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1. Introduction

Extrapolating across scales is a critical problem in ecol-
ogy; we must predict the responses of ecosystems at large 
spatial and long temporal scales, but logistical constraints 
force us to measure and conduct experiments at much 
smaller and shorter scales. Measuring processes over long 
periods of time at large spatial scales is particularly diffi-
cult; it is possible to measure patterns, i.e. static snapshots 
at a single point in time, over large spatial extents. Explicit 
mechanistic models of ecological systems can provide a 
bridge from measurements of processes at small and short 
scales to larger scales; spatial patterns at large scales can 
be used to test the outcomes of these models. However, if 
there is significant feedback between the large scale pat-

terns, and the small scale processes, we must have an ac-
curate pattern to initialize the model with in order to pre-
dict a future large scale pattern. Ideally, we would verify 
model outputs without this sensitive dependence on initial 
conditions.

A promising recent development is the notion of “pat-
tern based modeling” (Grimm et al., 1996), where the goal is 
to identify patterns in empirical data that can be used as fil-
ters on the model output to indirectly estimate parameters 
(Wiegand et al., 2003). In particular, if we identify patterns 
at large scales that are independent of initial spatial structure, 
then we can use these patterns to verify the model even if we 
are unable to accurately characterize the initial conditions of 
the model. The pattern analysis will also reveal significant 
gaps in our understanding of the system.
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Abstract
Extrapolating across scales is a critical problem in ecology. Explicit mechanistic models of ecological systems 

provide a bridge from measurements of processes at small and short scales to larger scales; spatial patterns at 
large scales can be used to test the outcomes of these models. However, it is necessary to identify patterns that 
are not dependent on initial conditions, because small scale initial conditions will not normally be measured at 
large scales. We examined one possible pattern that could meet these conditions, the relationship between mean 
and variance in abundance of a parasitic tick in an individual based model of a lizard tick interaction. We scaled 
discrepancies between the observed and simulated patterns with a transformation of the variance–covariance 
matrix of the observed pattern to objectively identify patterns that are “close”.

The results indicate that it is possible to generate patterns that are independent of initial conditions, verify-
ing that the small scale processes in the model are able to reproduce the large scale patterns observed in real 
data. The pattern analysis also indicates that we have a poor understanding of the density dependent effect of 
larval engorgement success and host refuge use.
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The particular system of interest to us is the interaction 
between an ectoparasitic tick (Aponomma hydrosauri: Ixodi-
dae) and its lizard host (Tiliqua rugosa: Scincidae) at Mt. Mary, 
South Australia (Tyre et al., 2003). This is part of a larger 
project examining the spatial and temporal dynamics of a 
parapatric boundary between A. hydrosauri and another ec-
toparasitic tick of Tiliqua, Amblyomma limbatum (Bull and 
Burzacott, 2001). Tyre et al. (2003) demonstrated (1) engorge-
ment success of larval ticks is dependent on the number 
of ticks attempting to attach, and (2) at the landscape scale 
there is a positive relationship between the mean tick abun-
dance per lizard, and the aggregation coefficient k of a neg-
ative binomial distribution fitted to the number of ticks on 
lizards. Although the latter pattern is expected in the pres-
ence of density dependent engorgement (Pacala and Dob-
son, 1988), it is not clear whether the individual scale pro-
cess is sufficient to generate the landscape scale pattern. The 
relationship between the mean and k is also independent of 
any particular population trajectory, and thus it could serve 
to verify the structure of the model even though we cannot 
specify the initial distribution of ticks and hosts across the 
entire landscape.

In this paper, we develop an individual based, spatially 
explicit model which serves several purposes. First, it is a 
quantitative expression of our knowledge about the host/
parasite ecological system. Second, it allows us to experi-
ment with alternative processes, and to formulate observa-
tions and experiments that will improve our knowledge of 
the system. Finally, it provides a vehicle for testing whether 
or not known individual scale processes lead to population 
and landscape scale patterns consistent with observations; 
this is our emphasis in this paper. First we describe the basic 
model structure and develop parameter estimates from ex-
isting empirical data. We then discuss the patterns we are in-
terested in, and measures of discrepancy between simulated 
and observed patterns.

