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Abstract
This article proposes a stochastic model, which captures mortality correlations across 
countries and common mortality shocks, for analyzing catastrophe mortality contin-
gent claims. To estimate our model, we apply particle filtering, a general technique that 
has wide applications in non-Gaussian and multivariate jump-diffusion models and 
models with nonanalytic observation equations. In addition, we illustrate how to price 
mortality securities with normalized multivariate exponential titling based on the esti-
mated mortality correlations and jump parameters. Our results show the significance of 
modeling mortality correlations and transient jumps in mortality security pricing.

Introduction
Over the last century, populations of different countries have been increasingly linked 

by flows of information, goods, transportation, and communication, and as a consequence 
the world has become more closely connected and interdependent. While the trend of 
globalization has substantially driven market growth and international trade, it has also 
helped to spread some of the deadliest infectious diseases across borders (Daulaire, 1999). 
Thus, it seems improper to forecast mortality for an individual national population in iso-
lation from others. Indeed, in practice, intercountry mortality correlation has long been a 
serious concern for insurers that underwrite life insurance business.

Mortality forecast that takes into account a country’s linkage to others is important 
in the sense that not only does it facilitate better understanding of mortality risk, but it 
also has enormous implications for pricing mortality securities. Recent financial innova-
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tion makes mortality securitization a viable option for insurers or reinsurers to transfer 
catastrophe mortality risk arising from the possible occurrence of pandemics or large-
scale terrorist attacks. By segregating its cash flows linked to extreme mortality risk, an 
insurance firm is able to repackage them into securities that are traded in capital mar-
kets (Blake and Burrows, 2001; Lin and Cox, 2005; Cox and Lin, 2007). Since the first 
publicly traded mortality security issued by Swiss Re in 2003, almost all mortality trans-
actions determine the coupons and principals based on three or more population mor-
tality indexes, with the only exception—the Tartan mortality bond sold in 2006. This 
indicates that insurers or reinsurers are keenly interested in transferring potential coun-
try-correlated mortality risk embedded in their business. For instance, the mortality risk 
of the 2003 Swiss Re mortality bond was defined in terms of an index based on the 
weighted average annual population death rates in the United States, the United King-
dom, France, Italy, and Switzerland (Lin and Cox, 2008). As another example, the mor-
tality bond issued by the Nathan Ltd. in 2008 depended on the annual population death 
rates of four countries, namely, the United States, the United Kingdom, Canada, and 
Germany. Given that the existing (and possible future) mortality securities bundle mul-
tination mortality risks, mortality correlation among countries merits serious consider-
ation in mortality securitization pricing.

In the recent literature, a number of stochastic mortality models have been pro-
posed. Despite the importance of mortality correlation, surprisingly very few papers 
treat correlation as an indispensable element. For example, in order to account for cata-
strophic mortality death shocks, Chen and Cox (2009) incorporate a jump-diffusion pro-
cess into the original Lee–Carter model to forecast mortality rates and price the 2003 
Swiss Re mortality bond. Yet, while the Swiss Re bond payments depended on five-
country weighted mortality index, the authors price this bond only based on the U.S. 
mortality rates. Hence, it is not clear how to extend their method to multipopulation 
correlated mortality scenarios.

Beelders and Colarossi (2004) and Chen and Cummins (2010), on the other hand, use 
the extreme value theory to measure mortality risk of the 2003 Swiss Re bond. However, 
they simply model the combined index without considering the mortality correlations 
among different countries. So the question of how to model multipopulation mortality 
correlation remains open. Bauer and Kramer (2009) borrow a credit risk modeling ap-
proach introduced by Lando (1998) to describe stochastic force of mortality. To incorpo-
rate dramatic mortality changes that are crucial in measuring mortality risk (Lin and Cox, 
2008), Bauer and Kramer (2009) propose a mortality model with an affine jump-diffu-
sion process. Then they use their mortality model to price the Tartan transaction, which is 
the only publicly traded mortality bond to date solely based on one-country (i.e., United 
States) mortality experience. However, the authors acknowledge that their model misses 
correlations and diversification effects across genders and populations. Given the preva-
lence of multicountry combined mortality indexes in the mortality security markets, it is 
questionable whether their model is adequate for other mortality securities. Indeed, from 
a practical point of view, understanding the combined index as a function of various pop-
ulation death rates is at least as important, if not more so, than understanding it as a func-
tion of different age classes of a single country for mortality securitization.

Moreover, the existing mortality literature has demonstrated the significance of cata-
strophic death events in the pricing and tranche structure for a mortality risk bond (Cox, 
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Lin, and Wang, 2006; Bauer and Kramer, 2009; Chen and Cox, 2009). While longevity risk 
modeling usually simplifies the analysis by ignoring dramatic mortality changes (Cairns, 
Blake, and Dowd, 2006; Schrager, 2006; Kogure and Kurachi, 2010; Wills and Sherris, 
2010; Yang, Yue, and Huang, 2010; Cox et al., 2012), mortality jumps must be considered 
in order to successfully structure and price mortality-linked securities. Thus, in this ar-
ticle, as the first objective, we develop a tractable mortality model, which captures the 
mortality correlations among countries and incorporates mortality jumps. Specifically, 
we extend Cox, Lin, and Wang’s (2006) model to a more general setting and disentangle 
transient jumps from persistent volatilities. As a departure from Cox, Lin, and Wang who 
model unanticipated mortality jumps as permanent shocks, we model them as transient 
jumps with a double-jump process. Since in most cases severe short-term events such as 
epidemics underlie mortality risk (Cox, Lin, and Petersen, 2010), our model provides a 
better fit for historical data.

A prominent calibration challenge for a model accounting for correlations is that the 
number of pairs grows quadratically with the number of countries of interests. To ad-
dress this issue, as the second objective of this article, we employ a particle filtering ap-
proach for learning about unobservable mortality shocks and states from discretely ob-
served population mortality rates. The particle filter algorithm is easy to implement and 
fast to compute, requiring only simulation from a proposal distribution. It is able to han-
dle a large number of correlations with relatively low computation costs. Moreover, par-
ticle filters are highly adaptable and easy to be adjusted for various applications. In par-
ticular, they are able to deal with nonlinear, non-Gaussian systems, and variables in 
either continuous or discrete states as well as their combinations (Heijden et al., 2004). 
This property of particle filtering is important for mortality modeling because multivar-
iate jump-diffusion processes are an indispensable component of a comprehensive mor-
tality model, which is typically not Gaussian. In addition, the particle filtering approach 
is a Bayesian approach through which we can deal with estimation error and prediction 
uncertainty unaddressed in some mortality models. As highlighted in Cairns, Blake, and 
Dowd (2006), a model that takes into account parameter uncertainty is able to generate 
more reliable forecasts. So far the particle filtering approach has many practical applica-
tions in engineering and finance. Despite its usefulness, this technique has received little 
attention in the mortality literature.1 In this article, we show that it is useful to estimate 
variables related to mortality trend, volatility, correlation, and jump, which are crucial for 
mortality security pricing and risk management.

