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1. Introduction 

Although it was pointed out about 10 years ago [I, 21 that an atomic 
decay rate might decrease as the intensity of a high-frequency laser field 
increases, there still does not exist any complete understanding of either 
the physical origin of this interesting nonlinear phenomenon or its depen- 
dence on the atomic and field parameters. Essentially, the problem consists 
in that the phenomenon requires a rna,jor modification of the standard pic- 
ture of photoeffect in a strong laser field. In Ref. [I] the origin of this 
stabilization is related to a particular distortion of an atomic potential by 
an intense monochromatic high-frequency field. This phenomenon is called 
adiabatic or quasistationary stabilization (QS). For the case of Rydberg 
levels, another (interference) mechanism of QS was suggested [2]. Both 
theories predict an unlimited decrease of the decay rate (or of the width I' 
of an atomic level, i.e., of the imaginary part of the complex quasienergy, 
E = Re E - i r /2))  as the laser field amplitude increases. In recent years the 
idea of "dynamic stabilization" (DS) [3] has become popular. It originates 
from the pulse form of a laser field rather than from any intrinsic property of 
the atom in a strong monochromatic field. Within this model the numerous 
simulations point also to the possibility of a breakdown of stabilization for 
the case of superintense short laser pulses [4]. However, a recent paper [5], 
using the quasistationary quasienergy states (QQES) as an adiabatic basis 
for the laser pulse has shown that DS has the same (quasistationary) origin 



as QS. Finally, a number of authors deny the existence of stabilization, in 
particular, of QS for ionization froni a short-range potential [6] (see also [7]) 
and of DS in pulsed fields 181. Obviously, these controversies and ambigui- 
ties are caused by the complexity of the numerical solution of the Caucliy 
problem for the time-dependent Schrodinger equation in a strong field and 
by the absence of analyses for exactly solvable analytical models. We an- 
alyze below (see also [9]) the exactly solvable problern of an electron in 
a three-dimensional, short-range potential and consider the two questions: 
does a QS-like behavior of the decay rate exist for this model, and, if so, is 
there an upper intensity lirnit of the QS regime? 

2. Basic equat ions a n d  numerical results 

We consider the quasistationary decay of a bound state in a monochrorrlatic 
laser field with electric vector - 

l" 
{cos wt, 7 siriwt, 01, -1 5 7 5 +1, 

and intensity I = cF"87r based on the QQES approach [lo] for the exactly 
solvable rriodel of a 3-dimensional, short-range (6 -) potential having one 
bound state with energy Eo. In this model, the complex quasienergy E is 
the eigerivalue of a one-dimensional integral equation for the periodic (in 
tirne) f~inction y,(r  = wt), which determines the asymptotic behavior of 
@,(r, t)  at  origin ( r  + 0) [l l]:  

This equation i~ivolves the linear polarization degree of the laser field, r! = 
(1 - r12)/(1 + r12), as well as the cllaracteristic dimensionless parameters of 
the problem: fiw/lEol and the ratio of the ponderomotive energy of a free 
electron, ( e ~ ) ~ / ( 4 r n , w ~ ) ,  to either the photon energy, A = ( e ~ ) ~ / ( 4 r n , h u ' ~ ) ,  
or to IEol, EF = ( e ~ ) ~ / ( 4 r n , w ~ 1 ~ ~ I )  = A(fiw/lEol). In scaled units, EF = 
F"w%nd A = F2/w3. (The Keldysh parameter, y = d-w/eF, in 
our units is: y = w / ~ F . )  

For the case of circular polarizatio~l of F( t )  (i.e., 7 = f 1), ( p , ( ~ )  -- c:o.rr.st, 
in which case Eq. (1) reduces to the transcendental equation [12]: 



Since Ime < 0, the integrals in Eqs. (1) and (2) are formally diver- 
gent at their upper limit and hence rnust be understood as an analytical 
continuation of cornplex e frorn the upper half-plane. For this analytici~l 
continuation we use the following relation, 

where the double integral is convergent for any a = ( E F  - F)/w. Ecl. (3) is 
a key result for numerical calculations involving strong fields. Note that 
a nurnber of authors dealing with the general QQES formalism for the rY 

- model pot,ential [ll] (see, e.g., [Is]) remove the divergence of integritls 
of the kind (3) by the (approximate) siibstitution E z Eo = -1, whidl 
is obviously incorrect for strong fields. In particular, it was what led to 
the incorrect results in Fig. 5 of R.ef. [6] and, as a result, to the irlcorrect 
statenlent in R.ef. [6] regarding the absence of the QS regime for short-range 
potentials. Although a nu~nber of other authors have performed acurate 
numerical calclilations of F for the b-potential (for predominantly circular 
(e.g., [14]), but also linear [15] polarization), they do not analyze the results 
in the context of stabilization. 

