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DEER-VEHICLE CRASH PATTERNS ACROSS ECOREGIONS IN MICHIGAN 
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East Lansing, MI, USA 
SHAWN J. RILEY, Department of Fisheries and Wildlife, Michigan State University, East 

Lansing, MI, USA 
BRENT A. RUDOLPH, Michigan Department of Natural Resources, Wildlife Division, Lansing, 

MI, USA 
BRIAN A. MAURER, Department of Fisheries and Wildlife, Michigan State University, East 
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Abstract: Deer-vehicle collisions (DVCs) impact the economic and social well being of humans. 
We examined large-scale patterns behind DVCs across 3 ecoregions: Southern Lower Peninsula 
(SLP), Northern Lower Peninsula (NLP), and Upper Peninsula (UP) in Michigan. A 3 
component conceptual model of DVCs with drivers, deer, and a landscape was the framework of 
analysis. The conceptual model was parameterized into a parsimonious mathematical model. The 
dependent variable was DVCs by county by ecoregion and the independent variables were 
percent forest cover, percent crop cover, mean annual vehicle miles traveled (VMT), and mean 
deer density index (DDI) by county. A discriminant function analysis of the 4 independent 
variables by counties by ecoregion indicated low misclassification, and provided support to the 
groupings by ecoregions. The global model and all sub-models were run for the 3 ecoregions and 
evaluated using information-theoretic approaches. Adjusted R2 values for the global model 
increased substantially from the SLP (0.21) to the NLP (0.54) to the UP (0.72). VMT and DDI 
were important variables across all 3 ecoregions. Percent crop cover played an important role in 
DVCs in the SLP and UP. The scale at which causal factors of DVCs operate appear to be finer 
in southern Michigan than in northern Michigan.  Reduction of DVCs will likely occur only 
through a reduction in deer density, a reduction in traffic volume, or in modification of site-
specific factors, such as driver behavior, sight distance, highway features, or speed limits. 
 
Key words: deer-vehicle collisions, ecoregions, Michigan, Odocoileus virginianus, white-tailed 
deer. 
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INTRODUCTION 

Deer-vehicle collisions (DVCs) 
involving white-tailed deer (Odocoileus 
virginianus) create numerous impacts to 
society throughout the species range. An 
estimated minimum of 29,000 human 
injuries and 200 human fatalities are caused 
by DVCs annually in the US (Conover et al. 
1995). DVCs result in property damage that 

costs society over $1 billion (Conover 
1997). Hansen (1983) postulated total social 
costs are likely much greater due to missed 
work, physical and mental trauma, and 
added costs of highway safety officers. 
Michigan currently leads the nation in 
number of reported DVCs, with more than 
65,000 annually and approximately $150 
million in vehicle damage (Richard Miller, 
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Public Safety Officer, AAA Michigan, pers. 
communication).  
 The goal of this study was to 
understand large-scale environmental 
patterns that provide insight into factors 
causing DVCs on the Michigan landscape. 
We started with a conceptual model of 
DVCs and built a parsimonious 
mathematical model. Our simple conceptual 
model of DVCs consists of 3 components: 
deer, drivers, and a landscape of deer habitat 
traversed by a network of roads, features 
perceived by wildlife and transportation 
managers as most affecting the distribution 
and abundance of DVCs (Sullivan and 
Messmer 2003). The interaction between 
these 3 components was expected to 
determine the distribution and frequency of 
DVCs. The full mathematical model and its 
sub-models were evaluated across 3 broad 
ecoregions in Michigan using the corrected 
Akaike’s Information Criteria (AICc) to 
better understand patterns of DVCs. A 
Michigan county DVC model does not exist, 
though Finder (1997), and Iverson and 
Iverson (1999) have developed such models 
to predict the number of DVCs within 
counties in Illinois and Ohio respectively. 
The models for Illinois and Ohio are not 
parsimonious nor did the authors resolve the 
covariance between independent variables.  
 
STUDY AREA 
 The 83 counties in Michigan were 
grouped into 3 broad ecoregions: the 
Southern Lower Peninsula (SLP) (38 
counties), Northern Lower Peninsula 
(NLP)(30 counties), and Upper Peninsula 
(UP)(15 counties) (Figure 1). These 
ecoregions generally matched the landscape 
sections of Michigan characterized by 
Albert (1995) according to similar soils, 
vegetation, climate, geology, and 
physiography, except the UP ecoregion 
combined 2 sections. Human densities and 
proportion of the landscape in agricultural 

food crops decrease along a gradient from 
south to north (Sudharsan et al. 2005). We 
examined DVCs by county grouped into 
ecoregions because it provided a simple way 
to understand DVCs in relation to changes 
in the landscape. Furthermore, management 
decisions made by transportation and natural 
resource agencies often are made along the 
ecoregion administrative boundaries. For 
example, Wildlife Division administrative 
units may be grouped into areas that closely 
match these ecoregions (Figure 1).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Counties (outlined by light black 
lines), Wildlife Division administrative units 
(outlined by heavy black lines), and 
ecoregions (outlined by heavy gray lines) of 
Michigan, USA. 
 