2. Individual based, spatially explicit model

Model parameters are given in italics and listed in Table 
1. Chilton (1989) conducted extensive measurements of the 
response of life history parameters of A. hydrosauri, such as 
development time and survival, to temperature and humid-
ity. In general, these experiments involved placing ticks on 
lizards or in vials, and then holding them under the appro-
priate conditions until the appropriate developmental pro-
cess was complete. The time to engorge, develop, or die was 
recorded to the nearest day. In each specific section we de-
scribe how we used these data to obtain means, variances, 
and temperature effects for tick life history parameters.

From a tick’s point of view, the landscape consists of 
the lizard hosts and their nocturnal refuge sites. There are 
numrefuges randomly distributed refuges in a 1 km × 1 km 
square, used by numlizards lizards whose home ranges are 
centered on a randomly chosen refuge. All refuges within 
100 m of the center refuge are included in the home range. 
Tyre (1999) calculated Jolly-Seber estimates of lizard density 
near Mt. Mary, South Australia (SA) from random capture  
data described in Bull (1995). Assuming that the random  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
capture transect is sampling lizards from a 400 m wide strip 
(based on 200 m diameter home ranges on either side of the 
transect), lizard density ranges from 15 to 420 lizards/km2. 
The median lizard density is 100 lizards/km2.

There are two time scales in the model. On the short time 
scale, movement of lizards, birth, development, and death 
of ticks is modeled each day. A series of days is then aggre-
gated into a season, which is 210 days (1st September to 31st 
March) long. Development is frozen between seasons, under 
the assumption that autumn/winter temperatures are too 
low for tick activity. Ticks experience over-wintering mor-
tality, and a simplified form of population dynamics among 
lizard hosts also takes place between seasons.

The choice of a single day as the basic time step is log-
ical given the assumption that all significant movement of 
ticks on and off lizards occurs only in refuges entered at 
night. Ticks are adapted to detach in the nocturnal refuges 
of their hosts, where desiccation risks are lower, and the 
chances of finding another host are higher (Bull and Smyth, 
1973). Boarding a lizard requires that a tick in the right life 
history state detects and moves toward a lizard that has en-
tered a refuge. This movement ability is not great; some ticks 
were unsuccessful in boarding lizards even when confined 
together with a host in a calico bag for 48 h (Chilton, 1989).

Table 1. Parameters included in the sensitivity analysis, the distri-
bution used to represent uncertainty, and the parameters of the un-
certainty distributions

Variable                       Distribution Location                      Scale

numrefuges Uniform 7500 12500
numlizards Uniform 50 150
devregg Normal 53.1 5.31
devrlarvae Normal 21.9 2.19
devrnymph Normal 28.4 2.84
devradult Normal 26.5 2.65
devvegg Normal 1.3 0.13
devva Normal −10.1 3.03
devvb Normal 4.2 1.26
devtegg Normal 1.9 0.19
engrlarvae Normal 30.6 3.06
engrnymphs Normal 22.7 2.27
engradults Normal 39 3.9
engvlarvae Normal 11.7 1.17
engvnymphs Normal 16.7 1.67
engvadults Normal 17.6 1.76
surrlarvae Normal 13.8 1.38
surrnymphs Uniform 29.84 44.76
surradults Uniform 80 120
surva Normal −2.07 0.207
survb Normal 1.67 0.167
surta Normal 91.873 9.1873
surtb Normal −0.091 0.0091
devta Normal 18591 1859.1
devtb Normal −2.1843 
0.21843
tickeffect (See text) −0.002 –
ticksuccess (See text) −0.243 –
sampleefficiency Uniform 0.05 0.3

For uniform distributions the location and scale represent lower and 
upper limits. For normally distributed uncertainty the location is the 
mean, and the scale is the standard deviation.
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Within a single day, the model goes through several steps 
in the following order: ticks board lizards, lizards move be-
tween refuges, engorged ticks disembark from lizards, and 
ticks develop (Figure 1). We describe each step in more de-
tail below.

