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Abstract 

As the Memory Wall remains a bottleneck for Chip 

Multiprocessors (CMP), the effective management of CMP last 

level caches becomes of paramount importance in minimizing 

expensive off-chip memory accesses. For the CMPs with private 

last level caches, Cooperative Caching (CC) has been proposed to 

enable capacity sharing among private caches by spilling an 

evicted block from one cache to another. But this eviction-driven 

CC does not necessarily promote cache performance since it 

implicitly favors the applications full of block evictions regardless 

of their real capacity demand. The recent Dynamic Spill-Receive 

(DSR) paradigm improves cooperative caching by prioritizing 

applications with higher benefit from extra capacity in spilling 

blocks. However, the DSR paradigm only exploits the 

coarse-grained application-level difference in capacity demand, 

making it less effective as the non-uniformity exists at a much 

finer level. 

This paper (i) highlights the observation of cache set-level 

non-uniformity of capacity demand, and (ii) presents a novel L2 

cache design, named SNUG (Set-level Non-Uniformity identifier 

and Grouper), to exploit the fine-grained non-uniformity to further 

enhance the effectiveness of cooperative caching. By utilizing a 

per-set shadow tag array and saturating counter, SNUG can 

identify whether a set should either spill or receive blocks; by 

using an index-bit flipping scheme, SNUG can group peer sets for 

spilling and receiving in an flexible way, capturing more 

opportunities for cooperative caching. We evaluate our design 

through extensive execution-driven simulations on Quald-core 

CMP systems. Our results show that for 6 classes of workload 

combinations our SNUG cache can improve the CMP throughput 

by up to 22.3%, with an average of 13.9%, over the baseline 

configuration, while the state-of-the-art DSR scheme can only 

achieve an improvement by up to 14.5% and 8.4% on average. 

1. Introduction 
As Chip MultiProcessors (CMP) are becoming 

predominant in processor chip manufacture, computer 
architects are challenged to architect CMPs for their full 
performance potentials. One of the key research issues is to 
reduce the high cost of CMPs’ off-chip memory accesses 
that are generally determined by three factors: access 
latency, bandwidth and the number of off-chip accesses. 
While there are techniques such as 3D memory stacking [1], 
prefetching [2] and optical I/Os [3] that can help reduce (or 
hide) the long latency and increase the bandwidth of 
DRAM accesses, on-chip Last Level Caches (LLC) play an 
irreplaceable role in reducing the number of DRAM 
accesses by keeping as much data as possible on-chip for 
future references, which necessitates a very effective 
management of CMP LLCs.  

In CMPs, two typical cache organizations are available 
for architecting the on-chip LLCs. The entire LLC can be 
either shared among all cores by address interleaving, called 
shared LLC, or statically partitioned with each cache slice 
privately used by a core, called private LLC. In this paper, 
for simplicity and without loss of generality, the CMP LLCs 
are assumed to be L2 caches, and L2S is short for the 
shared L2 organization while L2P is short for the private L2 
organization. The L2S organization provides a natural way 
of capacity sharing since the entire L2 capacity is accessible 
to all cores. But the interleaved addressing can result in too 
many remote L2 accesses that are penalized by the 
Non-Uniform Cache Access (NUCA) time [4]. The L2P 
organization, on the other hand, provides good data 
proximity to the requesting cores, since each core only 
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places its own cache blocks in the local private L2 cache, 
but with the drawback of limited L2 capacity to each core. 
Recent studies [5, 6] have advocated the L2P cache 
organization since it has a lower L2 access latency, lower 
requirement for on-chip interconnects, better performance 
isolation and easier support for resource management. 
Moreover, L2P has been evaluated to outperform L2S when 
the CMP core count scales [6]. 

However, due to the limited cache capacity accessible 
to each core, the miss rate of L2P can be higher than L2S 
when a core’s cache resource requirement exceeds its local 
private L2 capacity. The rigid constraint that a core can only 
access its private cache prevents cores from sharing their L2 
capacity. To break this barrier, Chang and Sohi [7] proposed 
the mechanism of Cooperative Caching (CC) to allow 
cross-chip data transfers between different “private” L2 
caches and enable capacity sharing by entitling each cache 
to utilize the capacity of others as victim caches.  But in 
their proposal, cooperative caching is performed regardless 
of the performance implication: whenever a block is evicted 
from its own private cache, cooperative caching attempts to 
retain the block in one of the peer L2 caches, whether or not 
spilling the block to a peer cache will help the overall 
performance. For instance, a streaming application can 
actually always prevail in cooperative caching since it 
continuously replaces cache blocks; but having its victim 
blocks cooperatively cached will not benefit its 
performance at all. Instead, retaining its victim blocks can 
adversely hurt other L2 caches’ performance, since 
cooperative caching comes at the cost of occupying other 
caches’ capacity. 

To overcome the shortcoming of cooperative caching, 
Qureshi [8] has recently proposed the Dynamic 
Spill-Receive (DSR) paradigm to regulate block spilling and 
receiving in response to different applications’ cache 
resource demand. In the DSR paradigm, applications are 
classified into two categories: taker applications and giver 
applications. Taker applications can have their performance 
improved with additional cache capacity, while giver 
applications can contribute part of their cache capacity to 
others with little performance degradation. When taker and 

giver applications are co-scheduled on a CMP, taker 
applications’ L2 caches can spill victim blocks to those of 
giver applications, but not vice versa. While this 
application-level approach is shown to improve the overall 
performance when the non-uniformity of cache resource 
demand explicitly exists at the application-level, it becomes 
less effective for applications of which such non-uniformity 
exists at a finer granularity as demonstrated in this paper.  

The objective of this paper is to establish that the 
non-uniformity exists at the cache set-level in capacity 
demand and then exploit this non-uniformity to further 
enhance the effectiveness of cooperative caching. The key 
insight of this work is that differentiating the cache resource 
demand only at the application level is insufficient for 
enhancing cooperative caching when performance-sensitive 
non-uniformity of capacity demand does not surface to the 
application level but instead exists at the cache set level. 
This paper then presents a novel L2 cache design, called 
Set-level Non-Uniformity identifier and Grouper (or 
SNUG), which identifies and flexibly groups cache sets 
with complementary capacity demand for cooperative 
caching. Evaluation results show that the SNUG cache 
design can significantly boost the effectiveness of 
cooperative caching.  