METHODS 

The conceptual model may be 
presented in the form Annual Number of 
DVCs = ∫ (deer, drivers, landscape). We 
used data on 4 independent variables 
available at the county level to parameterize 
this model: deer density index (DDI), annual 
vehicle miles traveled (VMT), percent forest 
cover, and percent crop cover. We believed 
these 4 variables parsimoniously captured 
the 3 components in our conceptual model 
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well. Michigan crash data (Office of 
Highway Safety Planning, Michigan, 
unpublished data) was used to determine 
annual number of DVCs by county for years 
1999-2003.  

Absolute estimates of deer density 
by county in Michigan currently do not 
exist. We calculated an index of deer density 
for each county as a surrogate by dividing 
total firearm effort (days hunted) in the 
given county by the number of bucks killed 
within that county. The unit of DDI 
therefore was number of days taken to kill 1 
buck. Our assumption was it took more days 
to kill a buck in counties with a lower deer 
density. Annual estimates of deer hunting 
participation and harvest in Michigan are 
generated using a mail survey of randomly 
selected deer license buyers following 
completion of the hunting season (Frawley 
2000, 2001, 2002, 2003, 2004). The mean 
DDI, by county, was calculated for years 
1999-2003.   

Vehicle miles traveled by county 
were obtained for the years 1999 to 2003 
(Office of Highway Safety Planning, 
Michigan, unpublished data) and the average 
over these 5 years was used in the analysis.  

Percent forest and percent crop for 
each county was obtained (Michigan 
Agricultural Statistics Department 2005) and 
used to characterize landscape components 
important to deer. Forests provide food and 
cover for deer (Blouch 1984). Agricultural 
crops (e.g. soybeans, corn) may play an 
important supplemental role in meeting 
nutritional needs of deer (Nixon et al. 1970). 
We expected percent forest cover and 
percent crop cover to co-vary with each 
other, but they maybe differentially 
important to deer across Michigan 
depending on their composition and 
juxtaposition on the landscape. We also 
recognized that deer habitat quality is 
comprised of a complex assortment of 
variables (Felix et al. 2004) and the crop-

forest measurements are only a coarse 
representation of deer habitat, but these data 
are readily available to most land use 
planners. All correlations between 
independent variables were calculated to 
examine inter-relatedness.  
 Prior to running the global model 
and the sub-models for the 3 ecoregions a 
discriminant function analysis was 
performed on the 4 independent variables 
based on ecoregion groupings. The purpose 
of the discriminant function analysis was to 
ascertain whether the ecoregions provide a 
suitable basis on which to group counties. If 
a large number of counties were 
misclassified then it would not make sense 
to run the models by ecoregions.  
 The next step in the analysis was to 
run the global model and all possible sub-
models for the 3 ecoregions (15 total 
models). Our global model was Annual 
Number of DVCs = ∫ (%Forest +  %Crop + 
DDI + VMT), where %forest = percent of 
landscape covered by forests, and so on… 
We assumed that DVCs would be linearly 
related to the independent variables within 
the ecoregions. Within each ecoregion the 
models were evaluated using corrected 
Akaike Information Criterion scores (AICc) 
and weights (wi;) (Burnham and Anderson 
2002). Only competing models within 3 
AICc points of the best approximating model 
were considered.  

Finally DVCs by county by 
ecoregion were plotted against each of the 4 
independent variables. The signs of the 
slope coefficients within ecoregions were 
compared. The relationship between DVCs 
and each of the independent variables was 
visually examined to cross check our a 
priori hypothesis of a linear relationship.   
 