2.1. Tick embarkation, lizard movement, tick disembarkation

At the beginning of a model day, all lizards are in the 
overnight refuges in which they spent the previous night. 
The model checks all ticks in lizard occupied refuges; ticks 
that are found to be in a suitable state (i.e. unfed larvae, 
nymphs, or adults) are moved onto the lizard. As noted 
above, assuming that all suitable ticks board lizards is al-
most certainly an overestimate. If there is more than one liz-
ard in a particular refuge, the number of ticks boarding a 
lizard will be binomially distributed with n trials (the num-
ber of ticks in the refuge in the correct life history stage) and 
probability of boarding b. For all lizards except the last liz-
ard in the refuge, b is the reciprocal of the number of lizards 
using the refuge that night. All remaining ticks in the ref-
uge board the last lizard listed as being present in that refuge 
on that night. The position within the refuge list is random 
with respect to landscape location, and age class of lizard. As 
adult ticks board a lizard, the sex of each is determined ran-
domly assuming a 1:1 sex ratio. The final process that occurs 
in this part of the model is to assign the number of days each 
tick will require to engorge as a normally distributed vari-
able with a stage specific mean and standard deviation. This 

engorgement “index” is used during subsequent model days 
to determine when a tick has successfully engorged in the 
tick development step.

In the next step of the daily cycle, lizards move to new 
refuges. Each day, lizards move from one overnight ref-
uge to another overnight refuge chosen randomly with 
equal probability from among those in their home range. 
Note that this means they can spend consecutive nights 
in a refuge, and more than one lizard can occupy a refuge 
overnight. This is the simplest scenario that can be imple-
mented in the absence of information about the distribu-
tion of different types of refuges, the way in which neigh-
boring refuges are utilized by individual lizards, and the 
way in which lizards may interact on contact with other 
lizards. We assume that individual lizards are capable of 
moving over their entire home range during the day, and 
that there is no systematic bias either toward or away from 
particular kinds of refuges, or from their previously occu-
pied refuge.

The next step within the daily cycle is to drop off suc-
cessfully engorged ticks into their new refuges. Essentially, 
ticks that are on lizards, which completed engorgement on 
the previous development step (i.e. the previous night), are 
dropped off in the new refuge chosen by their host lizard.

The final step of the daily cycle handles development and 
mortality of all ticks, regardless of their current location. 
During this step, each tick is checked to see whether it ages, 
survives, or lays eggs, depending on its current stage and 
whether it is on a lizard or not.

Figure 1. Flowchart of main model processes. Processes that are attributes of lizard population dynamics and behavior which indirectly affect 
the ticks are placed in ovals, while processes directly affecting ticks are in rectangles.
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2.2. Growth and feeding

Stages that are engaged in growth or feeding (eggs, en-
gorged stages in refuges, and unfed stages on lizards) fol-
low a threshold process, where each stage lasts for a fixed 
number of days for each individual. Each individual is as-
signed a normally distributed random number as a devel-
opment or engorgement time on entry to a new life history 
stage. Both the mean and the variance are stage specific. For 
example, newly oviposited eggs have a hatching threshold 
with a mean of 53 days (devregg; Table 1) and a variance of 
1.3 days (devvegg). During the daily development step, each 
individual tick has its development or engorgement index 
decreased by 1 day. On the day the index reaches 0, the in-
dividual moves to the next stage (e.g. an egg hatches to an 
unfed larva, or a feeding nymph detaches). This means that 
the duration of all growing and feeding stages is normally 
distributed. This method is similar to those used for physio-
logically structured population models (Gurney et al., 1986), 
but includes variability between individuals. Chilton (1989) 
had good estimates for the average developmental times for 
all stages (devregg, devrlarvae, devrnymph, devradult); the vari-
ances were less consistent but increased with the mean de-
velopmental time according to σ2 = devva · edevvb·μ. We used 
this relationship to calculate the variance of developmental 
time for larvae, nymphs, and adults. The mean (engrlarvae, 
etc.) and variance (engvlarvae, etc.) of feeding periods was es-
timated directly from data for all stages.

Feeding has one additional complication. Not all individ-
uals succeed in attaching, engorging and detaching, and this 
is one of the few places where density dependence is known 
to occur in the system. We calculated the probability of suc-
cessfully engorging

      p{successful engorgement} =     eβ        ,
                                                           1 + eβ 

                    β = −0.243 − 0.002 (# of ticks)       (1)

assuming that this probability depends on the total num-
ber of ticks of all stages at the time engorgement is com-
plete (Tyre et al., 2003). The mechanism underlying the re-
lationship between tick density and engorgement success is 
presently unknown, and this empirical relationship is the 
simplest to implement in the model. At present we assume 
density dependence applies to all tick stages equally.