The main contributions of this work are: 
 The key observation on the cache set-level 

non-uniformity of capacity demand. 
 A novel L2 cache design (SNUG) that exploits 

the set-level non-uniformity to significantly 
enhance the performance of cooperative caching. 

 The key conclusion and performance results 
through extensive execution-driven simulations. 

The rest of the paper is organized as follows. Section 2 
introduces the research motivation based on the evidence of 
cache set-level non-uniformity of capacity demand. Section 
3 elaborates the design issues of our proposed SNUG L2 
caches. Section 4 shows the experiment setup used for 
evaluation and Section 5 provides an analysis of the 
obtained results. Related work is discussed in Section 6 and 
the paper concludes with a summary in Section 7. 
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2. Motivation 
Previous studies [8, 9] have revealed that applications 

have diverse requirement for cache resource. They tried to 
utilize the application-level difference in resource demand 
to optimize the usage of CMP L2 caches for 
multi-programmed workloads. Distinct from previous work, 
however, we take further steps to evidence the existence of 
non-uniformity of capacity demand at the cache set level. 
To accomplish this goal, we need to first develop a group of 
mathematical models that accurately quantify a cache set’s 
requirement for capacity. With the models, we can 
characterize the cache set-level non-uniformity of capacity 
demand. Finally, we argue that this fine-grained 
non-uniformity can be utilized to further optimize the 
utilization of CMP L2 caches for multi-programmed 
workloads, achieving better performance than the 

state-of-the-art application-level approaches. 
2.1 Quantification of Set-Level Capacity Demand 

We start with defining the notation and terms used in 
this discussion in Table 1. 
2.1.1  Quantifying Set-level Capacity Demand 

Since a cache set can be treated as an array of blocks, 
under a fixed block size, we can use the number of blocks 
in a set to measure the amount of cache resource possessed 
by the set. Intuitively, if a set has enough blocks during a 
specific time interval, there will be no capacity or conflict 
misses on the set, because these two kinds of misses happen 
only when the set resource is limited. Therefore, if we 
denote the capacity demand of a particular set during a 
certain time interval as ܾ݈݀݁ݎ݅ݑݍ݁ݎ_݇ܿ݋ሺܵ,  ሻ, where ܵ isܫ
the index of the set and ܫ is the interested time interval, we 
can define it as the minimum number of blocks required to 
resolve all capacity and conflict misses for the set. 

We introduce another function, ݉݅ݐ݊ݑ݋ܿ_ݏݏሺܵ, ,ܫ  ሻܣ
which means the number of misses on set S during interval 
ܫ  when ܵ  has ܣ  blocks. Under the LRU replacement 
policy that has the stack property [20], the following 
relationship always holds true: ݉݅ݐ݊ݑ݋ܿ_ݏݏሺܵ, ,ܫ 0ሻ ൒
,ሺܵݐ݊ݑ݋ܿ_ݏݏ݅݉ ,ܫ 1ሻ ൒ ڮ ൒ ,ሺܵݐ݊ݑ݋ܿ_ݏݏ݅݉ ሻ∞,ܫ . From 
this property, we can also infer that ݉݅ݐ݊ݑ݋ܿ_ݏݏሺܵ, ,ܫ  ሻ isܣ
monotonically non-increasing for the given ܵ and ܫ when 
only ܣ increases. Ideally, if set ܵ could get an infinite 
number of blocks (ܣ ൌ ∞) during interval ܫ, then there 
would be no capacity or conflict misses on the set. At the 
other extreme, if set ܵ had no blocks at all (ܣ ൌ 0), all 
accesses to the set during interval I would miss. 
Consequently, ݉݅ݐ݊ݑ݋ܿ_ݏݏሺܵ,  ሻ is equal to the number∞,ܫ
of compulsory misses on set S during interval I, while 
,ሺܵݐ݊ݑ݋ܿ_ݏݏ݅݉ ,ܫ 0ሻ  is equivalent to the number of 
accesses to set S during interval I.  

On the other hand, during interval ܫ , if set ܵ ’s 
capacity demand is satisfied, which means that set S gets as 
many blocks as ܾ݈݀݁ݎ݅ݑݍ݁ݎ_݇ܿ݋ሺܵ, ሻܫ , then only 
compulsory misses can happen to set S. Thus, we give a 
quantitative definition of ܾ݈݀݁ݎ݅ݑݍ݁ݎ_݇ܿ݋ሺܵ, ሻܫ  in 
Formula (1). 

 

Table 1. Glossary of Notation and Terms Used 
Symbol Annotation 

ܰ the total number of sets in an L2 cache 

blocks (associativity) owned by a set, 0# ܣ ൑ ܣ ൏ ∞

ܵ the index of a set, 0 ൑ ܵ ൑ ܰ െ 1 

a fine-grained sampling interval for characterization ܫ

,ሺܵݐ݊ݑ݋ܿ_ݏݏ݅݉ ,ܫ  ሻܣ
the number of misses on set  ܵ with ܣ blocks 

during the sampling interval ܫ 

,ሺܵݐ݊ݑ݋ܿ_ݐ݄݅  ,ܫ  ሻܣ
the number of hits on set  ܵ with  ܣ blocks during 

the sampling interval ܫ 

,ሺܵ݀݁ݎ݅ݑݍ݁ݎ_݇ܿ݋݈ܾ ሻܫ
the number of blocks required by the set ܵ during 

the sampling interval ܫ 

 ௧௛௥௘௦௛௢௟ௗܣ
a value of asssociativity large enough to 

approximate ∞ 

 ௕௔௦௘௟௜௡௘ܣ
the associativity (integral power of 2) of the 

baseline private L2 cache 

 ௧௛௥௘௦௛௢௟ௗሿܣ,the number of buckets/sub-ranges of [1 ܯ

 ௝ݐ݁݇ܿݑܾ
The j୲୦ bucket, which is the sub-range 

ሾሺ௝ିଵሻ·஺೟೓ೝ೐ೞ೓೚೗೏
ெ

൅ 1, ௝·஺೟೓ೝ೐ೞ೓೚೗೏
ெ

ሿ, where 1 ൑ ݆ ൑  ܯ

,ሺܵܨܵ ,ܫ  ௝ሻݐ݁݇ܿݑܾ

a membership function used to indicate if the 

number of blocks required by set ܵ is categorized 

into the j୲୦ bucket during interval ܫ 

ሻܫ௝ሺݐ݁݇ܿݑܾ_݁ݖ݅ݏ
1 ൑ ݆ ൑ ܯ  The size of the j୲୦ bucket during interval ܫ 



4 

,ሺܵ݀݁ݎ݅ݑݍ݁ݎ_݇ܿ݋݈ܾ ሻܫ ൌ min   ܣ
.ݏ ,ሺܵݐ݊ݑ݋ܿ_ݏݏ݅݉  .ݐ ,ܫ ሻܣ െ ,ሺܵݐ݊ݑ݋ܿ_ݏݏ݅݉ ሻ∞,ܫ ൌ 0

