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1. Introduction

Although it was pointed out about 10 years ago [1, 2] that an atomic
decay rate might decrease as the intensity of a high-frequency laser field
increases, there still does not exist any complete understanding of either
the physical origin of this interesting nonlinear phenomenon or its depen-
dence on the atomic and field parameters. Essentially, the problem consists
in that the phenomenon requires a major modification of the standard pic-
ture of photoeffect in a strong laser field. In Ref. [1] the origin of this
stabilization is related to a particular distortion of an atomic potential by
an intense monochromatic high-frequency field. This phenomenon is called
adiabatic or quasistationary stabilization (QS). For the case of Rydberg
levels, another (interference) mechanism of QS was suggested [2]. Both
theories predict an unlimited decrease of the decay rate (or of the width I"
of an atomic level, i.e., of the imaginary part of the complex quasienergy,
€ = Ree —iI'/2)) as the laser field amplitude increases. In recent years the
idea of “dynamic stabilization” (DS) [3] has become popular. It originates
from the pulse form of a laser field rather than from any intrinsic property of
the atom in a strong monochromatic field. Within this model the numerous
simulations point also to the possibility of a breakdown of stabilization for
the case of superintense short laser pulses [4]. However, a recent paper [5],
using the quasistationary quasienergy states (QQES) as an adiabatic basis
for the laser pulse has shown that DS has the same (quasistationary) origin
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as QS. Finally, a number of authors deny the existence of stabilization, in
particular, of QS for ionization from a short-range potential [6] (see also [7])
and of DS in pulsed fields [8]. Obviously, these controversies and ambigui-
ties are caused by the complexity of the numerical solution of the Cauchy
problem for the time-dependent Schrodinger equation in a strong field and
by the absence of analyses for exactly solvable analytical models. We an-
alyze below (see also [9]) the exactly solvable problem of an electron in
a three-dimensional, short-range potential and consider the two questions:
does a QS-like behavior of the decay rate exist for this model, and, if so, is
there an upper intensity limit of the QS regime?

2. Basic equations and numerical results

We consider the quasistationary decay of a bound state in a monochromatic
laser field with electric vector

F
V1+n?
and intensity I = ¢F? /87 based on the QQES approach [10] for the exactly
solvable model of a 3-dimensional, short-range (¢ -) potential having one
bound state with energy Ey. In this model, the complex quasienergy e is
the eigenvalue of a one-dimensional integral equation for the periodic (in
time) function (7 = wt), which determines the asymptotic behavior of
. (r,t) at origin (r — 0) [11]:

JEr —€— [ (Ep—e)7 Jw
(VEF — e = 1D)pe(T) = Ami /7_,3/2 x

x {(,06(7’ _ Ti)e4iAS“‘T—’,'/2{l—lcos(2‘r—T’)] _ 905(7')} . (1)

This equation involves the linear polarization degree of the laser field, I =
(1 —n%)/(1 +n?), as well as the characteristic dimensionless parameters of
the problem: fiw/|Ey| and the ratio of the ponderomotive energy of a free
electron, (eF)?/(4mw?), to either the photon energy, A = (eF)?/(4mhw?),
or to |Ey|, Er = (eF)?/(4mw?|Ey|) = A (hw/|Ey|). In scaled units, Ep =
F?/w? and A = F?/w3. (The Keldysh parameter, v = 1/2m|Eg|lw/eF, in
our units is: vy = w/v/2F.)

For the case of circular polarization of F(t) (i.e., n = £1), p.(7) ~ const,
in which case Eq. (1) reduces to the transcendental equation [12]:

_ O\ /w i sinZT/Z
5F—e—1_,/4m/ 372¢ e~ UEF—e)/ {64A“——r —1}. (2)

F(t) = {coswt,nsinwt, 0}, —1<n<+1,
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Since Ime < 0, the integrals in Eqs. (1) and (2) are formally diver-
gent at their upper limit and hence must be understood as an analytical
continuation of complex e from the upper half-plane. For this analytical
continuation we use the following relation,

Z e () = ﬂ; / S / dzei® f(z) 3)

where the double integral is convergent for any a = (€p — €)/w. Eq. (3) is
a key result for numerical calculations involving strong fields. Note that
a number of authors dealing with the general QQES formalisin for the ¢
- model potential [11] (see, e.g., [13]) remove the divergence of integrals
of the kind (3) by the (approximate) substitution ¢ ~ Ey = —1, which
is obviously incorrect for strong fields. In particular, it was what led to
the incorrect results in Fig. 5 of Ref. [6] and, as a result, to the incorrect
statement in Ref. [6] regarding the absence of the QS regime for short-range
potentials. Although a number of other authors have performed acurate
numerical calculations of I" for the d—potential (for predominantly circular
(e.g., [14]), but also linear [15] polarization), they do not analyze the results
in the context of stabilization.