RESULTS 

Discriminant function analysis 
differentiated Michigan counties into the 3 
ecoregions (Figure 2). Along canonical 
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variate 1 the separation among ecoregions 
was by percent forest cover, DDI, and 
percent crop cover (Table 1). Along 
canonical variate 1 SLP counties have 
negative values while the NLP and UP 
counties have positive values. Typically UP 
counties have higher values along variate 1 
than NLP counties. The canonical variate 2 
separated ecoregions by DDI, percent crop 
cover, and percent forest cover. Canonical 
variate 1 and variate 2 explained 98% and 
1.6% of the variation between ecoregions 

respectively. A total of 7 counties were 
misclassified into the wrong ecoregion. Six 
of 7 misclassified counties occurred on the 
boundary between ecoregions (Figure 1). 
Midland and Muskegon are counties in the 
SLP that are along the boundary with the 
NLP. Chippewa, Luce, Mackinac, and 
Schoolcraft are counties in the UP adjacent 
to the NLP. Marquette in the UP was the 
only misclassified non-boundary county.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Discriminant function analysis of Michigan counties by ecoregions showing scores along 
linear discriminant axis 1 and linear discriminant axis 22. 
 
Table 1. Discriminant analysis of the 4 independent variables showing standardized canonical 
coefficients and eigen values for the first two canonical variates. 

 
Discriminant variable 

 

 
Canonical variate 1 

 
Canonical variate 2 

Percent Forest Cover     0.09   0.08 
Percent Crop Cover   –0.02   0.09 
Deer Density Index   –0.06 –0.10 

Vehicle Miles Traveled     0.00   0.00 
Eigen Values 327.29   5.34 
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The equations for the global model 

for the 3 ecoregions were 
SLP DVCs = 3345.62 – 11.90 %Forest – 
20.19 %Crop – 0.61 VMT – 31.97 DDI; 
NLP DVCs = 976.15 + 0.81 %Forest + 3.50 
%Crop + 7.52 VMT – 23.75 DDI; UP DVCs 
= 599.32 – 1.60 %Forest + 84.42 %Crop + 
11.02 VMT – 15.78 DDI.  Four patterns are 
visible in the equations for the global 
models. First, the intercept value for the 
global models decrease in magnitude from 
the SLP to the UP (3345.62, 976.15, 
599.32). Second, the sign and magnitude of 
the slope coefficient for % crop changed 
from negative and relatively high in the SLP 
(–20.19) to positive and small in the NLP 
(3.50) to positive and high in the UP 
(84.42). A 1% increase in percent crop cover 
by county leads to DVCs increasing by 84 in 
the UP. Thirdly, a similar change in sign but 
gradual increase in magnitude of the slope 
coefficient is seen from the SLP to UP for 
VMT (–0.61, 7.52, 11.02). Lastly, the 
magnitude of DDI decreases from the SLP 
to the UP (–31.97, –23.75, –15.78). In the 
UP percent crop cover was low and 
unequally distributed (mean crop area by 
county = 2.52 % and sd = 2.54 %) compared 
to percent forest cover (mean forest area by 
county = 81.22 % and sd = 5.86 %).  In the 
NLP percent crop cover (mean forest area 
by county = 10.92 % and sd = 7.37 %) and 
percent forest cover (mean forest area by 
county = 65.19 % and sd = 11.36 %) were 
variable but the greatest landscape 
variability was in the SLP (mean crop area 
by county = 42.76 % and sd = 17.06 %; 
mean forest area by county = 21.72 % and 
sd = 8.94 %). 

  Slope coefficients for all 4 
independent variables from the SLP were 

negative. For the NLP, percent forest cover, 
percent crop cover, and VMT had positive 
slope coefficients, while DDI had a negative 
slope coefficient. Yet, the slope value for 
percent forest cover was close to 0 (0.81). 
For the UP, percent crop cover and VMT 
had positive slope coefficients while DDI 
and percent forest cover had negative slope 
coefficients. It should be noted that the 
adjusted R2 value for the global models 
increase from the SLP to the NLP to the UP 
(0.21, 0.51, and 0.73). 

In the SLP there were 3 models 
within 3 AICc points of the best 
approximating model (Table 2). The SLP is 
the only ecoregion where the global model 
is present among the best models. The best 
approximating model in the SLP had percent 
crop cover and DDI as variables. In the SLP 
the Akaike weight for the best model was 
close to the weight for the next 2 models. 
The evidence ratios for the 2nd and 3rd best 
models were 1.24 (0.31/0.25) and 2.58 
(0.31/0.12). The variables percent crop 
cover and DDI were present in all 3 top 
models for the SLP. In the SLP we excluded 
the 4th model as being competitive because 
its log likelihood was very close to the best 
model and it had 1 extra parameter. 

The variables in the best 
approximating model for the NLP were 
VMT and DDI. There were 2 models within 
3 AICc points of the best approximating 
model in the NLP. However, models 2 and 3 
were not supported; the log likelihood of 
models 2 and 3 were identical to that of the 
best approximating model and they had 1 
extra parameter. Neither percent forest cover 
nor percent crop cover were factors affecting 
DVCs in the NLP. 
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Table 2. Models within 3 AICc points of the best approximating model of factors influencing deer-
vehicle collisions by ecoregions, Michigan, USA.   