(1)

Because it is impractical to measure 
,ሺܵݐ݊ݑ݋ܿ_ݏݏ݅݉ ሻ∞,ܫ  when the set associativity ܣ  is ∞ , 
and also because the function ݉݅ݐ݊ݑ݋ܿ_ݏݏሺܵ, ,ܫ ሻܣ  is 
monotonically non-increasing for the given ܵ and ܫ when 
only ܣ increases, we can use a finite number ܣ௧௛௥௘௦௛௢௟ௗ 
that is large enough to approximate ∞. Then, we can use 
Formula (2) to quantify the capacity demand of a set. 

 
,ሺܵ݀݁ݎ݅ݑݍ݁ݎ_݇ܿ݋݈ܾ ሻܫ ൌ min   ܣ
.ݏ  .ݐ
,ሺܵݐ݊ݑ݋ܿ_ݏݏ݅݉ ,ܫ ሻܣ െ ,ሺܵݐ݊ݑ݋ܿ_ݏݏ݅݉ ,ܫ ௧௛௥௘௦௛௢௟ௗሻܣ ൌ 0 

(2)

 
Alternatively, since ݉݅ݐ݊ݑ݋ܿ_ݏݏሺܵ, ,ܫ 0ሻ is equivalent 

to the number of accesses to set S during interval ܫ, the 
total hits on set S during interval ܫ when the set has ܣ 
blocks (denoted as  ݄݅ݐ݊ݑ݋ܿ_ݐሺܵ, ,ܫ  ሻ) can be expressed asܣ
,ሺܵݐ݊ݑ݋ܿ_ݐ݄݅  ,ܫ ሻܣ ൌ ,ሺܵݐ݊ݑ݋ܿ_ݏݏ݅݉ ,ܫ 0ሻ െ ,ሺܵݐ݊ݑ݋ܿ_ݏݏ݅݉ ,ܫ ሻܣ . 
Therefore, Formula (2) can be rewritten as follows: 
 
,ሺܵ݀݁ݎ݅ݑݍ݁ݎ_݇ܿ݋݈ܾ ሻܫ ൌ min   ܣ
.ݏ .ݐ  
,ሺܵݐ݊ݑ݋ܿ_ݐ݄݅ ,ܫ ሻܣ െ ,ሺܵݐ݊ݑ݋ܿ_ݐ݄݅ ,ܫ ௧௛௥௘௦௛௢௟ௗሻܣ ൌ 0 

(3)

 
Practically, Formula (3) is more convenient than 

Formula (2), because it is much easier to locate a position in 
the LRU stack when an access to a set is a hit [21]. 
Equivalently,  ݄݅ݐ݊ݑ݋ܿ_ݐሺܵ, ,ܫ ሻܣ  is actually the total 
number of hits on the LRU positions that are less than or 
equal to ܣ on set S during interval ܫ. 
2.1.2  Characterizing Set-Level Non-Uniformity of 

Capacity Demand 
From the analysis above, we can infer that 

,ሺܵ݀݁ݎ݅ݑݍ݁ݎ_݇ܿ݋݈ܾ ሻܫ  is in the integer range 
ሾ1,  ௧௛௥௘௦௛௢௟ௗሿ. Without loss of accuracy, we divide theܣ
integer range ሾ1, ௧௛௥௘௦௛௢௟ௗሿܣ  into M sub-ranges (a.k.a., 
buckets) of equal length ሼܾݐ݁݇ܿݑଵ, …,ଶݐ݁݇ܿݑܾ ,  ,ெሽݐ݁݇ܿݑܾ

where ܾݐ݁݇ܿݑ௝ ൌ ቂሺ௝ିଵሻ·஺೟೓ೝ೐ೞ೓೚೗೏
ெ

൅ 1, ௝·஺೟೓ೝ೐ೞ೓೚೗೏
ெ

ቃ  for 

1 ൑ ݆ ൑  Then, for a given interval I, set S is said to be .ܯ

categorized into ܾݐ݁݇ܿݑ௝  if and only if the value of 
,ሺܵ݀݁ݎ݅ݑݍ݁ݎ_݇ܿ݋݈ܾ ሻܫ  is in the integer range 

ቂሺ௝ିଵሻ·஺೟೓ೝ೐ೞ೓೚೗೏
ெ

൅ 1, ௝·஺೟೓ೝ೐ೞ೓೚೗೏
ெ

ቃ. Further, because any two 

adjacent buckets have no intersection, the value 
,ሺܵ݀݁ݎ݅ݑݍ݁ݎ_݇ܿ݋݈ܾ  ሻ will be in one and only one bucket’sܫ
range. Therefore, we can differentiate two cache sets in 
terms of their capacity demand if their 
,ࡿሺࢊࢋ࢘࢏࢛ࢗࢋ࢘_࢑ࢉ࢕࢒࢈ ሻࡵ  values belong to different 
buckets. Here, we restrict that both  ܣ௧௛௥௘௦௛௢௟ௗ and M are 
integral power of 2. 