In Fig. 1 we present our numerical results for T'(F') at a scaled frequency
w = 1.55, which corresponds to the Nd:YAG laser frequency for the case
of the H™-ion (with [Ey| = 0.752 eV). One sees that for not too high
(but nonperturbative) F up to F = F,,, ['(F) demonstrates the typical
QS-behavior (cf. Fig. 4 for the H-atom in [16]). The decrease of T'(F) in
the QS domain is more pronounced for the case of linear polarization. In
contrast with QS-calculations for the Coulomb potential, Fig. 1 shows a
sharp breakdown of QS (i.e., a sharp rise of I'(F)) beginning at a critical
field, F = F,., which does not depend on the polarization (see Eq. (4)
below). Fig. 2 gives the w—dependence of T'(F) for frequencies w > 1 for
the case of circular polarization. Both the size of the interval of QS (in
F') and the magnitude of the decay rate I' in the QS regime increase with
increasing w. Moreover, we find that at fixed F, for F' < F,., T(w) is
approximated by the power law, I'(w) ~ w® with « = 3.92. This result is
in reasonable agreement with the value o = 4 given by the high-frequency
theory of QS for a circularly-polarized field [1].

Concerning the breakdown of QS we note firstly that near the point
F = F,, there is a narrow interval of fields, F' < F,, in which the width I
exhibits an irregular behavior (see Fig. 2). An exact numerical calculation
of I in this interval is difficult. For a more thorough analysis of I' at F' ~
F,, we performed nonperturbative calculations of partial widths, F(")(F),
corresponding to the absorption of a fixed number, n, of photons. Since
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Figure 1. Dependence of I on F for linear (solid curve) and circular (dashed curve)
polarizations of a laser field with w = 1.55. The dotted vertical line denotes F,,.

0.3 ' ,

0.1

0 0.5 1 1.5 2
F

Figure 2. Dependence of I on F for a circularly polarized laser field having w > 1. The
curves (bottom to top) correspond to w = 1.4, 1.6, 1.8, and 2.0.
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the available space does not permit a detailed discussion, we note only
that in the vicinity of F,, the one-photon width, TV (which corresponds
to the photoelectron energy E, = Ree — £ + w and almost completely
determines the total width I" up to the midpoint of the QS interval), has a
deep minimum. Thus the major contribution to I in the breakdown domain
stems from (interfering) channels of the direct n-photon above-threshold
decay. Assuming that the breakdown of QS originates from the closeness of
the direct photoionization channel, the estimation of F,, may be obtained
from the relation Ree — £ + w = 0. Neglecting the Stark-shift (which is
small for w ~ 1) one obtains

F, ~wvw-1. (4)

This estimation is in excellent agreement with values of F,,. generated from
the numerical calculations. A slight lowering of the calculated F,, with
increasing w compared to that in Eq. (4) is caused by the Stark-shift.

3. Analytical results for circular polarization

These results on the breakdown of stabilization and on the magnitude of
the critical field F,, have important physical consequences, implying, in
particular, the non-existence of the so-called Death Valley [1] (i.e., of a
global deep minimum in the F-dependence of the lifetime of a quasista-
tionary level) for a weakly-bound system in a strong monochromatic field.
Hence to justify our numerical results and their physical interpretation, we
present below some analytical considerations. It is well-known that for the
case of circular polarization, e may be obtained as the (complex) eigenvalue
of the stationary QQES-Hamiltonian (see, e.g., [10]) in a coordinate frame
rotating with the frequency w,

Heot(r) = =V2+U(r) + Fz + wl,,

where L is the orbital angular momentum operator. We take into account
the operator wl, using perturbation theory (PT) in a basis of quasistation-
ary states of an electron in the d-potential, U(r) = 47dé(r)(9/dr)r, and in
a static field F. ( For PT for quasistationary states see, e.g., [17], and for a
convenient form for the Green’s function of our problem in terms of regu-
lar and irregular Airy functions, Ai(x) and Bi(z), as well as for techniques
for PT calculations to second order, see [18].) The result for € (taking into
account corrections of order w?) is:

Wt 1M E

€:E_360F2/3 I(&) ) £:—F2/3 (O)



300

where E is the exact (complex) energy of the quasistationsary state in a
static field F. E is determined as the root of the transcendental equation:

1+ nF'Y3J(—EF2/%) =, (6)

where J(z) = Ai'(z)Ci'(z) — zAi(z)Ci(z); Ci(z) = Bi(z) +iAi(x); I(z) =
Ai(z)Ci(z); I (z) = d*I(z)/dz?®. (For an analysis of the function E =
E(F), see [18].) Egs. (5) and (6) do not assume that F is small. Thus
the known properties of the Airy functions allow a simple analysis of the
applicability of PT in the operator wi, (i.e., for the conditions under which
the correction of order w? in Eq. (5) is small compared to E) for the limiting
cases of weak and strong F'.
In the weak-field limit, ' << 1, we obtain from Egs. (5) and (6):

1 . 3 . 7 ‘ i 4 W? 4
c=—1-—F2 {1+ F? 4+ —(1+13F)? | —~F |1+ —Z_|e 3r. (7
¢ T R 7SR I il S ] R

As may be seen from Eq. (7), a PT-account of wl, in weak fields is possible
only for small w (w? < F? << 1), so that the frequency correction to the
tunnelling pre-exponential factor is small. The Stark-shift, Re e+1, given by
Eq. (7) coincides exactly with the first two terms of the w-expansion for the
known dynamic polarizability and hyperpolarizability of a weakly-bound
particle [19]. The inapplicability of Eq. (7) for w > 1 is evident already
from the known fact that for weak fields and above-threshold frequencies
the level width has the form of a power series in F. In particular, in the
lowest PT order in F' (for an arbitrary polarization),

(" = (8F2/3w%)(w — 1)¥/2. (8)

Finally, we note that Ime in Eq. (7) coincides with the first two terms of
the expansion (in w?) of the known result for the level width I'*¢ for a
circularly-polarized field in the adiabatic (Keldysh) approach [12]:

F 4 w?
19 = —exp |- (1 - —— 1. !
2 P [ 3F (1 15F2>] )
In the limit F >> 1, Eqgs. (5) and (6) give the following result:

s

€ = Fz/:3{0.44133122e_i3 - [().863286906

iz

5 T w ~1/3
 —0.02548960¢'5 = | F
— 0.3763512F2/3 4 .. } (10)

showing that in ultrastrong fields a perturbative account of the term wl,
is possible for any frequencies satisfying the condition w? < F?. (It is



301
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Figure 3. Dependence of ' on F for a circularly polarized laser field having w = 0.74.
Solid curve: exact (numerical) result from Eq. (2); dashed curve: the weak-field approxi-
mation, Eq. (7); solid circles: the PT result in w, Eq. (5).

interesting that this condition is the reverse of that for the convergence of
the standard PT in F for the complex quasienergy [20]: A = F?/uw? <
1.) Although the asymptotic expansion of the energy E in a static field,
which was used in the derivation of (10), is valid only for ultrastrong fields
(F >> 10) [18], the result (10) is noteworthy since it shows analytically
the breakdown of QS in ultrastrong fields.

Concerning the applicability of the approximate result (5), we note that
for w < 1 it agrees well with the exact result (cf. Eq. (2)) both for moderate
and strong fields. Fig. 3 shows that the exact curve for I'(F) at w = (.74
and that calculated using Eq. (5) are almost indistinguishable for F* >
0.5. Moreover, the weak-field (tunnelling) approximation, Eq. (7), is not
applicable in this region of F, which corresponds to “overbarrier” ionization
for the case of an atomic potential. It is interesting that, beginning from
F = 1, the width I" exhibits actually a linear dependence on F' similar to
the so-called “intermediate” asymptotic for I'(F') for overbarrier decay in
a Coulomb potential [21]. In other words, for w < 1 the action of a strong
circularly-polarized field is equivalent to the action of a strong static field
F, and it is reasonably described by the analytic result (5).