2.3. Survival

Predation on ticks within refuges by other invertebrates 
does occur (Bull et al., 1988), but is both spatially and tem-
porally unpredictable, and we do not include it in the cur-
rent model. When a host lizard dies from predation (pri-
marily automobiles near Mt. Mary) or old age all ticks on 
the lizard also die. We included this mortality in a single 
between season event (see below). We assume that the pri-
mary source of daily mortality for ticks is desiccation. The 
habitat has low rainfall (150–250 mm annually), and most 
development occurs during the hot, dry summer. The only 
moisture source available to ticks is a blood meal, and 
newly molted, unfed ticks must wait until another host ar-

rives before they can replenish their moisture supply. Eggs, 
engorged ticks in refuges, and ticks feeding on lizards are 
assumed to be unaffected by desiccation. We modeled mor-
tality similarly to development, by providing each individ-
ual with a normally distributed time to death. This is the 
number of days that each individual is expected to survive 
without feeding. The time is decreased by 1 day in each 
developmental step, and individuals that reach zero are 
killed. Death is presumed to have occurred as a result of 
higher temperatures during the day, and so mortality in a 
refuge precedes ticks boarding lizards that enter that refuge 
on the next day.

Chilton (1989) estimated the survival times for larvae 
(surrlarvae) under a wide range of temperatures and relative 
humidity. The average survival time of unfed nymphs (sur-
rnymphs) and adults (surradults) are completely free param-
eters, but observations of nymphs surviving at hot dry con-
ditions for 10–15 days suggest that survival times for both 
adults and nymphs are much longer than for larvae under 
normal conditions. Variance in survival times of larvae in-
creased with the mean survival time (σ2 = surva · esurvb·μ; Ta-
ble 1); we assumed the same relationship applied to variance 
in nymph and adult survival times.

2.4. Mating and oviposition

When an unfed adult tick boards a lizard, it is randomly 
assigned to be a male or female with a sex ratio of 1:1. Adult 
male ticks remain on lizards for the remainder of their life, 
assumed to be a fixed 180 days. The only contribution they 
have beyond this point is to mate with unfed female ticks. 
After boarding a lizard there is a fixed 5 day period before an 
adult male is mature and capable of mating. When an unfed 
female boards a lizard, if there is one or more mature males 
aboard she is mated immediately. Otherwise, she waits on 
that lizard until a mature male appears, or 180 days passes. 
There is no negative impact of waiting to mate on a females 
subsequent reproductive output, although a negative im-
pact has been observed in laboratory experiments (Chilton, 
1989). Once a female is mated, then she begins to engorge as 
described above for all other stages. This does introduce a 
slight Allee effect through delaying reproduction by females 
that board lizards without males.

Adult female ticks that have mated, successfully en-
gorged, and dropped off in a refuge enter a pre-oviposi-
tion stage, the duration of which is normally distributed and 
handled identically to aging, feeding, and molting. After 
pre-oviposition the number of eggs oviposited by a female 
tick per day depends on age; it peaks at 100 eggs/day at 10 
days of age and all oviposition ceases by 40 days of age. We 
used laboratory observations of average oviposition rates 
rounded down to the nearest integer. There is no stochastic-
ity in oviposition.

2.5. Between season processes

There are two processes that occur between the end of 
one season and the beginning of the next: over-wintering 
tick mortality and lizard population dynamics. All ticks, re-
gardless of location, have a stage specific chance of mortality 
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over winter. This reflects exposure, desiccation, disease, pre-
dation, and fungal infection. We set this to 10% for all stages 
other than eggs. It is set low relative to mortality during the 
active season because the risk of desiccation is reduced in the 
cooler, wetter climate of winter, and invertebrate predators 
are less active. However, laboratory observations indicate 
that no eggs hatch when held at temperatures of less than 
15 °C. Therefore, egg mortality is 95% over the winter in the 
model, which allows for a small margin of error in the labo-
ratory estimate of 100%.

Lizard population dynamics is also simplified. A flat 10% 
of all lizards are chosen at random and killed at the end of 
each season. Empirical observations place annual adult sur-
vival at around 90% (Bull, 1995). Any ticks on the killed liz-
ards are likewise killed. The killed lizards are replaced from 
newborns whose mothers are chosen at random from the 
surviving lizards. These newborn lizards spend one season 
in their mother’s home range, before randomly choosing a 
home range of their own (natal dispersal). This results in no 
net change in the number of lizards available, but tends to 
redistribute 10% of the population to new locations each sea-
son after the first two.