To identify if set S is categorized into the jth bucket 
during interval I, we can define a membership function 
,൫ܵܨܵ ,ܫ  ௝൯ to indicate if set S has capacity demandݐ݁݇ܿݑܾ
that is in the range of ܾݐ݁݇ܿݑ௝ during interval I, which is 
formulated in (4): 

 
,൫ܵܨܵ ,ܫ ௝൯ݐ݁݇ܿݑܾ

ൌ ൜1, if ,ሺܵ݀݁ݎ݅ݑݍ݁ݎ_݇ܿ݋݈ܾ ሻܫ א ௝ݐ݁݇ܿݑܾ
0, otherwise

ሺ4ሻ

 
For all of the N sets in an L2 cache, we are interested 

in knowing how many sets are categorized into each one of 
the M buckets during the sampling interval I, because any 
two sets that are categorized into different buckets show 
different set-level capacity demand. Here, we normalize the 
number of sets that are categorized into the jth bucket during 
time interval I by the total number of sets N, define it as the 
size of the bucket for that interval, and denote the value as 
 ሻܫ௝ሺݐ݁݇ܿݑܾ_݁ݖ݅ݏ ሻ. The formal definition ofܫ௝ሺݐ݁݇ܿݑܾ_݁ݖ݅ݏ
is shown in Formula (5). 
 

ሻܫ௝ሺݐ݁݇ܿݑܾ_݁ݖ݅ݏ
ሺ1 ൑ ݆ ൑ ሻܯ ൌ

∑ ,൫ܵܨܵ ,ܫ ௝൯ேିଵݐ݁݇ܿݑܾ
ௌୀ଴

ܰ
 (5) 

 
In summary, we can characterize the set-level 

non-uniformity of capacity demand for all of the N sets in 
an L2 cache using Formula (5). 
2.2 Methodology of Characterization 

We experiment on all 26 SPEC2000 benchmarks [10] 
using the sim-cache tool of Simplescalar [11], and analyze 
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the set-level capacity demand distributions of their L2 
caches. The configurations of L1 and L2 caches are listed in 
Table 4 in Section 4. Specifically, there are 1024 sets in the 
L2 cache (N=1024). All of the benchmarks are executed 
with the reference data inputs. For each benchmark, we fast 
forward the execution by 6 billion cycles and then simulate 
the caches until 1000 sampling intervals of which each 
contains 100K L2 accesses are encountered. Therefore, the 
variable I is in the range [1,1000]. Within a sampling 
interval I, for an L2 set S, we sample the number of hits on 
set S at each LRU position A that is less than or equal to 
௧௛௥௘௦௛௢௟ௗܣ , and then find the minimum ܣ  (a.k.a. 
,ሺܵ݀݁ݎ݅ݑݍ݁ݎ_݇ܿ݋݈ܾ ሻܫ ) such that ݄ ݅ݐ݊ݑ݋ܿ_ݐሺܵ, ,ܫ ሻܣ ൌ
,ሺܵݐ݊ݑ݋ܿ_ݐ݄݅     ,ܫ ௧௛௥௘௦௛௢௟ௗሻܣ , where ܣ௧௛௥௘௦௛௢௟ௗ  is assumed 
to be double ܣ௕௔௦௘௟௜௡௘ in this paper. 

Since ܣ௧௛௥௘௦௛௢௟ௗ is assumed to be double of ܣ௕௔௦௘௟௜௡௘ 
௕௔௦௘௟௜௡௘ܣ) ൌ 16) in this paper, we divide the entire range 
ሾ1,  .௧௛௥௘௦௛௢௟ௗሿ into 8 buckets {[1,4], [5,8], …, [29,32]}ܣ
Then, for all of the 1024 sets and 1000 sampling intervals, 
we can obtain the normalized size of each bucket, 
ሻܫ௝ሺݐ݁݇ܿݑܾ_݁ݖ݅ݏ  for 1 ൑ ݆ ൑ 8 , which is actually the 
distribution of set-level capacity demand for all of the L2 
sets during the entire sampling period. 
2.3 Characterization Conclusions 

To summarize, we find that among the 26 SPEC2000 
benchmarks, there are 7 applications (ammp, apsi, galgel, 
gcc, parser, twolf, vortex) that show strong set-level 
non-uniformity of resource demand. Figures 1 - 3 illustrate 
the distribution of set-level capacity demand for three 
applications, among which ammp and vortex show strong 
set-level non-uniformity of capacity demand but applu does 
not. In Figure 1 - 3, the 8 legends on the right side of the 
figure represent the 8 buckets, the x axis shows the 1000 
sampling intervals, and the y axis shows the distribution 
breakdown for the 8 buckets. 

For instance, although both ammp and vortex have 
been shown to benefit from additional cache resource in 
previous research [12], Figure 1 and 2 clearly indicate that 
both of them exhibit significant set-level non-uniformity of 
capacity demand. For ammp, about 40% sets require only 1 
- 4 blocks during the entire sampling period. For vortex, 

from the sampling interval 405 to about 792, about 15% 
sets require only 1 - 4 blocks, about 9% sets require 5 - 8 
blocks, and over 7% sets require 9 - 12 blocks. In contrast, 
for the streaming application applu, almost all sets require 
only 1 - 4 blocks during the whole sampling period. 

 
Figure 1. Distribution of Set-level Capacity Demand for ammp 

 

Figure 2. Distribution of Set-level Capacity Demand for vortex 

 
Figure 3. Distribution of Set-level Capacity Demand for applu 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 101 201 301 401 501 601 701 801 901

>=29

25~28

21~24

17~20

13~16

9~12

5~8

1~4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 101 201 301 401 501 601 701 801 901

>=29

25~28

21~24

17~20

13~16

9~12

5~8

1~4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 101 201 301 401 501 601 701 801 901

>=29

25~28

21~24

17~20

13~16

9~12

5~8

1~4



6 

Figure 4. The SNUG L2 Cache Organization for a Quad-Core CMP 

 

3. The SNUG Architecture 
SNUG is designed to exploit the fine-grained set-level 

non-uniformity of capacity demand to enhance the 
performance of cooperative caching. It aims to accomplish 
two specific goals: identifying the capacity demand for each 
L2 set, and grouping peer sets (from different cores) that 
have complementary set-level capacity demand for flexible 
cooperative caching. 