Aside from the question of how to appropriately model mortality stochastic process, 
there is an ongoing debate on how to price mortality-linked securities. If a security’s pay-
ments are contingent on the correlation of mortality risks across countries, a common fea-
ture in mortality securitization, the pricing problem will become more challenging (Chen 
and Cox, 2009). Mortality securities, with only a limited number issued in financial mar-
kets, are not liquidly traded. As a result, to price a mortality risk linked security, the un-
derlying mortality risk process needs to be risk adjusted (Wills and Sherris, 2010). Dif-

1. To the best of our knowledge, there is only one paper by Bauer and Kramer (2009) that applies the particle fil-
tering in the mortality context. However, Bauer and Kramer apply the particle filtering in the mortality evolu-
tion of the U.S. population without considering mortality correlation, whereas mortality correlation is one of 
our main focuses.
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ferent mortality pricing methods have been proposed. Dahl (2004) applies financial risk 
models for mortality risk modeling and then uses market data to calibrate risk-adjusted 
probability measures. Lin and Cox (2005), Dowd et al. (2006), and Denuit, Devolder, and 
Goderniaux (2007) apply the Wang transform (Wang, 2000) to physical distributions in 
pricing distortion distributions. Bayraktar et al. (2009) propose to compensate a mortality 
risk taker according to an “instantaneous Sharpe ratio,” which is defined as the additional 
return in excess of the risk-free rate divided by the standard deviation of a mortality port-
folio after all diversifiable risk is hedged away. In line with their Bayesian mortality mod-
els, Kogure and Kurachi (2010) present a Bayesian pricing approach, the entropy maxi-
mization principle, to risk neutralize the predictive distribution of future survival rates. 
However, while in these articles the transformed parameters are calibrated, they are built 
on a univariate setting or an independent assumption, ignoring the connections among 
different cohorts and populations. Thus, their pricing methods have limited implications 
for multivariate and correlated mortality cases. To address this pricing issue, we employ 
normalized multivariate exponential tilting to take into account correlations across coun-
tries for mortality securitization.

Exponential tilting is an incomplete market pricing method that neutralizes statistical 
distributions, which is consistent with the literature on nonarbitrage pricing of contingent 
claims (see Buhlmann, 1980; Gerber and Shiu, 1996; Madan and Unal, 2004; Kijima, 2006; 
Wang, 2007; and others). It can be applied in pricing risks embedded in loan defaults, 
mortgage refinancing, electricity trading, weather derivatives, catastrophic insurance, and 
insurance-linked securities (Duffie, 1992; Karatzas and Shreve, 1992; Heston, 1993; Gerber 
and Shiu, 1996; Cox, Lin, and Wang, 2006; Milidonis, Lin, and Cox, 2011). Kijima (2006) 
and Wang (2007) extend univariate exponential tilting to multivariate cases. The need for 
changing multivariate probability measures arises from pricing contingent claims on mul-
tiple underlying assets or liabilities. As noted earlier, the payoffs of the existing mortal-
ity securities are contingent on several population mortality indexes. To properly com-
pensate investors for risk arising from mortality correlations among countries, as the last 
objective of this article, we apply the normalized multivariate exponential tilting to price 
mortality securities. Specifically, we first introduce the concept of normalized exponen-
tial tilting and then formulate probability distortions for the multivariate case. For dem-
onstration, we utilize the normalized multivariate exponential tilting to make inference 
about the likely market prices of risk from the pricing information contained in the exist-
ing mortality securities. To the best of our knowledge, this is the first article that not only 
accounts for mortality correlations but also calibrates different market prices of risk for 
various mortality diffusions and jumps.

The article is organized as follows. In the next section, we introduce our proposed sto-
chastic model for a set of correlated population mortality indexes with jumps. The “Esti-
mation With Particle Filtering” section provides an overview on the particle filtering ap-
proach. The multivariate exponential tilting as an incomplete market pricing method is 
introduced in “Pricing Mortality Securities With Multivariate Exponential Tilting.” In 
“Empirical Applications,” we first estimate our proposed model by applying the particle 
filtering technique based on historical data. We show that mortality correlation and jump 
process play important roles in mortality securitization modeling. Then we price some 
mortality bonds issued in 2006 by applying normalized multivariate exponential tilting 
and compare our estimated market prices of risk to those when we do not consider mor-
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tality correlations and jumps. After a discussion of our findings, “Conclusions” concludes 
and provides an outlook on future research.

Model Specification
Our approach combines Brownian motions and compound Poisson processes. As a 

distinctive feature of our model, we simultaneously consider n-country population mor-
tality death rates and their correlations. Let qt

(i) denote the observed population mortality 
index for country i at time t. The logarithm of qt

(i) equals 

yi,t = ln qt
(i)

We assume that the n population mortality indexes jointly solve: 

(1)

where αi is country i’s instantaneous expected force of population mortality index; σi 
is country i’s instantaneous volatility of population mortality index, conditional on no 
jumps. The factor Bt

(i) captures the correlation of yi,t’s. We denote the correlation coeffi-
cient matrix of n countries, ΣWW = {rij}, as 

Assume the matrix, ΣWW, is symmetric and positive definite. Then, there is a matrix A 
such that ΣWW=AA′ with 

where each element {Aij} of A is a function of {rij}, i, j= 1, …, n.
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Under this specification, the diffusion process, Bt
(i) of country i, is a linear combination 

of Aij’s (Shrieve, 2000): 

                                                                                                     n
Bt

(i) = ∑ Aij Wt
(j)

                                                                                                    j=1

where Wt
(1), Wt

(2), … Wt
(n) are n independent Brownian motions with mean 0 and vari-

ance t.
All countries are subject to common random surprise events or shocks such as pan-

demics, which follow a Poisson process Nt
(v) with intensity kc. The common jumps (e.g., 

the 1918 worldwide flu) act as a fundamental shock to mortality curves of all countries 
and decrease the expected lifetime of the population across countries. To model those 
jumps, we assume both positive and negative movements by applying a double-jump 
process. As customers in queues come and go, so does a pandemic. As such, the common 
double-jump process has two jump size parameters mci

(v) = 1 or 2 with opposite signs and 
two jump size volatilities sci

(v) = 1 or 2. Zi
(v) is the standard normal random variable: 

Zi
(v) ~ N(0,1).

From model (1), we can derive the mortality index yi,t+h given yi,t as follows: 

(2)

For simplicity, for the double-jump process, we assume the same magnitude of positive 
and negative jumps: 

 

Estimation With Particle Filtering
Why Use Particle Filtering?