2.6. Temperature effects

We used 31 years (1967–1998) of daily minimum and 
maximum temperatures measured at Eudunda, SA approx-
imately 30 km SW of the study area to drive weather vari-
ation in the model. The maximum temperatures in Eu-
dunda in 1997 are highly correlated with the average daily 
temperature measured in bluebush refuges at the study 
site (Tavg = 3.4057 + 0.6641Tmax, R2 = 0.87, F1,194 = 1345, 
p  0.001). We used this regression equation to predict av-
erage daily temperatures at the study site for 31 seasons. 
We use these temperatures to generate sequences of ran-
dom seasons drawn with replacement from this set. The se-
quence of days within each season is used unmodified in or-
der to include the effect of small scale correlations that are 
present in the weather. We defined five temperature cat-
egories (T < 15 °C; 15 °C ≤ T < 20 °C; 20 °C ≤ T < 25 °C; 
25 °C ≤ T < 30 °C; 30 °C ≤ T) based on the availability of in-
formation about the response of survival and development 
to temperature (see below).

Temperature has a strong effect on average development 
and survival times of ticks. We assumed that engorgement 
rates were unaffected by temperature because host lizards 
behaviorally thermoregulate, creating a constant tempera-
ture environment for engorgement. Chilton (1989) observed 
mean developmental time for larvae decreasing with tem-
perature μ = devta · edevtb·t. Similarly, mean survival times for 
larvae decreased exponentially with increasing temperature 
μ = surta · esurtb·t. There are nearly as many ways of incorpo-
rating such variability in models of arthropod dynamics as 
there are models. For example, Logan et al. (1976) discussed 
an analytic model that allows non-linear changes in rate with 
temperature and is therefore superior to the degree-day con-
cept which is inherently linear. Unfortunately the Logan et 
al. (1976) method relies on data across a wider range of tem-
peratures than have been measured for ticks. We chose to 
discretize temperature into the five classes introduced above. 

We assumed that temperature acts by increasing or decreas-
ing the relative development or mortality rate. We calculated 
this relative effect for each of the five temperature classes by 
dividing the average time needed at the midpoint of the tem-
perature class by that needed at the baseline temperature. 
The relative temperature effects calculated for larvae were 
also applied to nymphs and adults.

The relative effect of temperature on egg development 
was directly estimated from observations in Chilton (1989). 
Below 20 °C no development occurs in eggs, while develop-
ment rate is devtegg faster when temperatures are 25 °C or 
greater.

2.7. Pattern comparison

The observed pattern is the relationship between the 
mean and aggregation coefficient of a negative binomial dis-
tribution describing the among lizard distribution of larvae, 
nymphs, and adults (Tyre et al., 2003), summarized as the in-
tercept and slope of a linear regression among years between 
1983 and 1997. We sample model output with a virtual ecol-
ogist (Tyre, 1999) along a simulated transect through the cen-
ter of the landscape once each simulated week. The virtual 
ecologist encounters lizards whose home range intersects the 
transect with probability sampleefficiency; encountered lizards 
have all their ticks enumerated by stage. For each simulated 
year in which at least three lizards were captured, we calcu-
lated the average number of ticks of each stage, and the ag-
gregation coefficient using the moment estimator:

        k =     μ2

               μ – σ2           (2)

where μ is the mean and σ2 is the variance of the among 
lizard distribution for that year. All simulated years for a 
given parameter combination were then subjected to a lin-
ear regression to estimate the intercept and slope of the re-
lationship between k and μ. The unscaled discrepancy D for 
a given pattern and parameter combination is simply the 
Euclidean distance between the observed intercept (a) and 
slope (b), and the simulated intercept and slope

      D = √(a – ã )2 + (b – b̃ )2                (3)

These unscaled discrepancies do not account for the fact 
that our target pattern is not precisely observed; a and b are 
also estimates, and the uncertainty in these estimates is de-
scribed with a variance–covariance matrix V. We chose to 
scale the discrepancies by the magnitude of a 95% confi-
dence ellipse around our target pattern

      Π = (f–1 P)L–1            (4)

where P is a matrix of the observed and simulated patterns, 
f the 95th quantile from an F distribution with the appropri-
ate degrees of freedom, and L−1 is the inverse of the Cho-
lesky decomposition of the variance–covariance matrix V. 
This transformation of the coordinate system converts the 
95% confidence ellipse into the unit circle. Π is then a matrix 
of the scaled patterns; the scaled discrepancies Δ are the Eu-
clidean distances between the scaled observed pattern and 
each scaled simulated pattern. If the scaled discrepancy for 
a parameter combination is less than one, it falls inside the  
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95% confidence ellipse around the observed pattern; if the 
scaled discrepancy is larger than one it falls outside the con-
fidence ellipse.