Figure 4 illustrates a high-level view of a Quad-core 
CMP with SNUG. Each core has a split private L1 
instruction/data cache and a SNUG slice consisting of a 
private L2 cache capable of cooperative caching, a shadow 
L2 cache that is used to monitor the set-level capacity 
demand in the L2 cache, and an L2 write-back buffer that 
frees the private L2 cache from write back stalls and 
supports direct data read from the buffer [13]. Within a 
SNUG L2 slice, the shadow L2 cache has the same number 
of sets as the L2 cache, and a one-to-one correspondence is 
maintained between two sets that have the same index in 
the L2 cache and its shadow cache. The shadow set is 
intended to monitor the capacity demand of the L2 set for 
evicted blocks that are accessed again. As Figure 4 shows, a 
shadow set block has all the usual fields as an L2 set block 
except for the data field. In addition, there is a per-set 
saturating counter associated with each shadow set. The 
design and working principles of a shadow L2 set will be 

elaborated in Section 3.2, and a detailed overhead analysis 
of this organization appears in Section 3.4 showing that the 
SNUG overhead falls in the range of 2-6%. 

During program execution, the SNUG operation 
alternates between two stages, as shown in Figure 5. The 
first stage is used to identify the status of each L2 set as 
either a giver (G) or taker (T) using the per-set capacity 
demand monitor. Then, at the beginning the second stage, 
the dynamic status of L2 sets is used for regrouping them 
for spilling and receiving. Each two-stage cycle defines a 
sampling period: Stage I determines the G/T status of each 
set after a sampling epoch of 5 million cycles, then Stage II 
follows for 100 million cycles until the start of the next 
sampling period. A novel index-bit flipping scheme 
determines the constraints observed in grouping the sets. 
Typically, Stage I is much shorter than Stage II and the total 
time for the two is shorter than a program-phase during 
which the program shows relatively stable set-level capacity 
demand. 
 
 

Figure 5. The G/T Sets Identification and Grouping Stages 
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3.1 Identifying Taker and Giver Sets 
In this part, we first explain the structures of the L2 

sets and the shadow sets (shown in Figure 4) and how they 
are updated. Then we describe a HW scheme for measuring 
the set-level capacity demand and identifying the 
giver/taker status of each set based on the measurement. 
3.1.1  The Structures of Private & Shadow L2 Sets 

In an L2 cache, shown in Figure 4, besides the typical 
fields such as tag, valid, dirty, LRU and data, each cache 
line is augmented with a CC bit that indicates whether this 
cache line is owned by the local processor core (when 
CC=0) or it is cooperatively cached (when CC=1). Another 
bit f is used in the index-bit flipping scheme, only takes 
effect when the CC bit is set. If the f bit is one, it means that 
the line is cooperatively cached with the last bit of its 
original set index flipped. There is also a G/T bit 
corresponding to each L2 set, which is used to indicate 
whether the set is a giver (when G/T=0) or taker (when 
G/T=1) set. The G/T bits for all L2 sets form a G/T vector, 
each entry of which is addressable independent of 
addressing the L2 sets. 

Each entry in a shadow set has a tag field, a valid bit 
and LRU bits. The shadow set retains the “shadows”, 
namely the tag fields, of locally evicted lines from the 
corresponding private L2 set: when an L2 set needs to 
replace a line by the LRU policy, and the victim line is 
owned by the local processor core, the shadow set will 
retain the tag field of the victim line in one of its entries and 
set it valid. Additionally, the shadow L2 set maintains its 
own independent LRU ranking for all of its valid entries 
and uses it for replacement. We require that the shadow set 
entries be strictly exclusive with the local lines in the 
corresponding L2 set in terms of their tag fields. Therefore, 
if a formerly evicted block with its tag present in the 
shadow set is revisited by the local core, two actions must 
be performed: (1) the shadow entry that has the target tag 
needs to be invalidated after the corresponding block enters 
the real set; (2) a hit on the shadow set is signaled to operate 
its saturating counter. 
3.1.2  Monitoring Set-Level Capacity Demand 

If an L2 set and its corresponding shadow set have the 

same associativity, the private and shadow sets implicitly 
form two buckets as defined in Section 2. Then, we can use 
the per-set saturating counter to monitor the set-level 
capacity demand, based on which set-level takers and givers 
are identified and grouped for cooperative caching. 

Since an L2 set and its shadow set form two buckets, 
according to Formula (3), we can use the ratio ߪ ൌ

# ௛௜௧௦ ሺ ௢௡ ௧ ௛௘ ݓ݋݄݀ܽ  ݏ ௦௘௧ ሻ
# ௛௜௧௦ ሺ௢௡ ௧ ௛௘ ௅ଶ ௦௘௧ሻ    ା   # ௛௜௧௦ ሺ ௢௡ ௧ ௛௘ ݓ݋݄݀ܽ  ݏ ௦ ௔ௗ௢௪ ௦௘௧ ሻ

 to 

measure the potential performance benefit in terms of hit 
rate increase if the capacity of the L2 set is doubled in terms 
of the number of cache blocks. If ߪ  is greater than a 
predefined threshold, 1 ⁄݌ , where ݌  is an integer, we 
claim that doubling the capacity of the L2 set can lead to an 
increase in the hit rate by 1 ⁄݌ . This is because "σ ൐ 1 ⁄"݌  
is equivalent to  

ሻݐ݁ݏ ݓ݋݄݀ܽ  ݏ ݄݁ ݐ ݊݋ሺݏݐ݄݅ #" െ 1 ⁄݌ כ

ሾ# ݄݅ݏݐሺݐ݁ݏ 2ܮ ݄݁ ݐ ݊݋ሻ ൅ ሻሿݏݐ݁ݏ ݓ݋݄݀ܽ  ݏ ݄݁ ݐ ݊݋ሺݏݐ݄݅   # ൐ 0".  
To implement this idea, we define operations on a 

saturating counter as follows (also shown in Figure 6): (1) 
every hit on the shadow set increments the saturating 
counter by 1; (2) after every ݌ hits to the private or 
shadow sets, the saturating counter is decremented by 1. 
Then, the outcome of the two operations can be reflected by 
the MSB (most significant bit) of the saturating counter. 
This is shown for an example in Figure 7: if a k-bit 
saturating counter is initialized to the value 2k-1-1, which 
means that all bits except the MSB of the counter is set to 
one, a one-valued MSB of the counter indicates that the L2 
set has a higher capacity demand than that provided by its 
local L2 cache, and that doubling its capacity can lead to an 
increase in hit rate by at least 1 ⁄݌ . 