The particle filtering approach has several advantages over other estimation methods. 
First, it is rooted in Bayesian statistics. In the spirit of recursive Bayesian estimation, parti-
cle filtering is an iterative application of Bayes rule to sequential parameter estimation. In 
each step, the particle filtering approach first uses all information up to the step to predict 
future values. Then, based on the differences between predicted values and realized val-
ues, the parameter estimates are modified and updated. This procedure, to some extent, 
is similar to our learning process as it does not assume stationary model parameters. So it 
is superior to non-Bayesian approaches, such as the maximum likelihood method, that re-
quire stationary model parameters.
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Second, the particle filtering is more adaptable than other filtering methods like the 
Kalman filter, which is built on the linear and Gaussian assumptions. Instead, as men-
tioned earlier, the particle filtering approach combined with sequential Monte Carlo 
method is more flexible and provides a way to estimate nonlinear, non-Gaussian, and 
nonstationary models. To be shown later, the particle filter generates a set of “parti-
cles,” which are samples of the distribution from Monte Carlo simulations. Those par-
ticles are then used to forecast the future and are updated when new observations are 
available. Mortality shocks are rare events so typically the distribution of mortality 
rates is non-Gaussian. To properly handle this situation, we use the particle filtering to 
estimate our model.

Particle Filtering Estimation Procedure

The objective of our estimation is to filter out the non-Gaussian state variables from 
unwanted noises, and this is where particle filters step in. Specifically, our estimation is 
to infer from a Bayesian perspective the probability function of the latent state, St = {x1,0:t, 
x2,0:t, …xn,0:t}, and the parameter vector, Θt, given the observed mortality time sequences, 
Yt = {y1,0:t, y2,0:t, …yn,0:t}. The basis for the estimation is to specify state and measurement 
equations. Given the time-discrete observations of mortality indexes, we discretize Equa-
tion (1) using the Euler method: 

(3)

for i= 1, 2,…, n, where ∆W(h) is a standard normal random variable, and h is the time dis-
cretization interval (1 year in this article, i.e., h= 1), during which there are Nt+h

(v) posi-
tive or negative jumps (v = 1 or 2). That is, our latent state St is composed of unobservable 
mortality Brownian motions and double jumps. Equation (3) serves as the state equation 
in the particle filtering. The jump size of mci

(v) + sci
(v)Zil

(v) retains its normal distributional 
structure, with the mean mci

(v) and the standard deviation sci
(v).

The measurement equation is given by 

yi,t = xi,t + ui,t                                                                (4)

in which the measurement error ui,t is independent and identically, normally distributed 

ui,t ~ N(0,σ
i
2)

where σ
i
2 is the variance of ui,t.

We use p(St|Yt) to denote the likelihood, that is, the distribution of latent states con-
ditional on the observed vector Yt. Given an initial probability distribution function  



8 Lin, Liu, & Yu in The Journal of risk and insurance  2012  

p(S0|Y0) = p(S0) and the time step h= 1, the update p(St|Yt−1) can be obtained sequentially 
through prediction: 

(5)

where p(St|St−1) can be estimated using the state Equation (3). The probability p(St|Yt) is 
updated by the Bayes rule, 

(6)

In general, however, the posterior probability p(St|Yt) of our model cannot be deter-
mined analytically because of the mixture of diffusions and jumps in the model. Mixing 
diffusions with jumps makes analytic treatment of the filtering problem difficult. The par-
ticle filtering provides a solution to the problem in this setting. This technique makes two 
assumptions (Doucet et al., 2001):

1. The state evolution can be accurately simulated. In other words, accurate samples can 
be drawn from p(St|St−1);

2. The likelihood can be accurately evaluated as a function of state variables and 
observations.

With these two assumptions, we can estimate our model based on particle filtering 
with the Sampling-Importance-Resampling (SIR) algorithm. The key idea of particle fil-
tering with the SIR algorithm is summarized in Appendix A.

Pricing Mortality Securities With Multivariate Exponential Tilting

A complete market is a market where any derivative security can be replicated and 
hedged by holding cash and the underlying asset. Mortality securities, contingent on mor-
tality catastrophe events, are derivatives with mortality rates as their underlying indexes. 
Currently, there are only a limited number of mortality securities, which are illiquid. Fur-
thermore, a catastrophic event can happen at a random time with a random size, which 
makes it impossible to create a hedge portfolio to replicate mortality jumps. This implies 
that mortality security markets are incomplete and contingent claims cannot be replicated 
by trading. Thus, it leaves open the problem of pricing securities in this situation.

One possibility of valuing mortality securities in an incomplete market is to apply ex-
ponential tilting. Given a statistical distribution of potential outcomes and their respec-
tive likelihoods from historical data, the exponential tilting risk neutralizes the statistical 
distribution. This technique, consistent with the existing literature on no-arbitrage pricing 
of contingent claims (Duffie, 1992; Heston, 1993; Karatzas and Shreve, 1992; Gerber and 
Shiu, 1996), has some popularity in pricing insurance-related risks (e.g., catastrophe prop-
erty and mortality risks).

Another reason for us to apply the exponential tilting method in mortality securitiza-
tion is that its multivariate version can account for multiple underlying assets or liabili-



Pricing MortaL itY Securit ieS with correLated MortaL itY indexeS     9

ties of a contingent claim and price the effect of their correlations accordingly (Cox, Lin, 
and Wang, 2006). This is important because the payoffs of existing mortality securities are 
typically determined by multiple population mortality indexes. By changing multivariate 
probability measures, the multivariate exponential tilting can capture the correlations of 
these indexes so as to properly disentangle different components of the risk premium and 
price such securities.

In the following discussion, we first present the basics of the exponential tilting ap-
proach. Then we adopt a normalization procedure proposed by Cox, Lin, and Wang 
(2006) and Wang (2007) to ensure a consistent interpretation of the risk-adjustment pa-
rameter. Next we formulate normalized multivariate exponential tilting that provides 
a general framework for pricing risks with respect to multiple reference risks. Later in 
“Empirical Applications,” we provide an example to show how to apply this approach to 
price mortality securities.

Normalized Univariate Exponential Tilting

Given a probability space (Ω, P), consider two risks X and V. If X is continuous with 
respect to V, the exponential tilting of X with respect to V is defined as 

(7)

where λ is the risk adjustment parameter. fX(x) is the statistical or physical probability 
density function and fX*(x) is the transformed probability density function after applying 
the exponential tilting. The ratio 

(8)

is called the Radon-Nikodym derivative of  fX* with respect to fX.

If X uses itself as the reference, that is, X = V, Equation (7) becomes 

(9)

This is the well-known Esscher transform, which has been implemented in option pric-
ing, insurance-linked security pricing, and contingent claims valuation (Gerber and Shiu, 
1996; Cox, Lin, and Petersen, 2010).