In our case, we have three observed patterns—the rela-
tionship between the mean and k for larvae, nymphs, and 
adults. We first examine the discrepancies for each pattern 
individually. Then we combine the discrepancies using the 
geometric mean, because the discrepancies are scaled such 
that one is the dividing line for “close”. The geometric mean 
places greater weight on small discrepancies.

2.8. Sensitivity analysis

We conducted the sensitivity analysis of the model on the 
28 parameters by forming a Latin hypercube (Blower and 
Dowlatabadi, 1994; Tenhumberg et al., 2004). Briefly, this 
approach assumes that uncertainty in a parameter follows 
a specific probability distribution. Each distribution is di-
vided into K equi-probable segments. A set of parameters for 
a single run of the model is created by sampling these dis-
tributions without replacement; this results in K unique pa-
rameter combinations. We set K = 100 for this initial test of 
the model; this is well over the empirical rule of K > 4/3 the 
number of parameters for Latin hypercube sensitivity analy-
sis (Mckay et al., 1979). Each parameter combination was run 
100 times—runs that went extinct before year 20 were dis-
carded. While the number of parameterizations is relatively 
small, our intent was to explore the potential utility of these 
patterns, and provide initial data to determine the number 
of years and replicate runs needed for simulated patterns to 
stabilize. This information will be used to refine future tests 
of this model with additional data.

In general we assumed parameter uncertainty followed 
normal distributions where we had estimated parameters 
from real data. We used the estimated standard errors to cal-
culate the variance of each parameter distribution, but main-
tained a minimum coefficient of variation of 10% in each  

 
 
 
 
 
 
parameter. For parameters that were largely guesswork 
(e.g. lizard and refuge densities), we used uniform distribu-
tions across a broad range of reasonable parameters. With 
one exception we assumed all parameters were varying 
independently.

The exception was the density dependence parameters; 
bootstrap analysis of the regression model indicated that the 
two parameters were highly non-normally distributed and 
correlated (Tyre et al., 2003). We sampled the distribution 
of 5000 bootstrap replicates without replacement to produce 
the K combinations incorporating the observed correlations 
between the two parameters.

3. Results

For all results we discarded the first 20 years of a simu-
lation run to enable the population to settle into a quasi-sta-
tionary distribution; inspection of time series plots for ex-
tant population size indicated that 20 years was sufficient 
for populations that were not rapidly going extinct (Figure 
2). In addition, populations that stabilize at different lev-
els have different pattern discrepancies, suggesting that our 
proposed patterns do reflect the quasi-stationary population 
structure. This is further confirmed by examination of scat-
terplots of the aggregation coefficients against the mean tick 
abundance for the runs with the lowest and highest discrep-
ancy (Figure 3).

Changing the parameters of the model in the Latin hyper-
cube leads to substantial variation in the simulated mean–k 
relationship (Figure 4). The unscaled discrepancies D (3) are 
the distances between a point representing a simulation run  

Figure 2. Average adult ticks per lizard, conditional on a replicate 
not being extinct, over time for three separate parameter combina-
tions with the largest, smallest, and an intermediate pattern discrep-
ancy (D).

Figure 3. Simulated relationship between the mean abundance of 
ticks and the aggregation coefficient k for two runs, one with the 
lowest observed pattern discrepancy (circles), and with the high-
est observed pattern discrepancy (pluses); there are 100 replicates 
of each run. The white line is the observed linear regression (the 
target pattern), and the grey line is the simulated pattern for the 
run with the highest discrepancy. The regression line for the run 
with the lowest discrepancy is not visibly distinguishable from the 
white line.
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and the observed point on this scatterplot. There are 24 pa-
rameter combinations that are “close” to the observed pat-
tern, in the sense that they are inside the 95% confidence el-
lipse. The shape of the confidence ellipse indicates that the 
slope of the relationship is less well characterized than the 
intercept; hence in the pattern comparison it is important 
to rescale the discrepancies to give greater weight to differ-
ences in the intercept. The simulation best fits the adult pat-
tern; only one and two runs are close to the patterns for lar-
vae and nymphs, respectively (figures not shown). These 
results indicate that the model is capable of reproducing the 
observed pattern even with a relatively small number of trial 
parameter combinations.