Region Model Log 
Likelihood AICc

a ∆ AICc Wi
b K Adjusted 

R2 

%Crop + DDI -279.35 567.42 0.00 0.31 4 0.19 

%Crop + VMT + DDI -278.32 567.85 0.44 0.25 5 0.21 
%Forest + %Crop + VMT + 
DDI -277.75 569.39 1.97 0.12 6 0.21 

 
 

SLP 

%Forest + %Crop + DDI -279.30 569.80 2.39 0.09 5 0.17 

VMT + DDI -193.83 396.58 0.00 0.56 4 0.54 

%Crop + VMT + DDI -193.70 399.01 2.43 0.17 5 0.52 

 
NLP 

%Forest + VMT + DDI -193.80 399.20 2.62 0.15 5 0.52 

%Crop + VMT -98.87 207.92 0.00 0.40 4 0.72 

%Crop + VMT + DDI -97.36 208.73 0.81 0.27 5 0.75 

%Crop -101.36 209.73 1.81 0.16 3 0.64 

 
 

UP 

%Forest + %Crop + VMT -98.23 210.85 2.93 0.09 5 0.72 
a AIC corrected for small sample size 
b Akaike weight 

 
Three models were within 3 AICc 

points of the best approximating model for 
the UP. The evidence ratios for the 2nd and 
3rd best models were 1.48 (0.40/0.27) and 
2.50 (0.40/0.16). The UP was the only 
region where a 3-parameter model (% crop, 
intercept, residual variance) figured in the 
top models. The variable percent crop cover 
appeared in all 3 top models for the UP. 
Again, model 4 had little support since its 
log likelihood was very close to that of the 
best approximating model and it had 1 extra 
parameter. 

The adjusted R2 value for the best 
model in the 3 ecoregions increased in value 
from the SLP (0.19), to the NLP (0.54), and 
was highest in the UP (0.72). Percent of the 
landscape in forest and crop cover were 

most highly correlated across all ecoregions 
except in the SLP where percent crop cover 
and VMT had the highest correlation (Table 
3). Counties with high percent forest cover 
had low percent crop cover (especially in the 
NLP). In the NLP percent forest cover and 
percent crop cover were more highly 
correlated to DDI than in the SLP and UP. 
Correlations between the independent 
variables were generally weak across all 3 
ecoregions. Percent crop cover and VMT 
were negatively correlated to each other in 
the SLP but positively correlated in the NLP 
and UP. Percent forest cover and DDI were 
negatively correlated with each other in the 
UP but positively correlated in the SLP and 
NLP.   
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Table 3. Coefficient of determination (R2) and correlation coefficient (R) values between the 
independent variables across 3 ecoregions, Michigan, USA. 

 
DISCUSSION 
   The discriminant function analysis 
indicated the ecoregions identified a priori 
provide a logical basis for grouping 
counties. Scale of analyses should be 
matched with the scale of decisions. Most 
decisions in wildlife or transportation 
planning do not occur at scales much 
smaller than counties.  Trying to understand 
and manage all possible factors affecting the 
distribution and abundance of DVCs is 
overwhelming and probably not necessary. 
Managers may benefit from a simple 
classification system, such as the one used in 
the current analysis, which provides a 
framework to make decisions on larger 
scales.   

At the county level, Finder (1997) 
found traffic volume and deer density to be 
important predictors of DVCs in Illinois. 
The presence of VMT and DDI in the set of 
best models across all 3 ecoregions indicates 
that regardless of the distribution of percent 
forest cover and percent crop cover 2 
variables that consistently affect DVCs most 
are traffic volume (VMT) and deer density 
(DDI).  

The first 3 models in the UP are all 
potentially useful. Percent crop cover is 

present in all 3 models and appears to be a 
primary landscape factor affecting DVCs in 
that ecoregion. Fall and winter foods may be 
especially important to deer in the UP 
because a continuous diet of woody browse 
can result in malnutrition (Mautz 1978). A 
significant portion of a deer’s fall and winter 
food can be agricultural crops (Nixon et al. 
1970). In a landscape, where percent crop 
cover is very low and unequally distributed 
compared to percent forest cover, we might 
expect areas with available agricultural 
crops to be especially attractive to deer. A 
higher percent crop cover in the UP appears 
to lead to greater deer density in a given 
area. At a county-level scale the 
combination of relatively higher percent 
crop cover combined with high traffic 
volume appears to lead to greater numbers 
of DVCs in the UP. 