Except that V is normally distributed, the risk adjustment parameter λ does not have 
a consistent interpretation because “the scale and shape of the reference variable V can 
significantly impact the result of exponential tilting” (Wang, 2007). As such, we adopt 
a normalization procedure of the reference variable V through percentile mapping to 
a standard normal variable Z following Cox, Lin, and Wang (2006) and Wang (2007). 
Mathematically, 

(10)



10 Lin, Liu, & Yu in The Journal of risk and insurance  2012  

where Φ is the cumulative distribution function of Z. After normalization, we replace V 
with Z as the reference variable. That is, we implement “normalized” exponential tilting 
of X with respect to V by using Z. Formally,

Definition 1: Let Z a normalized variable of the reference V. The normalized exponential tilting 
of X with respect to Y is defined as:

(11)

For more details, see Wang (2007).

Normalized Multivariate Exponential Tilting

Consider n variables X1, X2, …, Xn with k references V1, V2, …, Vk in a probability space 
(Ω, P).

Definition 2: Given a probability space (Ω, P), the exponential tilting of X1, X2, …, Xn with re-
spect to references V1, V2, …, Vk is defined as the following probability density function:

(12)

The references V1, V2, …, Vk can be flexibly specified to fit a particular situation. For in-
stance, the references can be the risks themselves, that is, (V1, V2, …, Vk) = (X1, X2, …, Xk) 
given n = k. In other cases, the references V1, V2, …, Vk represent a firm’s specific financial 
variables or some industry aggregate indexes. In the context of this article, V1, V2, …, Vk 
refer to population mortality indexes of different countries.

Similar to the univariate case in “Normalized Univariate Exponential Tilting,” in or-
der to get a meaningful interpretation of the parameters λj in Equation (12) where j= 1, …, 
k, we need to apply a normalization procedure to all references V1, V2, …, Vk. Specifically, 
we calculate 

(13)

by percentile mapping where Z1, Z2, …, Zk are standard normal variables.

Then, we can define the normalized multivariate exponential tilting of X1, X2, …, Xn 
with respect to references V1, V2, …, Vk as follows: 

(14)

With this setup, Wang (2007) proves the following theorem:
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Theorem 1: Assume that {X1, X2, …, Xn; V1, V2, …, Vk} follow a normal copula with correlation 
matrix: 

(15)

The normalized multivariate exponential titling in Equation (14) of X1, X2, …, Xn w.r.t. V1, V2, 
…, Vk is equivalent to applying the multivariate Wang transforms to Xi with: 

(16)

In addition, Wang (2007) shows that the correlation matrix between X1, X2, …, Xn is 
unchanged after the normalized multivariate exponential tilting, Σ*

XX = ΣXX. This is a desir-
able property because it simplifies the pricing procedure.

Empirical Applications

In this section, an example is provided to illustrate how to apply the proposed meth-
ods. We first use particle filtering to estimate mortality stochastic of six countries (n = 6): 
United States, United Kingdom, France, Germany, Japan, and Canada. Then, based on 
the mortality rates forecasted from model (1) and the normalized multivariate exponen-
tial tilting introduced in “Pricing Mortality Securities With Multivariate Exponential Tilt-
ing,” we derive the market prices of risk for different mortality diffusion and jump pro-
cesses. The same technique can be easily extended to more complicated situations where 
a greater number of countries are involved.

Data
Our U.S. data from 1900 to 1998 are obtained from the Vital Statistics of the United 

States (VSUS).2 The VSUS reports the U.S. age-adjusted death rates per 100,000 standard 
million population (2000 standard) for selected causes of death. Our mortality data for 
United States from 1999 to 2005 and United Kingdom and France from 1900 to 2005 are 
drawn from the Human Mortality Database.3 The Human Mortality Database reports the 
death and population size of country i for different ages. We divide the total number of 
deaths in different ages by the total population to get each population mortality index qt

(i). 
Following the same procedure, we calculate the population mortality index for Canada 
using the cohort data from 1900 to 1920 and the period data from 1921 to 2005 from the 

2. Data source: http://www.cdc.gov 
3. Data source: Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute 

for Demographic Research (Germany). Available at http://www.mortality.org or http://www.humanmortal-
ity.de (the data were downloaded on June 8, 2008).
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Human Mortality Database.4 Our Japanese population mortality data are obtained from 
the Vital Statistics of the Ministry of Health, Labor and Welfare in Japan.5 The Japanese 
Vital Statistics database does not include the mortality data from 1944 to 1946. So we use 
the linear interpolation to generate the population mortality indexes for these 3 years. The 
German population mortality data from 1900 to 2005 are provided by the German Federal 
Statistical Office.6

We plot our data as the change of log-mortality rate, ∆ln qt
(i), from 1900 to 2005 in Fig-

ure 1, which shows a remarkable mortality fluctuation caused by the influenza breakout 
in 1918. Another visible fluctuation caused by influenza and pneumonia was around 1950 
but its magnitude was much smaller as compared to that of the 1918 worldwide flu.

Figure 1. The Changes of Log-Mortality Rates, 1900 Through 2005. The figure 
presents the change of log-mortality rate, ∆ln qt

(i), for country i (i= 1, 2, …, 6) from 
1900 to 2005. Country 1 is United States, country 2 is United Kingdom, country 3 is 
France, country 4 is Germany, country 5 is Japan, and country 6 is Canada.

4. The Canadian cohort data do not capture the impact of the 1918 flu epidemic on the whole population. As 
such, we adjust the Canadian population mortality index in 1918 upward by 0.0045 to account for the excess 
death rate due to the flu based on the 1918 pandemic information from the Canadian Encyclopedia at http://
www.thecanadianencyclopedia.com 

5. http://www.mhlw.go.jp 
6. http://www.destatis.de
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Parameter Estimation
We need to estimate the parameters Θ = {θk, k = 1, 2, … M} besides the state vector. One 
can achieve, in particle filtering, the joint estimation of states and parameters by the aug-
mented state space {St; Θt}  where each parameter is specified as a Gaussian random walk 

θk,t = θk,t−1 + ςk,t,         ςk,t ~ N(0, σθk )

Then the same steps described in “Estimation With Particle Filtering” can be followed 
to estimate the augmented state variables. It is worth noting that the use of random walk 
may lead to estimated posterior distributions far more diffuse than the actual posteriors. 
To remedy this problem, we adopt the kernel smoothing approach (Doucet et al., 2001), 
which is described in Appendix B.

Estimation Results. Table 1 presents our parameter estimates after we apply the parti-
cle filtering approach. On average, the population mortality of the United States, United 
Kingdom, France, Germany, Japan, and Canada improves 0.91 percent, 0.32 percent, 
0.77 percent, 0.58 percent, 0.55 percent, and 0.60 percent, per year, respectively. The six 
countries’ mortality volatilities σi are comparable, with United Kingdom having the 
highest value of 0.0810. The common jump size volatility parameter sci for each country 
i is much larger than that of the Brownian motion volatility σi. It coincides with what 
we observe from Figure 1: mortality jumps have a much larger magnitude than mor-
tality normal fluctuations. Moreover, our estimate of the Poisson parameter equals kc= 
0.0120, implying that the worldwide mortality jump is approximately a one-in-eighty-
three-year (1/kc ≈ 83) event.