Plotting the rescaled and combined discrepancies against 
each parameter in the Latin hypercube reveals the impact of 
a parameter on the simulated patterns (Figure 5); we show 
only the three parameters of greatest interest to us, and one 
example of a parameter with little apparent effect (average 
duration of the egg stage). Note that the discrepancy val-
ues are the same on every graph; what changes is the dis-
tribution of those discrepancies with respect to the parame-
ter plotted on the x axis. The two parameters describing the 
magnitude of density dependence in larval engorgement 

Figure 4. Scatterplot of intercept and slope of simulated mean–k re-
lationships for adult ticks. Observed mean–k relationship indicated 
with solid circle and estimated 95% confidence ellipse indicated as a 
solid line.

Figure 5. Scatterplots of scaled combined discrepancies against a selection of input parameters. Horizontal dotted lines indicate Δ* = 1; points 
below this line are on average within the confidence ellipses of the observed patterns.
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success have the lowest discrepancy at extreme values of 
both parameters. Therefore, the density effect estimated in 
the laboratory likely underestimates the strength of this pro-
cess in the field. The large scatter in these relationships is in-
dicative of interactions between these parameters and other 
parameters in the model. Similarly, there is a strong relation-
ship between the discrepancy and the ratio of lizards to ref-
uge sites. High host populations relative to the available ref-
uge sites are inconsistent with the observed patterns. There 
is a suggestion that the relationship has an intermediate op-
timum, with very low relative lizard numbers leading to an 
increase in the pattern discrepancies.

4. Discussion

Our primary goal was to determine if our model could 
recreate landscape level patterns given only information 
about individual level biology. In particular, we were in-
terested in patterns that are independent of any particular 
set of initial conditions, as these are unknowable in the cur-
rent situation. We successfully found some parameteriza-
tions that replicated a landscape level pattern of an increase 
in the aggregation coefficient with increasing mean abun-
dance of ticks. This pattern is independent of particular ini-
tial conditions on the landscape, which provides great prom-
ise for analyzing this system despite limited empirical data 
of landscape distributions. Furthermore, we generated these 
patterns based only on biological knowledge of individual 
level life history and interactions.

While the current pattern analysis indicates that the 
model can replicate large scale patterns, there are some limi-
tations. First, we used a moment estimator of the aggregation 
coefficient k, instead of the superior maximum likelihood es-
timator used with the observed data (Tyre et al., 2003). This 
was a convenient shortcut to deal with the high volume of 
data generated by the simulation, but could be contribut-
ing to variation in the simulated patterns. In addition, be-
cause the simulation was using a small piece of a landscape 
(1 km × 1 km), the mean and k tended to be based on smaller 
sample sizes in each year than was true for the observed 
data. This created occasional outliers – low mean, high vari-
ance points – that could have obscured some patterns.

It is intriguing that the pattern analysis performed worse 
on the larval and nymph patterns. This result shows that 
the adult pattern is easier to generate than the pattern for 
nymphs and larvae. One reason for this could be that the 
parameter ranges for processes acting on nymphs and lar-
vae are wider relative to the “true range” than for adults 
and that therefore the probability to find a parameteriza-
tion inside this range is lower. By expanding the number of 
parameterizations, say to 10,000, we may find some 100 pa-
rameterizations which fit the pattern for nymphs (~1%, the 
rate of matching for the current set), and this would pro-
vide an avenue to investigate how these patterns are dif-
ferent. Alternatively, the understanding of the biology of 
nymphs and larvae could be incomplete. In the real data 
the negative binomial distribution did not always provide a 
good representation of the data (Tyre et al., 2003). We pos-
tulate that this arises because of high correlations between 

larvae boarding lizards in refuges where a batch of eggs 
has recently hatched.

