrow); lower executive control difference
scores indicate more efficient executive control function. Fig. 1 de-
picts each of these three difference scores as a function of caffeine
Treatment levels.

For all analyses, effect sizes are denoted using Cohen’s d and
eta-squared (g2). To analyze difference scores as a function of

Table 1
BMIS adjective ratings as a function of Treatment dosage.

Adjective Treatment

0 mg 100 mg 200 mg 400 mg

M SD M SD M SD M SD

Lively 2.29 .68 2.62 .60 2.82* .63 2.74* .83
Happy 2.85 .61 2.94 .69 2.76 .69 2.82 .72
Sad 1.82 .52 1.74 .57 1.71 .63 1.71 .58
Tired 3.14 .56 2.74* .89 2.65* .88 2.76* 1.05
Caring 2.62 .69 2.68 .77 2.79 .69 2.68 .64
Content 2.85 .66 3.03 .72 2.88 .73 2.88 .59
Gloomy 1.76 .69 1.73 .67 1.97 .83 1.79 .77
Jittery 1.82 .72 1.74 .67 1.94 .81 2.29* .91
Drowsy 2.79 .73 2.44 .93 2.35* .77 2.26* 1.08
Grouchy 1.82 .76 1.82 .63 1.88 .81 1.85 .78
Peppy 2.00 .74 2.18 .79 2.09 .87 2.47* .86
Nervous 1.97 .72 1.79 .64 2.00 .85 2.26 .86
Calm 3.03 .63 3.00 .63 2.91 .71 2.65* .77
Loving 2.56 .61 2.56 .79 2.56 .75 2.59 .82
Fed Up 2.11 .91 1.94 .81 1.91 .71 1.88 .77
Active 2.26 .67 2.53* .71 2.41 .70 2.56* .70

* Significant Dunnett’s test results, comparing Treatment level to 0 mg placebo.
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Treatment (0 mg, 100 mg, 200 mg, 400 mg caffeine), we conducted
three separate single-factor repeated-measures ANOVAs, one for
each attention network. Analysis of alerting difference scores dem-
onstrated a marginal effect of Treatment, F(3, 99) = 2.19, p = .09,
g2 = .06. Comparisons using the Dunnett’s test (comparing each
dose to the 0 mg condition) revealed higher alerting difference
scores in the 400 mg condition, td(33) = 2.56, p < .05, d = .36 (all
other p’s > .05). Analysis of orienting difference scores did not re-
veal an effect of Treatment, F(3, 99) = .60, p > .05, g2 = .02. Finally,
analysis of executive control difference scores revealed an effect
of Treatment, F(3, 99) = 3.75, p < .05, g2 = .10; comparisons using
the Dunnett’s test revealed lower difference scores in the 400 mg
condition, td(33) = 3.17, p < .01, d = .60 (all other p’s > .05).

4.2.2. Testing for withdrawal effects
To rule out the possibility that our results could be solely attrib-

uted to performance reduction on the 0 mg day (due to withdrawal),
we conducted three t-tests comparing the normal consumption day
to the 0 mg day (one for each attention network difference score).
Though withdrawal led to numerically poorer performance for all
three attention networks at the 0 mg dose relative to the normal
consumption day (cf., Lane & Phillips-Bute, 1998), no analysis of
those differences reached statistical significance: alerting scores,
t(33) = 1.39, p > .05, orienting scores, t(33) = .65, p > .05, and execu-
tive control scores, t(33) = 1.16, p > .05. The lack of significant with-
drawal effects is likely due to average consumption rates being
influenced by consumption throughout the day, whereas all labora-
tory sessions occurred in the morning (cf., Fredholm, Bättig, Holmén,
Nehlig, & Zvartau, 1999).

5. Discussion

The present study extended previous work examining caffeine ef-
fects on lower- and higher-level visual attention by using a more
comprehensive dose–response design, an integrated and reliable
attention task, and an extended practice session. Whereas we cannot
be certain that the exclusion of a practice session would negate our
effects, our dose–response design did allow for a direct comparison
of a commonly used dose (200 mg) with a substantially higher dose
(400 mg) in a sample of high consumers. As hypothesized, 200 mg
was not sufficient to modulate lower- or higher- order cognitive
processes related to the deployment and control of visual attention

(Tieges et al., 2009), but a 400 mg dose produced significant effects.
We specifically detail our results and discuss implications below as a
function of the three attention networks under examination: alert-
ing, orienting, and executive control.