Table 1.  Particle Filtering Parameter Estimates Based on the United States, United 
Kingdom, France, Germany, Japan, and Canada Annual Population Mortality Indexes 
qt

(i) (t = 1900, …, 2005).

  i αi σi mci sci

United States 1 −0.0091 0.0404 0.1314 0.0602
    (0.0013) (0.0085) (0.0276) (0.0178)
United Kingdom 2 −0.0032 0.0810 0.0001 0.1638
    (0.0006) (0.0237) (1.5× 10−5) (0.0394)
France 3 −0.0077 0.0433 0.1947 0.1317
    (0.0013) (0.0094) (0.0514) (0.0227)
Germany 4 −0.0058 0.0671 0.0001 0.1249
    (0.0011) (0.0129) (3.1 × 10−5) (0.0347)
Japan 5 −0.0055 0.0218 0.1888 0.0562
    (0.0018) (0.0034) (0.0325) (0.0142)
Canada 6 −0.0060 0.0336 0.1218 0.1711
    (0.0008) (0.0076) (0.0247) (0.0265)

The standard errors are reported in parentheses.
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Our estimated correlation matrix of the six countries’ instantaneous mortality indexes, 
ΣWW, is shown as follows: 

(17)
From the correlation matrix (17), we can see that the Brownian motions of the six coun-

tries are all positively correlated. Among all of these correlations, the correlation between 
France and Germany is the highest (r34= 0.80). This can be explained by the fact that both 
of them are in continental Europe and they share a common border. Their geographical 
connection leads to a high level of mortality comovements.

Figure 2 provides a graphical depiction of the filter’s performance with yearly sam-
pling frequency. It displays the actual population death rate per 100,000 = 100,000 qt

(i) 

Figure 2. Filtering Results and Data. The figure compares the actual and posterior 
means of the filtered population death rate per 100,000 (= 100,000 qt

(i)) distribution 
for the United States (i= 1), United Kingdom (i= 2), France (i= 3), Germany (i= 4), 
Japan (i= 5), and Canada (i= 6) in years t= 1900, 1901, …, 2005. The dash line rep-
resents the historical data and the solid line plots the death rates estimated from the 
particle filtering.
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and the filtered posterior mean for country i from 1900 to 2005. On average, the posterior 
mean of each country tracks the actual observation nicely.

Out-of-Sample Performance. Most of the existing papers on mortality risk modeling do 
not consider mortality correlations and temporary mortality common jumps in a single 
model. In “Model Specification,” we use the combination of Brownian motions and a 
double jump process to describe the dynamics of correlated mortality indexes of several 
countries. To justify this, we compare the prediction standard errors of our model, based 
on different prediction time horizons, with those of (1) a model with jumps but without 
correlations and (2) a model with neither common jumps nor correlations.

We first estimate these three models over the periods 1900 to 1950, 1900 to 1965, and 
1900 to 1980, respectively.7 Then we conduct out-of-sample forecasting for each of them. 
In each sample period, we simulate 10,000 paths of the mortality indexes and measure 
prediction standard error across all six countries, prediction years, and paths. Mathe-
matically, the prediction standard error is the square root of the prediction variance. In 
our case, the prediction variance is the variation associated with the difference between 
the true and predicted log-mortality rates, ln qt

(i). A lower prediction standard error sug-
gests a good prediction power. We compare the 3-, 4-, and 5-year prediction standard er-
rors of the three models and the results are reported in Table 2.8 Table 2 shows that the 
model with correlations and common jumps consistently has the lowest prediction stan-
dard error in all specifications, which suggests that it has a better forecasting power than 
the other two models with less parameters.

Pricing Mortality Securities
To illustrate how to apply the normalized multivariate exponential tilting on the mul-

tidimension mortality dynamics described by our proposed mortality model (1), we will 
use market data to calibrate risk-adjusted probability measures.9 In “Estimation Results,” 
we have obtained the parameters for six Brownian motions for United States, United 
Kingdom, France, Germany, Japan, and Canada, and a common jump process. To esti-

7. To conserve space, we do not report the parameter estimates for these models in different sample periods. The 
results are available upon request.

8. Pricing mortality securities relies on a good mortality model. Based on seven mortality securities issued 
in 2006, in “Pricing Mortality Securities” we calibrate market prices of risk for different diffusion and com-
mon jump processes with the parameters estimated from our proposed model with correlations and com-
mon jumps. These mortality securities have a maturity of 3, 4, or 5 years. To show the performance of our 
model in the life of these securities, we present the prediction standard errors of 3, 4, and 5 years. We reach 
the same conclusions for longer prediction periods and different sample periods while not presented here 
to conserve space.

9. The risk adjustment factor in the Wang transform is usually called the market price of risk (Lin and Cox, 2005; 
Dowd et al., 2006; Denuit, Devolder, and Goderniaux, 2007; Chen and Cox, 2009; and others). Following this 
line of research, due to the equivalence of the normalized multivariate exponential tilting and the multivari-
ate Wang transform, we also call the risk adjustment factor λ in the normalized multivariate exponential tilt-
ing “market price of risk.”
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mate the market prices of risk for these seven processes, we select the following seven 
mortality securities issued in 2006 that meet our needs: Vita II mortality bond Tranche B, 
Vita II mortality bond Tranche C, Vita II mortality bond Tranche D, Tartan mortality bond 
Tranche B, Osiris mortality bond Tranche B2, Osiris mortality bond Tranche C, and Osiris 
mortality bond Tranche D.

In the following discussion, we first briefly introduce these mortality securities and 
then show how to estimate the market prices of risk for different processes underlying 
these securities.

Mortality Securities Issued in 2006 for Our Calibration. Capital markets have grown in-
creasingly important in recent years as a solution to deal with mortality risk and expand 
the capacity of paying catastrophic mortality losses. For instance, to transfer catastrophic 
death risk from events such as epidemics, earthquakes, hurricanes, and other natural or 
man-made disasters, Swiss Re launched its second mortality transaction in 2006, the Vita 

Table 2.  Three-, Four-, and Five-Year Prediction Standard Errors of Models With and 
Without Correlations and Common Jumps Based on Sample Periods of 1900 Through 
1950, 1900 Through 1965, and 1900 Through 1980. 

Sample Period 1900 through 1950

                                                                           Prediction Period

Correlation Common Jump 3-Year 4-Year 5-Year

No No 0.1246 0.1415 0.1572
No Yes 0.0889 0.0947 0.0975
Yes Yes 0.0837 0.0893 0.0924

Sample Period 1900 Through 1965

                                                                           Prediction Period

Correlation Common Jump 3-Year 4-Year 5-Year

No No 0.1208 0.1363 0.1470
No Yes 0.0837 0.0863 0.0899
Yes Yes 0.0748 0.0791 0.0821

Sample Period 1900 Through 1980

                                                                           Prediction Period

Correlation Common Jump 3-Year 4-Year 5-Year

No No 0.1162 0.1284 0.1420
No Yes 0.0825 0.0832 0.0851
Yes Yes 0.0730 0.0770 0.0799
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Capital II Ltd. mortality bond (Vita II) with three tranches (i.e., Tranches B, C, and D) af-
ter it issued the first pure mortality bond in December 2003.