Increasing the number of parameterizations tested would 
allow greater exploration of combined patterns as described 
above, and also provide better information on interactions 
between parameters. This is because there will be a greater 
number of samples from each region of the parameter space. 
The primary barrier to increasing the number of parameter-
izations is computation time; a single replication of 100 years 
on a desktop workstation takes over an hour. The current set 
of runs took over 40 days to complete—a 100-fold increase in 
the number of parameterizations is not practical without us-
ing a distributed computer system. However, the initial set of 
runs demonstrated that the population reached a quasi-sta-
tionary distribution in about a fifth of the simulated time pe-
riod. Thus, we could use the existing simulation data to deter-
mine how many simulated years, and how many replicated 
runs are required for the simulated patterns to stabilize. Once 
the estimated patterns have stabilized, additional simulated 
years or replicates are not providing additional information. 
Reducing the number of replicates and/or years would allow 
a greater number of parameterizations to be tested.

The effect of lizard abundance relative to refuge density 
on the pattern discrepancy suggests characterization of host 
abundance and refuge use is critical. We know that all blue-
bush refuge sites are not equal; lizards prefer bluebushes 
with a dome shape over bushes with foliage that does not 
reach the ground (Kerr et al., 2003). Lizards also shift us-
age towards different types of refuges throughout the sea-
son. The estimated density of bluebushes in the field is much 
larger than the refuge densities used in the simulation re-
sults shown here. Lizard abundance also varies across the 
landscape, although the exact pattern of variation has not 
been characterized. Using the median lizard density of 100 
lizards/km2, the lowest overall discrepancy implies a refuge 
density of 10,000 refuges/km2, substantially lower than our 
current best estimates of overnight refuge site numbers.

Modelers often comment that models can be used to iden-
tify parameters or processes that are inadequately quanti-
fied. There are at least two examples of this in the present 
model. First, we found that the density dependent engorge-
ment process is insufficiently understood; the lowest ob-
served discrepancy was at extreme values of both density 
dependent parameters. Density dependent engorgement has 
only been measured over a range of densities that are ex-
tremely uncommon in the field. It is not known whether the 
same mechanism applies during other engorging stages. For 
example, if engorgement success is very high (≈1) with fewer 
than 10 ticks per lizard and drops off sharply to the levels 
observed in the experiment, then this mechanism could lead 
to population regulation. Improved engorgement success 
at low densities would tend to raise the average population 
growth rates, while forcing these to drop off to the levels ob-
served in the current model when densities increased (i.e. to 
strongly negative values).

Many things have been left out of the model: predation 
in refuges, crushing mortality during engorgement, high 
temperature mortality, less than 100% boarding rates. This 
is always a dilemma in modeling that the model is a gross 
simplification of reality. However, our approach allows us 
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to test whether including some of these hypotheses will ac-
tually improve the ability of the model to generate the ob-
served patterns. If not, the data do not justify inclusion 
of more detail. All of the processes mentioned would in-
crease the mortality of ticks, and therefore increase the rate 
at which populations go extinct. Thus, we are left with the 
conclusion that lizards must not use all refuges equally. The 
only process that could increase the survival of ticks wait-
ing in refuges for lizards is non-random use of the avail-
able refuges, i.e. if there are some refuges lizards are more 
likely to visit than others. If neighboring lizards tend to 
use the same criteria to pick refuges, this will then also in-
crease the rate of horizontal transmission between lizards. 
Otherwise, non-random use within a home range, but not 
between home ranges (i.e. lizards do not know each oth-
er’s choice criteria), will increase survival but not transmis-
sion. Correlated movement of mates will not increase trans-
mission across the landscape by much, because the home 
ranges of mates overlap to a large degree even outside the 
mating season.

An obvious extension of this work is to explore other 
patterns in the data. The joint spatial–temporal correla-
tion (Henebry, 1995) is one interesting possibility reflecting 
more of the spatial and temporal structure of the data while 
retaining independence from any particular trajectory. Sim-
ulating this pattern would require a much larger landscape 
than we used here. A second possibility is the relationship 
between the population growth rate, ln(Nt+1/Nt), and pop-
ulation size—this will be negative and increase in strength 
with density dependence. Finally, the incidence and inten-
sity of tick infections at the end of a simulation run – av-
eraged over a few years – would provide an additional 
pattern that is independent of initial conditions. This last 
would only work in the absence of a trend in the observed 
incidence and intensity.

In summary, pattern based modeling shows considerable 
promise for validating ecological models when the initial 
conditions of the model are poorly known or unobtainable. 
This kind of approach is critical when scaling up from indi-
vidual level processes to landscape scale observations.
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