 
 

k-bit Saturating Counter

+
Hits on the 

Real Set
Hits on the 
Shadow Set

1/p

Figure 6. The Operation on a Saturating Counter 
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Figure 7. An illustration of the operations on 

a 4-bit Saturating Counter 

 
3.1.3  G/T Sets Identification 
 As described above, we can differentiate taker and 
giver sets by just checking the MSB of the saturating 
counter of each set. A one value of the MSB indicates that 
extending the capacity of the set is beneficial, hence the set 
should be regarded as a taker and entitled to spill blocks in 
cooperative caching; otherwise, the set is defined as a giver 
and receives spilled blocks from its peer taker set. Thus, the 
MSB of the saturating counter can be directly used to 
update the corresponding entry of the G/T vector. 
3.2 Grouping Sets for Spilling & Receiving 

After the G/T Sets Identification stage, the SNUG 
caches enter the Sets Grouping Stage to group different 
cores’ sets with complementary capacity demand to perform 
block spilling and receiving. The simplest grouping strategy 
is to group different cores’ sets with the same index, as is 
done in ordinary CC or DSR. But this naïve approach only 
allows the sets with the same index to form a receiving & 
spilling group. Ideally, we would like to group taker and 
giver sets based just on their capacity demand and supply, 
independent of their index values. However, this would lead 
to significant hardware complexity, as the information of 
how sets are globally grouped would need to be stored and 
retrieved for each private L2 set. Hence, we propose an 
index-bit flipping Scheme that flexibly groups sets with 
complementary capacity demand for spilling and receiving 

at the low hardware complexity of one f bit per cache line. 
The index-bit flipping scheme works as follows. In an 

L2 cache, when a taker set needs to spill a local cache line, 
the L2 cache will put a CC spilling request together with the 
address of the spilled line on the interconnection bus. By 
snooping on the bus, other peer caches can detect the CC 
request as well as the address of the spilled block. Each 
peer cache will look up its own G/T vector to find the G/T 
information of the two adjacent entries that have the same 
index as the CC-spilling block but with the last index bit 
being don’t-care. There can be three cases as shown in 
Figure 8. In Case 1, if the set with exactly the same index is 
a giver set in the peer L2 cache, then the peer L2 cache will 
attempt to retain the spilled block in its set with exactly the 
same index. In Case 2, if the set with exactly the same 
index in the peer L2 cache is a taker set while the other set 
with the last index bit different is a giver set, then this giver 
set will attempt to retain the spilled block. In Case 3, if the 
corresponding two adjacent sets are both taker sets, then 
this peer L2 cache will not respond to the CC request. Any 
peer cache that first responds to the CC request on the 
interconnection bus will get the spilled block. Based on 
whether the block is cooperatively cached in the set with 
exactly the same index or with the last index bit flipped, the 
f bit of the cooperatively cached block will be set to zero (if 
the last index bit is not flipped) or set to one (if the last 
index bit is flipped).  

 

 
Figure 8. The index-bit flipping scheme 

 

Now suppose a block is missed in its local L2 cache, 
the cache will signal a retrieving request for the block with 
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its address on the snoop bus. After a peer cache detects the 
request, it will first lookup its G/T vector for the 
information of the two adjacent G/T bits that have the same 
index as the block address but with the ending bit being 
don’t-care. If the G/T bit with exactly the same index, or 
otherwise with only the last index bit different, indicates a 
giver set, then the L2 cache will try to find the block in the 
corresponding giver set; if both of the adjacent peer sets are 
indicated as taker sets, then it means that the block being 
retrieved can’t be located in this L2 cache. This leads to at 
most one unambiguous search for the block in a peer L2 
cache. Because the cooperatively cached block can only be 
located in a giver set of at most one peer L2 cache, then the 
peer cache that has the cooperatively cached block will 
directly forward the block to the requesting L2 cache. At the 
same time, the peer cache will invalidate its cooperatively 
cached copy of the block to free space for other blocks. If 
no peer caches respond to the retrieving request, the 
requested block is not on chip and will need to be fetched 
from the main memory.  
3.3 Maintaining Cache Coherence 

In the SNUG cache design, we use two restrictions to 
maintain coherence between different L2 caches. First, only 
when a locally evicted block is clean can it be cooperatively 
cached in a peer L2 cache. If the block is dirty, it will be 
directly put in the local L2 write buffer. Second, if a peer 
cache forwards a cooperatively cached block to the original 
owner cache of the block, the copy of the block in the peer 
cache needs to be invalidated.  

 

 
 

3.4 Space & Time Overhead Analysis 
Since the SNUG caches require the per-set capacity 

demand monitor, the shadow sets and saturating counters 
will account for the major hardware overhead in our design. 
Then, the storage overhead of the SNUG cache can be 
calculated by using Formula (6) 
 
݁݃ܽݎ݋ݐݏ ܽ݁ ݎ݁ݒ݋ ݀

ൌ
݁݃ܽݎ݋ݐݏ ݂݋ ܽ ݐ݁ݏ ݓ݋݄݀ܽ  ݏ

݁݃ܽݎ݋ݐݏ ݂݋ ܽ ݓ݋݄݀ܽ  ݏ ݐ݁ݏ ൅  ݐ݁ݏ 2ܮ ݊ܽ ݂݋ ݁݃ܽݎ݋ݐݏ
(6)

 
Table 2 shows the length of each storage field in the 

SNUG design if we use the cache configurations in Table 4. 
Under such a cache configuration, the storage overhead of 
the SNUG cache design is only 3.9% by Formula (6), which 
is reasonably low when we consider the abundant silicon 
resources available as a result of technology scaling. 

However, many processors, such as SUN’s 
UltraSPARC-III [22], use 64-bit wide memory addresses. A 
longer memory address leads to a longer tag field in the 
shadow set that introduces more hardware overhead, 
although typically some leading bits of the memory address 
are unused (e.g., the leading 20 and 23 bits of the virtual 
address and physical addresses are unused in 
UltraSPARC-III respectively). We can offset the hardware 
overhead by adopting larger cache block size while keeping 
the cache capacity fixed. Table 3 shows the hardware 
overhead of different memory address and cache line size 
combinations for a 1MB private L2 cache. 

In terms of the time overhead, in our SNUG cache 
implementation, we experimentally observed that a 
combination of 5 million cycles for the G/T Sets Identifying 
Stage and another 100 million cycles for the Sets Grouping 
Stage produces a good performance outcome, which is 
adopted in Section 5. During the 5 million cycles for G/T 
Sets Identification, the cache can still accept retrieving 
request but no spilling request from others. At the end of 
this stage, each L2 cache maintained a new G/T vector, and 
continues to use the set-level G/T information in grouping 
sets for spilling or retrieving blocks. 