Tranches B, C, and D of this deal provide Swiss Re total coverage of $362 million from 
investors against extreme mortality risk scenarios. This bond is a 5-year deal, with the 
principal subject to mortality risk. Tranches B, C, and D pay a par spread of 0.90 percent, 
1.4 percent, and 1.9 percent, respectively. The mortality risk is defined in terms of a com-
bined mortality index (CMI), ‾qt, which is the average of two annual index values over the 
period concerned: 

‾qt = (qt–1 + qt) ÷ 2,   t = 2007, …, 2011

The annual index qt is a weighted average annual population death rates of five coun-
tries: 62.5 percent of qt is based on the U.S. mortality index, 17.5 percent on the U.K., 7.5 
percent on Germany, 7.5 percent on Japan, and 5 percent on Canada: 

qt = 0.65 qt
(1) + 0.175 qt

(2) + 0.075 qt
(3) + 0.075 qt

(4) + 0.005qt
(5)

Both the trigger level and exhaustion level for observed mortality in the risk period 
will be measured against 2002/2003 index value, q0: 

q0 = (q2002 + q2003) ÷ 2

For each tranche of Vita II, a trigger event is deemed to have occurred when the CMI 
exceeds id of the base level. Take Tranche B as an example: If ‾qt (t= 2007, …, 2011) exceeds 
id = 120 percent of the 2002/2003 index value, q0, the principal payment will be reduced. 
The principal will be forfeited when ‾qt equals or goes above iu= 125 percent of q0. Specifi-
cally, the principal loss percentage, Lt in year t, is determined as follows: 

However, a year can be counted only once toward a loss event. For example, if year 
2007 resulted in a loss in 2006 through 2007, then the next earliest possible loss would be 
in 2008 through 2009. No loss of the principal would be possible in 2007 through 2008 be-
cause 2007 was already considered.
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Therefore, given the size of $62 million, the principal of Tranche B to be paid at matu-
rity is equal to

                          Tranche B’s Payment at Maturity

(18)

The payment of Tranche C (Tranche D) of Vita II at maturity is similarly determined 
except that its size is $200 million ($100 million) and its attachment point id and detach-
ment point iu are 1.15 and 1.2 (1.1 and 1.15), respectively. The above discussion on the 
three tranches of Vita II is summarized in Table 3. Table 3 also provides an overview on 
the other four 2006 mortality securities we use for calibrating market prices of risk.

Pricing. In the previous discussion, we have shown how to describe the U.S., U.K., 
France, Germany, Japan, and Canada population mortality dynamics by using Brownian 
motions 

Wt
(1), Wt

(2), Wt
(3), Wt

(4), Wt
(5), Wt

(6)

and jump sizes 

J (c1), J (c2), J (c3), J (c4), J (c5), J (c6)

where J (ci) = exp(mci + σci Zi). The correlations between Wt
(j)’s are ΣWW as shown in (17). 

The common jump sizes J(ci)’s are assumed to be independent of Wt
(j)’s. Further assume 

that 

Wt
(1), Wt

(2), Wt
(3), Wt

(4), Wt
(5), Wt

(6), J (c1), J (c2), J (c3), J (c4), J (c5), J (c6)

use themselves as references (Cox, Lin, and Wang, 2006).
Equation (16) suggests that the risk-neutralized distributions are equivalent to chang-

ing measure on the Brownian motions and jump sizes. That is, Wt
(j)* = Wt

(j) + βW(j)t for j= 1, 
…, 6, and mci* = mci + βJ σci for i= 1, …, 6. Accordingly, we define a vector B in such a way 
that it is composed of parameters for risk-adjusting physical distributions of various mor-
tality Brownian motions and jump sizes: 

B′ = (βW(1) βW(2) βW(3) βW(4) βW(5) βW(6) βJ )                                      (19)
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Based on Equation (16), B is given by 
B = ΣΛ                                                                (20)

where Σ is the correlation matrix of different countries’ mortality Brownian motions and 
common jump, 

Σ = ( ΣWW     ΣJW )        ΣWJ      ΣJJ 

Table 3.  Mortality Securities for Calibrating Market Prices of Risk 

  Vita II Tranche B Vita II Tranche C Vita II Tranche D

Size $62M $200M $100M

Issue date April 2006 April 2006 April 2006

Maturity 5 years 5 years 5 years

Coupon (bps) LIBOR+90 LIBOR+140 LIBOR+190

Attachment 1.2 × [(q2002+q2003)/2] 1.15 × [(q2002+q2003)/2] 1.1 × [(q2002+q2003)/2]

Detachment 1.25 × [(q2002+q2003)/2] 1.2 × [(q2002+q2003)/2] 1.15 × [(q2002+q2003)/2]

Index United Sates 62.5%, United Kingdom 17.5%, Germany 7.5%,  

 Japan 7.5%, Canada 5%

   Tartan Tranche B

Size  $80M

Issue date  May 2006

Maturity  3 years

Coupon (bps)  LIBOR+300

Attachment  1.1 × [(q2004+q2005)/2]

Detachment  1.15 × [(q2004+q2005)/2]

Index  United States 100%

  Osiris Tranche B2 Osiris Tranche C Osiris Tranche D

Size Euro 50M $150M $100M

Issue date November 2006 November 2006 November 2006

Maturity 4 years 4 years 4 years

Coupon (bps) LIBOR+120 LIBOR+285 LIBOR+500

Attachment 1.14 × [(q2004+q2005)/2] 1.10 × [(q2004+q2005)/2] 1.06 × [(q2004+q2005)/2]

Detachment 1.19 × [(q2004+q2005)/2] 1.14 × [(q2004+q2005)/2] 1.10 × [(q2004+q2005)/2]

Index United States 15%, Japan 25%, France 60%
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where ΣWW has the estimated values shown in (17). Given no correlation between the 
Brownian motions and the jump process, it is easy to obtain 

(21)

The vector Λ′ includes the parameters that control the magnitude of risk adjustments, 

(22)
Then we can calculate all elements in the vector B as follows: 

(23)

Based on Equations (1) and (20), the six-country population mortality indexes fore-
casted from the estimated parameters in Table 1 and the correlation matrix Σ in (21), the 
U.S. Treasury rates on December 29, 2006, as well as the spreads of the seven mortality se-
curities in Table 3, our estimated market prices of risk for different diffusion and jump 
processes equal 

(24)

In (24), the market price of risk for the common jump (λJ = 3.2885) is much higher 
than those of the country-specific Brownian motions (λW(i), i = 1, …, 6 ). The high-risk 
premium of the common jump reflects the risk aversion of insurers or investors when 
they face unhedgeable catastrophe mortality risks (Froot and Stein, 1998; Lin and Cox, 
2008).10 However, insurers pay a low premium to transfer their mortality diffusion risk. 