There also were 3 likely models of 
DVCs in the SLP. The presence of the 
global model among the best models 
suggests all 4 independent variables may be 
important as factors contributing to DVCs. 
In highly variable landscapes local factors 
such as visibility of deer to drivers, speed 
limit, or presence of riparian corridors, may 
have a greater effect on distribution and 

Variables 
 

SLP NLP UP 

% Forest and DDI 
 

0.00 (0.01) 0.37 (0.61) 0.11 (–0.33) 

% Crop and DDI 
 

0.12 (–0.34) .39 (–0.63) 0.11 (–0.33)  

% Forest and % Crop 
 

0.20 (–0.45)  0.71 (–0.84) 0.20 (–0.45) 

% Forest and VMT 
 

0.04 (–0.20) 0.20 (–0.45) 0.03 (–0.17) 

% Crop and VMT 
 

0.42 (–0.65) 0.07 (0.27) 0.12 (0.34) 

VMT and DDI 
 

0.06 (0.25) 0.00 (0.01) 0.07 (0.26) 
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frequency of DVCs. The county-level scale 
may be too coarse to evaluate all factors 
affecting DVCs in the SLP.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 3. Deer vehicle collisions (1999–2003) 
by ecoregions as a function of (A) Deer 
Density Indicator, (B) Vehicle Miles Traveled, 
(C) Percent Forest Cover and, (D) Percent 
Crop Cover. 

 

  A non-linear relationship between 
percent forest cover and deer density exists 
throughout Michigan. Mean forest cover 
increases from the SLP to the NLP to the UP 
whereas the correlation between percent 
forest cover and DDI changes from the SLP 
(positive, weak, R = 0.01) to the NLP 
(positive, strong, R = 0.61) to the UP 
(negative, intermediate, R = – 0.33). As 
percent forest cover increases in the SLP 
and NLP deer density decreases.  In the UP, 
however, there is an increase in deer density 
(i.e., higher DDI equates to lower deer 
density) as percent forest increases.  
 The inverse relationship between 
percent crop cover and VMT in the SLP 
may be because an increase in VMT is an 
indication of increasing urbanization and 
associated increases in traffic volume in a 
given landscape. As percent urban land 
cover increases we would expect a decrease 
in percent crop cover. Percent crop cover 
and VMT are positively correlated in the 
NLP and UP. Agricultural areas in the NLP 
and UP may have a more level terrain better 
and soil types suited for roads, hence the 
positive correlations.     

The inverse relationship between 
DVCs and both VMT and percent forest 
cover in the SLP was mostly due to the 
presence of outliers. The 3 outlier counties 
represented in the graph of VMT and DVCs 
were Macomb, Oakland, and Wayne. The 2 
outliers for the SLP in the graph of percent 
forest cover and DVCs were Midland and 
Muskegon. These outliers had the effect of 
turning a positive relationship between 
DVCs and the respective independent 
variables into a negative relationship for the 
SLP. 
 For simplicity we assumed a linear 
relationship between the independent 
variables and DVCs within the ecoregions. 
This assumption may be sufficient at the 
ecoregion level, but is inadequate at the state 
level. The variables VMT, percent forest 
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cover, and percent crop cover seems to be 
non-linearly associated with DVCs at the 
statewide level. The abundance of DVCs 
increases with increases in these variables 
up to a certain threshold after which it 
begins to decrease. This issue of non-
linearity raises 2 important aspects for 
modelers to consider. First, a priori 
consideration about the nature of 
relationships between independent variables 
and the dependent variable is needed. 
Second, in heterogeneous landscapes the 
size of the geographical units modeled 
should be explicitly considered since it may 
determine the nature of these relationships. 
Non-linear relationships with thresholds 
provide important information to 
transportation and wildlife planners. Notably 
efforts should be concentrated on areas 
where the return on mitigation is going to be 
maximized.  
 Our analyses point to several 
management implications.  Different 
strategies to reduce DVCs are needed 
depending on landscape characteristics 
within the region of interest.  Two variables 
considered, percent forest cover and percent 
crop cover, typically are outside the realm of 
control for most wildlife or transportation 
agencies.  Reduction of DVCs will then 
occur only through a reduction in deer 
density, a reduction in traffic volume, or in 
modification of factors such as driver 
behavior sight distance, highway features, or 
speed limits (Marcoux et al. 2005). Yet, 
ability of managers to control white-tailed 
deer populations through public hunting is 
becoming limited, especially in areas with 
small tracts of private lands (Brown et al. 
2000).  Additional research is needed to 
evaluate mechanisms for adjusting driver 
behavior, and to achieve a better 
understanding of how finer scale 
characteristics of the landscape affect the 
distribution and abundance of DVCs. 
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