 

Table 2. The length of each field in the SNUG cache design by 

using the cache configuration in Table 4 

Field Length Field Length 

address length 32 bits LRU field 4 bits 

# (cache sets) 1024 log p 

(the length of the 

module p counter) 

3 bits 

(p = 8) 
set associativity 16 

size(data block) 64 byte 

length (tag field) 16 bits k (= the length of the 

saturating counter) 
4 bits 

CC, f, v, d 1 bit each 
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Table 3. The hardware overhead of different 

memory address and block size combinations 

 32-bit address 64-bit address 

64B/cache line 3.9% 
5.8% (assuming only 44 

address bits are used) 
128B/cache line 2.1% 3.1% 

 

 
4. Evaluation Methodology 

To evaluate SNUG against other last-level cache 
management schemes available in the literature, we 
simulated a combination of workloads, consisting of 12 
programs from the SPEC2000 benchmark suite on 
quad-core systems. In this section, we describe the 
configuration of our simulation system and the workload 
combinations. 

 
Table 4. The configuration of the PolyScalar simulator 

Out-of-Order Core 

Configuration 
Mem Hierarchy Configuration

Processors 4 L1 Lat 1 Cycle 

Issue/Commit 8/8 L1I/D 
4 way, 32KB, 64B 

lines 

I-Fetch Queue 8 L1D write back 

LSQ Size 64 L2 Lat 10 cycles locally 

RUU Size 128 Each 

L2 

Slice 

16 way, 1MB, 64B 

lines, write back ALU/FPU/Mult/Div 4/4/1/1 

Branch Predictor 

2-Level, 

1024 

Entry, 

History 

Length 10 

Snoop 

Bus 

16B-wide split 

transactional bus, 4:1 

speed ratio, 1 cycle for 

arbitration 

BTB Size 
512 Sets 

4 way 

DRAM 

Lat 
300 Cycles 

Branch Penalty 3 Cycles L2 

Write 

Buffer 

FIFO, Mergeable, 

16 entries*64B/entry, 

support direct read 

RAS Entries 8 

Address bits 32 

 
4.1 Simulation Configuration 

In our experiment, we use the cycle-accurate 

PolyScalar [14], a multi-core simulator with detailed 
memory hierarchy model and SimpleScalar out-of-order 
cores [11]. We implement and evaluate five L2 cache 
organizations, L2P, L2S, CC (Best), DSR, and SNUG. 
According to [7], one of the spill-probabilities 0%, 25%, 
50%, 75% and 100% that produces the best performance is 
selected as CC (Best) for a given workload. Table 4 lists the 
configuration shared by the five L2 schemes above. The 
difference between the L2 schemes is the remote L2 access 
latency: for L2P, CC and DSR, we assume the remote L2 
access latency is 30 cycles, while the remote latency for 
SNUG is assumed to be 40 cycles to include the additional 
delay of looking up the G/T vector of each L2 cache. 

For the purpose of thorough comparison, three 
standard metrics (shown in Table 5) are used to quantify the 
performance [8]: throughput that is the sum of IPCs 
(instructions per cycle) evaluates the utilization of a system; 
average weighted speedup indicates reduction in execution 
time; fair speedup balances both performance and fairness. 
 

Table 5. Performance Metrics 

Metric Definition (N is the core count) 

Throughput  ThroughputሺSchemeሻ ൌ ∑ ݉݁ ௜ሺܵܿܥܲܫ ݁ሻN
୧ୀଵ

Average Weighted 

Speedup [15] 
 AWSሺSchemeሻ ൌ ଵ

N
ൈ ∑ ூ௉஼೔ሺௌ௖௘ ௠௘ሻ

ூ௉஼೔ሺ஻௔௦௘௟௜௡௘ሻ
N
୧ୀଵ

Fair Speedup [16]  FSሺSchemeሻ ൌ N ∑ ூ௉஼೔ሺ஻௔௦௘௟௜௡௘ሻ
ூ௉஼೔ሺௌ௖ ௘௠௘ሻ

N
୧ୀଵൗ  

 
4.2 Workload Combinations 

Table 6 classifies the 12 SPEC CPU2000 benchmarks 
used in our studies. Our evaluation takes into account 6 
different classes of workload combinations described in 
Table 7. Specifically, workload combination class C1 and 
C2 are both stress tests, which means that the four 
co-scheduled applications from C1 or C2 are all identical, 
but with the assumption that there can be only capacity 
sharing among the co-scheduled applications, excluding any 
data sharing. The purpose of the stress tests is to see how 
different L2 cache designs can respond to applications’ 
set-level capacity demand, since the identical co-scheduled 
applications have the same capacity demand at both 
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application and set levels. Within a class in C3 - C6, all of 
the co-scheduled applications are different, and at least two 
applications showing set-level non-uniformity of capacity 
demand are chosen in each workload combination, 
 

Table 6.    Workload Classification & Selection 

Application Type 
Workload 

Class 

Application-Level 

Capacity Demand 
Applications

showing set-level 

non-uniformity of 

capacity demand 

A > 1MB 
ammp, 

parser, vortex

B < 1MB apsi, gcc 

showing set-level 

uniformity of 

capacity demand 

C > 1MB 
vpr, art, mcf, 

bzip2 

D < 1MB 
gzip, swim, 

mesa 

 
Table 7.    Workload Combination Classes & Characteristics 

C1 
4 identical applications from class A without data sharing    (stress 

test) 

C2 
4 identical applications from class C without data sharing    (stress 

test) 

C3 
(2 different applications from class A) + (2 different applications 

from class C) 

C4 
(2 different applications from class A) + (1 application from class 

B )+ (1 application from class C) 

C5 
(2 different applications from class A) + (2 different applications 

from class D) 

C6 
(2 different applications from class A) + (1 application from class B) 

+ (1 application from class D) 

 
Table 8 shows that 21 workload combinations that are 

categorized into the 6 different classes respectively.  
 

5. Result Analysis 
 For each instance of simulation, we forward the 

execution by 6 billion cycles to bypass the initialization 
section of the programs, and then execute each workload 
combination with detailed out-of-order core model and 
different cache schemes for additional 3 billion cycles. In 
the results analysis, the numbers reported for a class of 

workload combinations are the geometric means calculated 
for all of the workload combinations in a given class. 
 