10. Most of the mortality securities were issued to protect insurance and reinsurance companies. Here we use 
“insurers” to refer to both insurers and reinsurers.
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This can be explained by the fact that the insurers can predict mortality normal devia-
tions from the trend to some extent. The regular mortality fluctuations are less likely to 
impose them a high financial distress cost so the risk premium is lower. Among all mar-
ket prices of risk for various diffusions, the United Kingdom’s Brownian motion has the 
highest market price of risk (λW(2) = 0.3329). This is consistent with our parameter esti-
mations in Table 1: the United Kingdom has a much higher volatility σ2= 0.0810 than 
other sample countries. A higher volatility implies a higher risk so it requires a higher 
market price of risk.

We can also obtain the transformed probability distribution of the weighted average 
population mortality rate qt

* for different mortality securities. For example, the trans-
formed annual CMI of Vita II equals 

qt
* = 0.625 qt

*(1) + 0.175 qt
*(2) + 0.075 qt

*(4) 0.075 qt
*(5) + 0.05 qt

*(6)

where qt
*(i) is the transformed country i’s population mortality rate after applying normal-

ized multivariate exponential tilting.
As noted earlier, the payoffs of the Vita II mortality bond depend on (qt−1 + qt)/2 (t 

= 2007, …, 2011) where qt is a weighted average of the population mortality indexes of 
United States (62.5 percent), United Kingdom (17.5 percent), Germany (7.5 percent), Japan 
(7.5 percent), and Canada (5 percent). Figure 3 plots its transformed probability distribu-
tion of (q*

2009 + q*
2010)/2 with the market prices of risk in (24). Figure 3 also compares the 

Figure 3. Normalized Multivariate Exponential Tilting Transformed Probability Distri-
bution of (q*

2009 + q*
2010)/2  (Shown as Broken Line) and Physical Probability Distribu-

tion of (q2009+q2010)/2 (Shown as Solid Line) Based on 10,000 Simulation Trials. The 
horizontal axis is the average of the weighted population mortality indexes in 2009 and 
2010 defined in the Vita II bond (62.5 percent on U.S. population death rate, 17.5 per-
cent on the U.K., 7.5 percent on Germany, 7.5 percent on Japan, and 5 percent on 
Canada) and the vertical axis stands for the probability.
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transformed distribution to its physical distribution (q2009+q2010)/2.11 As what we expect, 
the transformed distribution lies on the right of the physical distribution. After transfor-
mation, we put more weight on catastrophic mortality events (i.e., the right tail). It im-
plies that investors expect a higher probability of extreme mortality losses than what the 
physical distribution suggests.

Impact of Correlations and Jumps on Pricing. Do the correlations and common jumps 
play an important role in mortality security pricing? To answer this question, we compare 
the market prices of risk in (24) from the model with correlations and common jumps 
with those of (1) the model with common jumps but without correlations and (2) the 
model without common jumps and correlations.

To obtain the market prices of risk for the model with common jumps but without cor-
relations, we first run 10,000 trials of simulation based on the parameters in Table C1 in 
Appendix C where mortality correlations among six sample countries are not considered. 
Then we apply the normalized multivariate exponential tilting and obtain the following 
market prices of risk: 

(25)

Assuming zero correlations, the market prices of risk in (25) are all higher than those 
in (24) when we account for the correlations of six-country population death rates. Ac-
cording to our proposed model (1) with correlations and jumps, all six countries have 
positive correlations with each other (see the correlation matrix (17)). That is, an increase 
in a country’s mortality rate will be coincident with mortality rate increases of the other 
five countries. As such, a CMI based on the model with positive correlations has a higher 
mortality risk since it is more likely to exceed the trigger level above which the principal 
will be reduced. Given the fixed par spreads of the seven mortality securities, the higher 
mortality risk from the real world model implies the lower market prices of risk when the 
positive mortality correlations are incorporated in pricing. In contrast, failing to model 
mortality correlations would overestimate market prices of risk and overprice a “new” 
mortality security based on these estimates, thus discouraging insurers from transferring 
catastrophe mortality risk to capital markets. High-risk premia at least partially explain 
the failure of some insurance-linked securities, such as the EIB longevity bond issued in 
2004 (Lin and Cox, 2008).

When we ignore both mortality correlations and common jumps, based on the param-
eters in Table C2 in Appendix C and 10,000 trials of simulation, we get the following mar-

11. We obtain similar graphs for various population mortality indexes in different years underlying the mortal-
ity securities in Table 3. To conserve space, we do not show them here.
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ket prices of risk that deviate dramatically from the values in (24): 

(26)

In (26), λJ = 0 because the model excludes mortality common jumps. As the pricing for-
mula is based on tilting the real-world model, the adjustment parameter in terms of mar-
ket price of risk is meaningful only if the baseline historical model is reliably specified. 
When the mortality common jumps are estimated as part of the diffusions, the model has 
a poor out-of-sample performance (see “Out-of-Sample Performance”) and thus leads to 
unreliable market prices of risk for different diffusion processes. From the above-men-
tioned analysis, we conclude that both mortality correlations and common jumps are in-
dispensable components for mortality security pricing.

Conclusions
Mortality correlations become an increasingly important consideration in life insur-

ance business and mortality security pricing, because populations of different coun-
tries and cohorts are more interdependent than ever. Life insurers that operate in mul-
tiple countries have to evaluate the effect of massive catastrophic mortality events such 
as worldwide flu epidemics. In the mortality security markets, most transactions, albeit 
their difference in structure, have one thing in common: Based on mortality data reported 
by official agencies, they tend to calculate a weighted average mortality index of multiple 
underlying reference populations. Therefore, the payoffs of these mortality securities are 
dependent on the correlations among these population mortality indexes.

In this article, we propose a time-continuous model for describing mortality correla-
tions among different countries. For each included country, the mortality model is com-
posed of two parts: (1) a baseline component describes a country’s mortality normal de-
viations from the trend and its correlation with other countries’ mortality rates and (2) a 
common jump component is governed by a double-jump process. The double-jump pro-
cess aims at capturing transient catastrophic death events.

Many existing papers ignore mortality correlations to simplify their calibration pro-
cedures because the correlations to be estimated grow quadratically with the number of 
countries of interests. However, as shown in the article, mortality correlation has a signif-
icant impact on parameter estimation and mortality security pricing, so it should not be 
ignored. To tackle this calibration challenge in correlation estimation, we apply the parti-
cle filtering approach. We describe its procedures and resulting parameterizations in the 
context of mortality stochastic modeling.