5.1. Alerting

The alerting network is theorized to be responsible for achiev-
ing and maintaining vigilance and alertness during the perfor-
mance of continuous task (Fan et al., 2002; Posner, 1990, 2004).
Functional neuroimaging studies demonstrate that successful
alerting recruits the prefrontal cortex and thalamus (Fan et al.,
2005), two brain areas that receive dense dopaminergic innerva-
tions. In fact, the thalamus is one of the few brain areas with co-
located adenosine (A2A) and dopamine (D2) receptors (i.e., Fink
et al., 1992). Given that caffeine reliably up-regulates dopaminer-
gic availability through its inhibitory effects on adenosine, we
expected that a high dose of caffeine would improve alerting per-
formance in high consumers; our results partially support this
hypothesis. Alerting difference scores showed overall increases as
a function of caffeine dose, though only at the 400 mg dose did
the increase become significant relative to placebo. Presently, it
could be the case that high habitual caffeine consumption levels
may increase requisite doses to achieve substantial alerting effects;
in fact, our earlier work examining the ANT found effects of caf-
feine on alerting functioning at both 200 mg and 400 mg when
examining non-habitual caffeine consumers (Brunyé et al., 2010).
Overall, the results from both habitual and non-habitual consum-
ers support a large body of literature demonstrating caffeine’s po-
sitive influence on lower-level visual attention and psychomotor
tasks (Frewer & Lader, 1991; Kenemans & Lorist, 1995; Lieberman
et al., 1987, 2002; Mitchell & Redman, 1992; Wesensten et al.,
2005), but underscore the importance of examining these effects
in a range of participant consumption profiles.

5.2. Orienting

The orienting network allows individuals to use cues to selec-
tively orient attention to particular regions of space in preparation
for an upcoming stimulus. Functional neuroimaging studies dem-
onstrate that the orienting network is primarily the locus of the
superior parietal lobe (i.e., Corbetta et al., 2000; Fan et al., 2005),
a brain area thought to have relatively low dopamine innervation
in humans and other animals (Lidow et al., 1989; Tassin et al.,
1978). Given that the behaviorally significant effects of caffeine
on the central nervous system are thought to result primarily from
its direct effects on adenosine (at A1 and A2A receptors) and indi-
rect effects on dopaminergic availability (Cropley, Fujita, Innis, &
Nathan, 2006; Fredholm, 1980, 1995; Varani et al., 1999), we ex-
pected that caffeine would not affect orienting function. Our re-
sults support this hypothesis, providing no evidence that caffeine
affects orienting function, somewhat in line with recent results
found with low consumers (Brunyé et al., 2010). In this earlier re-
search, we identified marginal effects of caffeine on orienting sys-
tem functioning (at 400 mg); we propose that caffeine has only
minor effects on the orienting of attention, and that these effects
only occur at high doses in participant samples with low consump-
tion profiles. Further, these results support the notion that caf-
feine-induced changes in cognitive performance may be related
more to its effects on dopaminergic rather than noradrenergic sys-
tems (i.e., Fredholm et al., 1999; Garrett & Griffiths, 1997; Lorist &
Tops, 2003; Nehlig, 1999; Tieges, Ridderinkhof, Snel, & Kok, 2004);
indeed whereas the parietal lobes are not densely innervated by
dopamine, they are a fundamental component of the brain’s
norepinephrine system (Coull, Frith, Frackowiak, & Grasby, 1996;
Marrocco, Witte, & Davidson, 1994). If the noradrenergic effects

Fig. 1. Mean difference scores and standard errors for each of the three attention
networks and four Treatment levels. Note that higher difference scores in the
alerting and orienting networks indicate greater performance; conversely, lower
difference scores in the executive control network indicate greater performance.
N.C. = normal consumption.
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of caffeine (via adenosine) affect visual attention, then one might
expect to see such an effect during the orienting of attention.