In Fig. 1 we present our numerical results for F (F )  at  a scaled frequency 
w = 1.55, which corresponds to the Nd:YAG laser frequency for the case 
of the H--ion (with lEol = 0.752 eV). One sees that for not too high 
(but nonperturbative) F up to F = F,,, F (F)  demonstrates the typical 
QS-behavior (cf. Fig. 4 for the H-atom in [16]). The decrease of r(F) in 
the QS dornain is rnore pronounced for the case of linear polarization. In 
contrast with QS-calcnlat,ions for t,he Colilomb potential, Fig. 1 shows a 
sharp breakdown of QS (i.e., a sharp rise of r ( F ) )  beginning at a critical 
field, F = F,,, which does not depend on the polarization (see Eq. (4) 
below). Fig. 2 gives the w-clependence of F (F )  for frequencies w > 1 for 
the case of circular polarization. Bot,li the size of the interval of QS (in 
F) and the magnitude of the decay rate I? in the QS regime increase with 
increasing w. Moreover, we find that at fixed F, for F 5 F,:,., r (w)  is 
approximated by the power law, r (w)  w" with a z 3.92. This result is 
in reasonable agreement with the value a = 4 given by the high-frequency 
theory of QS for a circularly-polarized field [I]. 

Concerning the breakdown of QS we note firstly that near the point 
F = F,, there is a narrow interval of fields, F 5 F,,, in which the width r 
exhibits an irregular behavior (see Fig. 2). An exact numerical calculation 
of in this interval is difficult. For a Inore thorough analysis of r at F - 
F,,. we performed nonperturbative calculations of partial widths, r(n)(F), 
corresponding to the absorption of a fixed number, rs ,  of photons. Since 



Figure 1. Dependence of on F for linear (solid curve) and circular (dashed curve) 
polarizations of a laser field with w = 1.55. The dotted vertical line denotes F,,. 

Figure 2. Dependence of r on F for a circularly polarized laser field having w > 1. The 
curves (bottom to top) correspond to w = 1.4, 1.6, 1.8, and 2.0. 



the available space does not permit a detailed discussion, we note only 
that in the vicinity of F,, the one-photon width, I?(') (which correspontls 
to the photoelectron energy Ep = R e  e - EF + w and drnost cornpletely 
determines the total width r up to the rnidpoint of the QS interval), has a 
deep minimum. Thus the major contribution to I? in the breakdown donlain 
stems from (interfering) channels of the direct 7~-photon above-threshold 
decay. Assliming that the breakdown of QS originates from the closeness of 
the direct photoionization channel, the estimation of F,, may be obtainetf 
from the relation Re e - &F + w = 0. Neglecting the Stark-shift (w11icIi is 
srnall for w - 1) one obtains 

This estirnatiori is in excellent agreement with values of F,, generated from 
the numerical calculations. A slight lowering of the calculated F,, with 
increasing w cornpared to that in Eq. (4) is caused by the Stark-shift. 

3. Analytical resul ts  for circular polarization 

These results on the breakdown of stabilization and on the magnitude of 
the critical field F,, have importarit physical consequences, implying, in 
particular, the 11011-existence of the so-called Death Valley [l] (i.e., of i l  

global deep rrlinim~inl in the F-dependence of the lifetime of a, quasista- 
tionary level) for a weakly-bound systkrn in a strong monochromatic field. 
Hence to justify oiir numerical results and their physical interpretation, we 
present below sorne analytical considerations. It is well-known that for the 
case of circular polarization, e may be'obtained as the (complex) eigenvalue 
of the stationary QQES-Hamiltonian (see, e.g., [lo]) in a coordinate frame 
rotating with the frequency w, 