For w > 1 PT in wl, is applicable only for ultrastrong fields. Thus
results for the domain of stabilization and for F' > F, may be obtained only
numerically. In Fig. 4 we compare the strong-field asymptote, from Eq. (10),
with the exact (numerical) result for w = 1.55. Although the range of F
counsidered is not enough to achieve close coincidence of the solid and dashed
curves, the agreement improves as F' increases. Fig. 4 demonstrates also
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Figure 4. Comparison of exact (solid line) and approximate (dotted line) results for
T [from Egs. (2) and (10)]Jfor strong, circularly polarized fields with w = 1.55. Vertical
dashed lines denote threshold values of F', at which Ree — €r +nw = 0.

threshold peculiarities for higher ATI-channels with n > 1, although these
peculiarities are smoothed out compared with n = 1 (see also [13, 14]). Our
detailed calculations show that, for linear polarization, high-order threshold
peculiarities are more pronounced than for circular polarization (see also
[15]). Moreover, the stabilization-like regime (up to the closure of the direct
photoionization channel) presented in Fig. 1 for [ = 1 exists also for w < 1,
although both the interval of QS (in F) and the variation of I in this
interval decrease rapidly with decreasing w.

4. Discussion and conclusions

Numerical and analytical analyses allow one to understand the major pe-
culiarities of the quasistationary decay of a weakly-bound level for various
relations among the key parameters, |Ep|, w, and F. Since (in contrast to
the case of a static field) F' = 0 is the point of analyticity for the function
e = ¢(F), for A << 1 the multiphoton (or perturbative) regime for decay
is realized for any F and w including the case of w << 1, i.e.,, I' ~ FZV
with N = [|Ey|/w]. For increasing F the situation depends qualitatively on
the frequency: for small w the relation A ~ 1 is achieved at relatively weak
values of F, and the PT-regime merges smoothly into the tunnelling regime
of Keldysh (see Eq. (9) for the case of circular polarization). This mecha-
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nism is realized for fields that are weak compared to interatomic ones (see
Eq. (7) and the dashed curve in Fig.1). It has been analyzed in detail for
arbitrary v [22]. For higher F' (and small w) the tunnelling regime merges
into the “overbarrier” regime (the solid curve in Fig. 3), which exists up to
the passing of the quasistationary level into continuum.

For w > 1 the decay mechanism is multiphotonic even for fields at which
the first nonvanishing PT-result (see Eq. (8) for the case of a short-range
potential) is already inapplicable. Hence it is necessary to take into account
high-order corrections, which correspond to the re-emission of absorbed
photons and to direct n-photon, above-threshold absorption. However, in
this domain the linear dependence of I on the intensity [see Eq. (8)] is
changed: the correction of order F? to F(()l) is negative [19]. Thus, the QS
regime (in which I' no longer increases or even decreases with F) arises
instead of the tunnelling regime. Its beginning corresponds to fields F <
w, at which higher-order PT-corrections become important. Obviously in
the domain of an ‘established’ stabilization, PT in F' is inapplicable. In
contrast to the low-frequency case, where Coulomb effects change only the
pre-exponent factor in the tunnelling regime or the slope of the linear in F'
dependence of T' for overbarrier decay, the QS regime is much more sensitive
to the details of the potential. For a short-range potential, the Stark-shift is
negative in the QS interval and the breakdown of QS is connected with the
closure of the direct photoionization channel (see Figs. 1 and 4) and later
with the passing of the quasibound state into the continuum for superstrong
F. For a Coulomb potential, the Stark-shift is positive for w > 1 and
moderate F'. Thus the closure of the photoionization channel is impossible
here, and only the passing of the bound level into the continuum may lead
to the breakdown of QS. But detailed analysis of this interesting question on
the breakdown of QS for the Coulomb potential has not yet been performed.

In conclusion, our analysis demonstrates the existence of a S regime
for a weakly-bound particle at above-threshold frequencies, but only for
a limited interval of laser intensities, whose upper limit, F,., is estimated
analytically. The d-model potential describes photoprocesses in negative
ions reasonably, especially for H™. Fig. 1 shows that (using the Nd:YAG
laser) the observation of QS for H™ is possible at F ~ 1 (I =~ 3x10'?
W /cm?). Since the lifetime of H™ in such a field is small, 7 ~ 1/T ~ 10 fs,
stabilization may be observable using femtosecond pulses.
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