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Abstract—The partial wave analysis of two-photon free—free (bremsstrahlung) electron transition cross sec-
tions during scattering by a static potential U(r), as well as by an atom with a nonzero angular momentum, is
carried out. The dipoleinteraction with radiation istaken into account in the second order of perturbation theory
for the general case of elliptic polarization of photons. The polarization and angular dependences of the two-
photon potential scattering amplitude is presented as a combination of the scalar product of electron momenta
and photon polarization vectors and five atomic parameters containing L egendre polynomials of the scattering
angle aswell asradial matrix elements depending on theinitial (E) and final (E") electron energies. The results
are applicable both for spontaneous double bremsstrahlung at nonrelativistic energies and for induced absorp-
tion and emission in the field of alight wave. Specific polarization effects (circular and elliptic dichroism) are
analyzed for two-photon bremsstrahlung processes associated with the interference of the Hermite and anti-
Hermite parts of the amplitude and depending on the sign of photon helicity. The limiting cases of high and low
photon frequencies are investigated ana ytically, and the asymptotic forms of radial matrix elements and ampli-
tudes for the general form of the U(r) potential are determined. Closed analytic expressions are derived for the
radial matrix elements of the Coulomb potential in the form of integrals of hypergeometric function, and sin-
gularities are singled out in explicit form for E' — E. The methods of approximate calculation of the radial
matrix elements are discussed, and the results of their exact numerical calculation, as well as angular distribu-
tions and the cross sections of induced one- and two-photon emission and absorption, are given for the case of
the Coulomb potential. The numerical results show that dichroism effects are quite accessible for experimental
observations. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Electron scattering by atoms and ions accompanied
by emission and absorption of photons constitutes a
significant branch in atomic physics. A guantum-
mechanical description of such processes originates
from the experiments on spontaneous bremsstrahlung
(BrS) carried out in 1931 by Sommerfeld, who studied
electron scattering by a Coulomb center [1]. In the non-
relativistic dipole approximation, the BrS cross section
with the emission of aphoton of frequency wand polar-
ization vector ein direction k,

do _eén p

2
dwdQ,dQ, (21_[)4035(0“‘/“ ; (1)

is determined by the matrix element (ME)
M= (i leDrmlwy?) v

of the transition between the states @{” and ¢ of the
continuous electron spectrum in the static atomic
potential U(r). For scattering by a Coulomb center, the
3D ME Jl can be calculated in terms of hypergeometric
functions ,F,(a, b; ¢; X) [1, 2]. Moreover, it is possible
in this case to analytically integrate cross section (1)

over the directions of scattered electron and to express
the BrS spectral distribution do/dw in closed form in
terms of the derivative of the squared modulus of func-
tion ,F, with respect to the argument (Sommerfeld for-
mula[1, 3]). The calculation of cross section (1) for the
general form of potential U(r) is based on the use of

multipole expansion of function lpff) (seeformula (15)
below). In this case, the partial expansion of ampli-
tude JL, which is convenient for analysis of the
polarization-angular dependence of the cross sec-
tion, has the form [4]

M = Q(p, p', 8)(eHIp) + Q(p,, p, 8)(ellp’), (3)

27 < .
[exp(iA_)d_y (E, E)

m p3p'.; SO 4
+exp(id,)dy. 1 (E, E)]P{Y(cosh).

Q(p, p,B) =i

Here, A, = 9. 1(P) + &(p), O/(p) are the phases of scat-

tering at potential U(r), P™M(x) = (d/dx)P,(X) is the
derivative of the Legendre polynomia Py(x), E' =
p?/2m = E - fiey, and & ((E', E) are the radial MEs of
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the momentum operator (see formula (37)). The spec-
tral distribution do/dw can also be written in the form
of apartial series:

do _ 8te’n’ w

dw 3m2cd p2

. ()
x 3 1[]di1-o(E, B)*+|di 1 (B, E)[.
=1

In the case of a Coulomb potential, this series can be
summed directly (see [5], where the sum of series (5)
written using the interaction operator in the “form of
acceleration” is calculated analytically) and the Som-
merfeld formula can be reproduced. Although such an
approach is of rather methodical interest for Coulomb-
type BrS, the partial wave analysis for a U(r) potential
of the general form is the only method of simplifying
general formulas (1) and (2) without using additional
approximations.