?-lrOt. ( r )  = -v: + U(r) + Fz f W L ,  , 

where L is the orbital angular ~norrienturn operator. We take into ac.c~~l~nt 
the operator W L ,  ~ising perturbation theory (PT) in a basis of quasistation- 
ary states of an electron in the S-potential, U(r) = 4~S(r)(i3/ar.)r, and in 
a, static field F. ( For P T  for quasistationary states see, e.g., [17], and for ;I 

convenient form for the Green's function of our problern in terms of regu- 
lar and irregular Airy fiinctions, Ai(s.) and Bi(x), as well as for techniques 
for P T  calculations to second order, see [18].) Tlle result for e (taking into 
account corrections of order w2) is: 



where E is the exact (complex) energy of the quasistationary state in a 
static field I?. E is determined as the root of the transceridental equation: 

where ,T(x) = Ai'(z)Cil(x) - xAi(x)Ci(:c); Ci(x) = Bi(z) + iAi(x); I(:x;) = 
Ai(x)Ci(x); 1(~)(2) = d41(z)/dx4. (For an analysis of the function E = 
E ( F ) ,  see [18].) Eqs. ( 5 )  arid (6) (lo riot assume tliat F is small. Thus 
the known properties of the Airy fiinctions allow a siriiple analysis of tlie 
applicability of P T  in tlie operator WL, (i.e., for the conditions under which 
tlie correction of order w2 in Eq. ( 5 )  is srriall compared to E) for the lir~iiting 
cases of wc.ak and strong F .  

I11 tlie weak-field limit, F << 1, we obtain from Eqs. (5) and (6): 

As may be seen frorn Eq. (7), a PT-account of WL, in weak fields is possible 
only for s~riall w (w" FF" << I),  so that the frequency correction to the 
tunnelling pre-exponential factor is small. The Stark-shift, R.e e+ 1, given by 
Eq. (7) coincides exactly with tlie first two terms of the w-expansio~i for the 
known dynamic polarizability arid hyperpolarizability of a weakly-bound 
particle [19]. The inapplicability of Eq. (7) for w > 1 is evident already 
from the lcnowri fact that for weak fields arid above-threshold frequencies 
the level width has the forrn of a power series in F .  In particular, in tlie 
lowest P T  order in F (for an arbitrary polarization), 

Finally, we note that Irne in Eq. (7) coiricides with the first two terms of 
tlie exparisiori (in w" of the known result for the level widtli Fad for a 
circularly-polarized field in the adiabatic (Keldysh) approach [12]: 

111 tlie limit F > > 1, Eqs. (5) arid (6) give the following result: 

showing tliat in ultrastrong fields a perturbative accolint of the term WL, 

is possible for any frequencies satisfying the conditiori w2 < F3.  (It is 



F~SILTC: 3. Dependence of r on F for a circularly polarized laser field having w = 0.74. 
Solid curve: exact (numerical) result from Eq. (2); dashed curve: the weak-field approxi- 
mation, Eq. (7); solid circles: the PT result in w ,  Ey. ( 5 ) .  

interesting that tliis condition is the reverse of tliat for the convergence of 
the standard P T  in F for the corrlplex quasienergy [20]: A = F ~ W "  < 
1.) Althoiigh the asynlptotic expansion of the energy E in a static field, 
which was used in the derivation of ( lo) ,  is valid only for ultrastrong fields 
(F >> 10) [18], the result (10) is noteworthy since it shows analytically 
the breakdown of QS in ultrastrorig fields. 

Concerning the applicability of the approximate result (5), we note that 
for w < 1 it agrees well with the exact result (cf. Eq. (2)) both for 1noder;tte 
and strong fields. Fig. 3 sllows that the exact curve for r ( F )  at w = 0.74 
and that calclilated using Eq. (5) are alniost indistinguishable for F 2 
0.5. Moreover, the weak-field (tunnelling) approximation, Ey. (7), is not 
applicable in this region of F, wllich corresponds to "overbarrier" ionization 
for tlie c:ase of an atornic potential. It is interesting that, beginning from 
F z 1, the width exhibits actually a linear dependence on F sirnilar to 
the so-c;~lle(I "intermediate" asymptotic for r(F) for overbarrier decay in 
it Coulornb potential [21]. In other words, for w < 1 tlie action of a strong 
circularly-polarized field is equivalent to the action of a strong static: field 
F, and it is reasonably described by the analytic result (5). 