Finally, we utilize the normalized multivariate exponential tilting method to price 
some mortality securities issued in 2006 and calibrate market prices of risk for different 
mortality diffusion and jump processes. The market prices of risk derived from the nor-
malized multivariate exponential tilting depend on intercountry mortality correlations 
and jumps. Our numerical example confirms that both mortality correlations and com-
mon jumps are important in pricing those securities.
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In sum, this article contributes to the mortality literature in three ways. First, we de-
velop a mortality dynamic model that captures both mortality correlation among coun-
tries and common jumps that affect all countries. Second, we propose to use a double-
jump process to model transient mortality shocks. Third, we apply the particle filtering 
approach to estimate multicountry mortality models with correlations. While we apply 
the particle filtering approach in the context of multicountry population mortality in-
dexes, we can extend the application of this technique to investigate cohort mortality de-
pendency within a country or among countries. We leave this for future work.
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Appendix A
The key idea of particle filtering with the SIR algorithm is briefly described in the fol-

lowing recursive steps.
Step 1. This step generates random samples from previous state variables and obser-

vations. Specifically, given the observation Yt−1 and the estimated St−1 at time t− 1, we sim-
ulate shocks {ΔWj, ΔNj, Zj} and draw xt

j (j= 1, …, L) from p(St|St−1) by simulating the latent 
state vector forward using the state Equation (3). We draw L samples of xt

j  from the prior 
probability density of (3) and approximate p(St|Yt−1) by using the set of L particles.

Step 2. We estimate the likelihood function p(Yt|St). The measurement Equation (4) 
shows that p(Yt|St) is normally distributed so it can be evaluated as a function of St and 
Yt. For each sample xt

j, set the importance weight equal to p(Yt|xt
j). Then we calculate the 

normalized importance weight wt
j, 

 

where ∑L
j=1

 wt
j = 1. The set of {wt

j} can be viewed as a discrete probability distribution of xt
j 

(j= 1, …, L), that is, an approximate density pL(St|Yt) to the true density p(St|Yt).

Step 3. In this step the particle filter estimates an approximation, p̂L(St|Yt), using L 
unweighted particles, of the true filtering density p(St|Yt). The resampling step modi-
fies the weighted density pL(St|Yt–1), estimated previously, to an unweighted density 
p̂L(St|Yt–1) by eliminating particles with low importance weights and by multiplying par-
ticles with high importance weights. That is, the resampling procedure eliminates selec-
tively over time those particles with very lower probability, replaces them with particles 
with higher probability, and at the same time, keeps the number of particles unchanged. 

12. There are a number of resampling algorithms. Three of them, multinomial resampling, systematic resam-
pling, and residual resampling, are used in this study.
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This step generates a new set of L particles, x̂t
j ( j = 1, …, L).12 As the number of particles, 

L, increases, the approximation converges to the true filtering distribution.

Appendix B
The process of the kernel smoothing approach (Doucet et al., 2001) is briefly described 

as follows:
Step 1.  Given the observation Yt−1 and L= 5, 000 samples of {x j

t–1; θ
j
t–1}, first simulate 

shocks {ΔWj, ΔNj, Z j} for the time interval from t−1 to t. Then sample the state variable x j
t, 

j = 1, …, L, using (3) and compute the mean of x j
t

μt = E (St|St–1, Θt–1)

and the kernel location 

 

where ξ > 0 is a smooth parameter and Θ‾ t–1 is the mean of the prior p(Θt−1|Yt−1) .

Step 2.  For j= 1, 2, …, L, sample a parameter vector θ j
t  from the j-th normal compo-

nent of the kernel density, θ j
t ~ N (∙|τt, ξ2 Vt), where Vt is the variance/covariance matrix 

of p(Θt|Yt−1).

Step 3.  Sample the values of the current state vector {x j
t} again. This time use the sam-

pled parameter vector θ j
t  estimated in step 2. That is, step 3 draws samples {x j

t} from the 
distribution p(St|St−1, Θt) compared to step 2 where we draw samples {x j

t} from the distri-
bution p(St|St−1, Θt−1).

Step 4 .  We estimate the likelihood function p(Yt|St, Θt) and evaluate the normalized 
importance weight 

 The set of  w j
t  can be viewed as a discrete probability distribution of {x j

t, θ
j
t}, that is, 

an approximation of the true density p(St, Θt|Yt).

Step 5. The resampling step modifies the weighted approximate density pL (St, 
Θt|Yt−1) to an unweighted density p̂L(St, Θt|Yt–1) as in step 3 of Appendix A. The parti-
cles with low importance weights are eliminated and the particles with high importance 
weights are propagated so that the total number of particles remains constant. This step 
generates {Ŝ t, Θ̂t} where Ŝ t and Θ̂t are the new set of unweighted particles. Their density 
approximates to the true filtering density p(St, Θt|Yt).

Repeat the above steps toward a final posterior estimation of states and parameters.
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Appendix C
Based on the same data shown in the “Data” section, Table C1 shows the estimates 

when we assume zero mortality correlations between the six countries but with com-
mon jumps. Our estimate of the Poisson intensity in this model equals 0.0125, close to kc= 
0.0120 when we model mortality correlations and common jumps. Table C2 shows the es-
timation results for the model without mortality correlations and common jumps.

Table C1.  Particle Filtering Parameter Estimates Based on the Model With Common 
Jumps but Without Correlations (1900 Through 2005) 

  i αi σi mci sci

United States 1 −0.0104 0.0386 0.1360 0.0576
    (0.0010) (0.0037) (0.0136) (0.0057)
United Kingdom 2 −0.0035 0.0857 0.0001 0.1451
    (0.0004) (0.0067) (8.6 × 10−6) (0.0147)
France 3 −0.0077 0.0421 0.2220 0.1194
    (0.0005) (0.0091) (0.0210) (0.0128)
Germany 4 −0.0060 0.0689 0.0001 0.1417
    (0.0005) (0.0070) (9.9 × 10−6) (0.0131)
Japan 5 −0.0061 0.0207 0.1784 0.0616
    (0.0007) (0.0050) (0.0174) (0.0059)
Canada 6 −0.0059 0.0326 0.1105 0.1937
    (0.0006) (0.0054) (0.0112) (0.0192)

The standard errors are reported in parentheses.

Table C2.  Particle Filtering Parameter Estimates Based on the Model Without Correla-
tions and Common Jumps (1900 Through 2005) 

  i αi σi

United Sates 1 −0.0100 0.0373
    (0.0010) (0.0039)
United Kingdom 2 −0.0038 0.0682
    (0.0004) (0.0070)
France 3 −0.0046 0.0982
    (0.0005) (0.0094)
Germany 4 −0.0045 0.0726
    (0.0005) (0.0071)
Japan 5 −0.0071 0.0531
    (0.0007) (0.0049)
Canada 6 −0.0058 0.0526
    (0.0006) (0.0054)

The standard errors are reported in parentheses.
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