 
 Figure 9 shows the throughput results of the L2S, 
CC(Best), DSR and SNUG schemes normalized to L2P 
(1.0). In class C1 that is the stress test, because all of the 
applications have an application-level capacity demand of 
over 1MB and also exhibit the set-level non-uniformity of 
capacity demand, the SNUG cache organization can take 
advantage of the complementary capacity demands of 
interleaved taker and giver sets by the index-bit flipping 
scheme and then capture more opportunities for cooperative 
caching. Therefore, SNUG achieves a throughput 
improvement over the baseline L2P cache by 22.3% in class 
C1, bettering the performance gain of CC(Best) by 3.5% 
and that of DSR by 6.9%. In C2, DSR achieves a 
throughput improvement over the baseline by 2.3%, and 
performs slightly better than CC(best) (- 0.5 % performance 
degradation) and SNUG (- 0.2% performance degradation), 
because DSR can assign some of the identical applications 
as taker applications while assigning others as giver 
applications to achieve biased performance improvement. 
In C3, C4, C5 and C6, SNUG outperforms all the other 
cache schemes. Overall, on average, SNUG can improve 

Table 8. The Configurations of Different Workload 

Combinations 

C

1

4 ammp 

C

3

(ammp+parser)+ 

(bzip2+mcf) 

C 

5 

(ammp+parser)+

(swim+mesa) 

4 parser 
(parser+vortex)+ 

(mcf+art) 

(parser+vortex)+

(mesa+gzip) 

4 vertex 
(vortex+ammp)+ 

(art+vpr) 

(vortex+ammp)+

(swim+gzip) 

C

2

4 vpr 

C

4

(ammp+parser)+ 

(apsi)+(bzip2) 

C 

6 

(vortex+ammp)+

(apsi)+(gzip) 

4 bzip2 
(parser+vortex)+ 

(gcc)+(mcf) 

(parser+vortex)+

(gcc)+(mesa) 

4 mcf 
(vortex+ammp)+ 

(apsi)+(art) 

(ammp+parser)+

(apsi)+(swim) 

4 art 
(ammp+parser)+ 

(gcc)+(vpr) 

(vortex+ammp)+

(gcc)+(mesa) 
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the Quad-core CMP throughput by 13.9% for all of the 6 
classes of workload combinations, in contrast to 8.4% of 
DSR (the second best). 

 
Figure 9. Performance on Throughput Metric 

 

 Because the throughput metric is not fair to the 
application with a lower absolute IPC, we also use the 
metric of Average Weighted Speedup to consider the change 
of relative IPC  (the absolute IPC of a scheme over that of 
the baseline) of the applications. From Figure 10, it can be 
concluded that SNUG can also improve the Average 
Weighted Speedup by 13.0%, while DSR, CC(Best) and 
L2S improves it by 9.9%, 7.0%, and 2.5%, respectively . 
 

 
Figure 10. Performance on Average Weighted Speedup 

 

Figure 11 demonstrates the performance on the Fair 
Speedup metric (the harmonic mean of programs’ relative 
IPCs) that balances both performance and fairness for 
different classes of workload combinations as well as 
different L2 cache schemes. On average, the SNUG scheme 
improves the performance by 10.4%, better than L2S(-1.5% 
degradation), CC(Best) (4.2%) and DSR (6.3%). 

 
Figure 11. Performance on Fair Speedup 

 
 
6. Related Work 

Previous Research on Set-Level Non-Uniformity: 
Set-level non-uniformity of cache resource demand is a 
research focus in the unicore processor cache management. 
Hash functions based on prime modulus were proposed to 
equalize the number of misses over all cache sets [17], and 
the V-Way cache architecture [18] was proposed to vary the 
associativity of the last level cache on a per-set basis in 
response to the demands of the program. SNUG differs 
significantly from these earlier schemes, which aimed at 
alleviating set-level non-uniformity of cache demand, in 
that it exploits the set-level non-uniformity in cooperative 
caching to improve performance. 

Improvement on Cooperative Caching: Since 
Chang and Sohi [7] introduced the concept of CMP 
cooperative caching, there have been several proposals to 
improve the original CC scheme from various angles. 
Adaptive Selective Replication (ASR) [19] relaxes the 
restriction on replicated blocks in cooperative caching. By 
dynamically replicating shared read-only blocks in multiple 
private cache partitions, ASR can hide the latency of 
cross-chip transfer of these commonly used blocks for 
multithreaded workloads. Distributed Cooperative Caching 
[5] aims to resolve the performance bottleneck imposed by 
the centralized coherence engine in cooperative caching. It 
simply utilizes the distributed directory caches rather than a 
centralized one as the cooperative caching engine to 
improve the scalability and power efficiency of cooperative 
caching. In another proposal [6], Eisley et al. enable 
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on-chip network to propagate the information of invalid 
blocks so that victim blocks can be spilled to other caches 
with abundant invalid blocks. As the contributions focus on 
such factors as scalability and power efficiency of 
cooperative caching, their results can be considered 
orthogonal to our scheme on improving the effectiveness of 
cooperative caching. 

 
 
7. Conclusion  
Although cooperative caching allows CMP private L2 
caches to share their capacity, its effectiveness is limited by 
its eviction-driven spilling and receiving. The Dynamic 
Spill and Receive (DSR) technique improves cooperative 
caching by taking into account the differences in capacity 
demand that appear at the application-level. DSR is less 
effective when such differences manifest themselves at the 
cache set level but not at the application level. Our 
investigations reveal that this situation is common, 
motivating our proposal of Set-level Non-Uniformity 
identifier and Grouper (SNUG) scheme that can exploit the 
fine-grained non-uniformity via cooperative caching to 
improve the system performance. Experiments show that 
for six classes of workload combinations our SNUG cache 
can improve the Quad-Core CMP throughput by 22.3% at 
best and by 13.9% on average over the baseline 
configuration, outperforming the state-of-the-art DSR 
scheme that can only achieve an improvement by up to 
14.5 % and 8.4 % on average. Our future work would 
attempt to extend SNUG to multi-threaded workloads, and 
to both intra- and inter-cache accesses. 
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