For w > 1 P T  in WL, is app1ic:able only for ~lltrastrong fields. Thus 
results for the domain of stabilization and for F > F,, may be obta.ined only 
numerically. In Fig. 4 we compare tlie strong-field asy~nptote, from Eq. ( lo ) ,  
with the exact (nu~nerical) result for w = 1.55. Although the range of F 
considered is riot enough to achieve close coincidence of the solid and dashed - 

curves, the agreement inlproves as F increases. Fig. 4 demonstrates also 



F i p ~ r f :  4 .  Co111parison of exact (solid line) and approximate (dotted line) results for 
r [from Eqs. (2) and (10)lfor strong, circlilarly polarized fields with w = 1.55. Vertical 
dashed lines denote threshold values of F, at  which Re e - EF + 11 w = 0. 

thresholtl peculiarities for higher ATI-channels with rr, > 1, although these 
peculiarities are sniootlled out cor~ipared with n = 1 (see also [13, 141). Oiir 
detailed calculatioris show that, for linear polarization, high-order threshold 
pec~iliarities are rriore pronounced than for circular polarization (see also 
[15]). Moreover, tlie stabilization-like regime (up to the closure of the direct 
photoionization channel) presented in Fig. 1 for 1 = 1 exists also for w < 1, 
although both the interval of QS (in F) arid the variation of I' in this 
interval decrease rapidly with decreasing w. 

4. Discussion and conclusions 

Nii~nerical arid analytical analyses allow one to understand tlie rnajor pe- 
culiarities of tlie quasistationary decay of a weakly-bound l ev~ l  for varioiis 
relations arnong the key parameters, IEol, w ,  and F .  Since (in contrast to 
the case of a static field) F = 0 is the point of analyticity for the function 
E = E(F) ,  for A << 1 the niultiphoto~i (or perturbative) regime for decay 
is realized for any F and w including the case of w << 1, i.e., I? -- F~~ 
with N = [IEol/w]. For increasing F tlie situation depends qualitatively on 
the frequency: for srnall w the relati011 A - 1 is achieved at relatively weak 
values of F, and the PT-regime merges snioothly into the tunnelling regirne 
of Keldysh (see Eq. (9) for the case of circular polarization). This mec:ha- 



rlisnl is realized for fields that are weak compared to interatomic ones (see 
Eq. (7) and tlle dashed curve in Fig.1). It has been analyzed in detail for 
arbitrary y [22]. For higher F (and s111all w) the tiinnelling regime rnerges 
into the "overbarrier" regi~ne (the solid curve in Fig. 3), which exists up to 
the passing of the quasistationary level into continuurn. 

For w > 1 tlle tiecay 111ec11anism is rn~iltiphotonic even for fields at  which 
the first nonvanishing PT-result (see Eq. (8) for tlle case of a short-range 
potential) is already i~lapplicable. Hence it is necessary to take into accoiint 
high-order corrections, whicli correspond to the re-emission of absorbed 
photons and t,o direct n,-photon, above-threshold absorption. However, in 
tliis dornain the linear dependence of I? on tlie intensity [see Eq. (8)] is 

changed: the correction of order F' to I?!) is negative (19). Thus, the QS 
regime (in which I? no longer increases or even decreases witli F )  arises 
instead of the tu~lnelling regime. Its beginning corresponds to fields P < 
w ,  at which higher-order PT-correc:tions becorrle i111portant. Ol~vioi~sly in 
the dorrlairl of an 'established' stabilization, PT i11 F is inapplicable. In 
corltrast to the low-frequency case, where Coulomb effects change only the 
pre-expone~it factor in the t~innelling regime or the slope of the linear in F 
clependence of I? for overbarrier decity, the QS regime is rnucli Inore sensitive 
to the details of the potential. For a short-range potential, tlle Stark-shift is 
negative in the QS i~lt,erval and the breakdown of QS is connected witli the 
closure of the direct photoionization i:hannel (see Figs. 1 and 4) and later 
with the passing of the quasibound state into the continuum for superstrong 
F. For a Coulomb potential, the Stark-shift is positive for w > 1 a11d 
nloderate F. Thus the closure of the photoionization channel is impossible 
here, and only the passing of the bolind level into the co~ltinuurrl may lead 
to the breakdown of QS. But detailed analysis of this interesting question on 
the breakdown of QS for the Coulornb potential has riot yet bee11 performed. 

I11 conclusion, oiir arlalysis demonstrates the existe~lce of a QS regi111e 
for a weakly-bound particle at above-threshold frequencies, but only for 
a limited interval of laser intensities, whose upper limit, F,, , is estimated 
analytically. The 6-model poteritial describes photoprocesses in negative 
ions reasonably, especially for H-. Fig. 1 shows that (using the Nd:YAG 
laser) the observation of QS for H- is possible at F 1 (I z 3x10~ '  
W/crn". Since tlie lifetinle of H- in such a field is small, r - l/l? - 10 fs, 
stabilization may be observable using femtoseco~ld pulses. 
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