5.3. Executive control network

The executive control network allows individuals to reduce the
performance degradation typically seen with action-incompatible
visual information (i.e., incongruent relative to congruent or neu-
tral flanker arrows; Posner, 1990, 2004). Functional neuroimaging
studies have demonstrated that the executive control of visual
attention recruits both the anterior cingulate and prefrontal cortex
(Botvinick et al., 2001; Bush et al., 1998, 2000; Casey et al., 2000;
Fan et al., 2003; Mac Donald, Cohen, Stenger, & Carter, 2000). Given
that these areas are typically up-regulated by caffeine consump-
tion (Koppelstaetter et al., 2008), and executive function in these
areas is thought to be supported by dopaminergic availability
(Ko et al., 2009), we expected that a high dose of caffeine would en-
hance the executive control of visual attention. Congruent with re-
cent findings examining ANT performance in low consumers
(Brunyé et al., 2010), we identified dose-dependent increases in
the ability to inhibit action-incompatible information; this effect
only reached significance at a dose exceeding that used in prior
studies (i.e., 400 mg). As a reminder, lower executive control differ-
ence scores indicate higher functioning (see Fig. 1). Our findings
highlight the importance of examining a broad range of doses
when examining habitual high consumer populations. Due at least
to higher adenosine receptor density in habitual caffeine consum-
ers (Daval et al., 1989; Fastbom et al., 1990; Varani et al., 1999),
higher doses may be required to elicit substantial effects of caffeine
on adenosine inhibition and dopamine availability.

The present effect on executive control also may speak to the
distinction between reactive and active inhibition (Fillmore &
Rush, 2002). Active inhibition involves actively and deliberately
inhibiting thoughts and actions, such as immediately aborting a
learned response (i.e., stop-signal task; Logan & Cowan, 1984), or
switching task sets (i.e., Monsell, 2003). In contrast, reactive inhi-
bition involves interference control mechanisms during a relatively
automated process (i.e., De Jong, Liang, & Lauber, 1994), such as
inhibiting an inappropriate response when a flanking stimulus
mismatches a target stimulus (i.e., incongruent versus congruent
flanker trials). Though our design does not specifically allow for a
dissociation of active and reactive inhibition, our findings support
a growing consensus that caffeine may enhance reactive inhibition
(Hasenfratz & Battig, 1992; Kenemans et al., 1999; Lorist, Snel, Kok,
& Mulder, 1994; Lorist et al., 1996), unlike results found with ac-
tive inhibition (e.g., Barry et al., 2007; Tieges et al., 2009). Some re-
cent evidence suggests that active inhibition may bypass the
striatum (Aron & Poldrack, 2006), which holds one of the highest
adenosine receptor densities in the brain (Fredholm et al., 1999)
and is thought to be of greater importance for reactive relative to
active inhibition (Cropley et al., 2006).

6. Conclusions

The present study identified effects of caffeine on performance
during a modified flanker task designed to measure the relative
function of the alerting, orienting and executive control networks.
In general, caffeine improves the efficiency with which participants
can take advantage of cues that alert them to trial onset, and
further improves their ability to efficiently inhibit the influence
of action-incompatible stimuli. In the present high consumer par-
ticipant sample, these effects only occurred at the highest caffeine
dose (400 mg) and did not appear to be attributable to withdrawal
effects.

The effect on alerting supports several decades of research dem-
onstrating the positive effects of caffeine on tasks requiring
speeded responses and continuous vigilance (e.g., Fine et al.,
1994; Kenemans & Lorist, 1995; Lieberman et al., 2002; Wesensten
et al., 2005). Caffeine’s effects on such lower-level attention tasks
are likely due to its antagonistic role at adenosine A1 and A2A

receptors in areas with high concentrations of dopaminergic inner-
vation; the up-regulation of dopamine in frontal and thalamic
brain regions is thought to result in increased feelings of wakeful-
ness and pronounced motor activity, ultimately improving perfor-
mance on tasks requiring speeded responses (i.e., Garrett &
Griffiths, 1997; Popoli et al., 1998; Solinas et al., 2002). A high dose
of caffeine also improved the executive control of visual attention,
supporting recent work with non-habitual caffeine consumers
(Brunyé et al., 2010), and demonstrating caffeine’s positive effects
on tasks requiring reactive inhibition. These effects are likely
attributed to dopamine effects on brain areas responsible for suc-
cessful inhibitory control of attention, such as the anterior cingu-
late, striatum, and prefrontal cortex (Coull et al., 1996; Cropley
et al., 2006; Fan et al., 2005; Ferre, Fredholm, Morelli, Popoli, &
Fuxe, 1997; Fredholm et al., 1999; García-Cabezas, Rico, Sánchez-
González, & Cavada, 2007; Sawaguchi & Goldman-Rakic, 1991,
1994; Smits et al., 1987; Sánchez-González et al., 2005; Williams
& Goldman-Rakic, 1995).

Caffeine is the most popular and widely-consumed psychoac-
tive stimulant in the world, and carries diverse implications for
central nervous system function. Its prevalence underscores the
importance of understanding the breadth of its effects at a range
of doses in both high- and low-consumers. We add to a growing
body of evidence suggesting that caffeine can have varied and sub-
stantial effects on the deployment and control of visual attention.
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