Apart from conventional BrS, the scattering of an
electron at aforce center can be accompanied by simul-
taneous emission of two spontaneous photons (double
bremsstrahlung, 2BrS), which was considered for the
first time in the general form by Heitler and Nordheim
in 1934 [6] as a radiation correction to conventional
BrS. In 1985, spontaneous 2BrS was detected experi-
mentally (see [7] and subsequent publications [8],
where the differential cross sections of emission of two
bremsstrahlung photons during scattering of electrons
with an energy of about 70 keV by thin targets were
measured by the coincidence method). In experiments
[9], spontaneous 2BrS was observed for electrons with
energy of the order of 10 keV. The first theoretical cal-
culations of the 2BrS cross section for electron scatter-
ing by anucleuswere made in the framework of therel-
ativistic Born approximation [10]. The action of the
Coulomb field on the electron in a 2BrS process can be
taken into account exactly in the nonrelativistic dipole
approximation. Using the Coulomb Green function, the
2BrS amplitude can be presented in the form of inte-
grals of the hypergeometric function ,F; (atwo-photon
anaog of theresultsobtained in[1, 2] for Jl in Eq. (2)).
Different methods of calculation of two-photon ampli-
tudes (with different representations of the Coulomb
Green function) used by different authors lead to quan-
titatively equivalent expressions, but having different
forms [11-13]. In particular, the integrated (“Born”)
terms were singled out in the amplitude in [13], which
considerably simplifies analysis of the limiting cases. It
is worth mentioning the effective approximate method
of calculation of the 2BrS amplitude proposed by Korol
[14] by taking into account only the contribution for &-
shaped singularities emerging for E, — E; inthe sin-
gle-photon MMs d, , (E,, E;) appearing in the com-

pound ME of the two-photon transition. This method
was subsequently extended to nondipole calculations
[15] and to the relativistic case [16]. Exact analytic

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 95

1007

expressions for the nonrelativistic 2BrS amplitude tak-
ing into account delay effectswere obtainedin [17, 18].
In addition to the above results obtained for the Cou-
lomb potential, numerical calculations of spontaneous
2BrS were also made for electron scattering by neutral
atoms both in the model of potential scattering [19] and
in the model taking into account the polarization
bremsstrahlung emitted by an atomic core [20].

In addition to spontaneous emission, considerable
interest in multiquanta bremsstrahlung processes was
stimulated by laser experiments, which made it possi-
ble to observe induced multiphoton bremsstrahlung
emission and absorption in the optical frequency range.
The first measurements of the cross sections of free—
free electron transitionsin the presence of ahigh-inten-
sity laser wave were made in [21, 22]. Such experi-
ments were subsequently repeated more than once with
different atomic targets for different electron beam
energies and experimental geometries (see, for exam-
ple, [23] and review [24]). Quite general results could
be obtained in the theoretical description of multipho-
ton transitions in the continuous spectrum in the Born
and low-frequency approximations. In the Born case,
the cross section do" of the n-photon induced emission
(n<0) and absorption (n > 0) in alaser field with ampli-
tude F, polarization vector e, and frequency w has a
simple form (the Bunkin—Fedorov formula [25]; see
also [26]):

n _ Py oreFledp—pn)g
do" = D2 E AP~ Pllyg 6
|:| mﬁwz |:| B ( )

p

where J,, is the Bessal function, dog isthe Born dastic
scattering cross section in the absence of a light wave,

and momentap and p,, intheinitial and final statesare

associated with the energy conservation law: (p;2 -

p?)/2m = nAw. It was shown in [27] that the Born series
can be summed exactly in the low-frequency limit
(w — 0) so that cross section do" aso has factorized
form (6) in which dojg is replaced by the exact elastic
scattering cross section doy in zero light field even for
slow electrons for which #w < E. It should be noted
that, although various versions were proposed for
deriving the low-frequency asymptotic form (see,
for example, [28, 29]), the limits of applicability of the
Kroll-Watson approximation [27] disregarding the
action of the laser field on the dynamics of interaction
between a slow electron and the atomic potential are
still a subject of discussions [30-33]. In [34], the
expression for do" was derived in the approximation in
which the motion of an electron is described classically
and the emission and absorption processes are
described quantum-mechanically. Various versions of
generalization of the results obtained in [25, 27] taking
into account the effects of a strong laser field are given,
for example, in review [35]; however, the scattering
potential can be taken into account exactly only in per-
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turbation theory in the field of the wave. In particular,
such calculations for the Coulomb-type double
bremsstrahlung emission and absorption is completely
identical to the case of spontaneous 2BrS [11-13].
However, a specia situation emerges in the case of
elastic reemission of photons: both MEs determining
the transition amplitude are diverging; consequently,
we must eliminate the divergence to obtain a finite
result [13, 36]. In addition to purely stimulated transi-
tions induced by a high-intensity laser field, the latter
may modify spontaneous BrS also. This question was
investigated in [37] in the Born approximation. A more
detailed inclusion of the effects of an atomic (Cou-
lomb) potential was carried out in [38, 39]. It is dso
appropriate to mention publications [40, 41], in which
“combined” Compton-type bremsstrahlung processes
(absorption of alaser photon by an electron followed by
spontaneous BrS in the field of the nucleus) were con-
sidered.

In view of the difficulties encountered in the exper-
imental determination of the polarization characteris-
tics of spontaneous BrS, the energy and angular depen-
dences of cross sections have been mainly analyzed in
publications devoted to spontaneous bremsstrahlung
processes. On the contrary, in the case of induced pro-
cesses, the possibility of controllable variation of laser
polarization opens new prospectsfor studying the free—
free transitions, which stimulates an analysis of polar-
ization effects in bremsstrahlung processes. A general-
ization of the results obtained by Kroll and Watson [27]
to the case of dliptic polarization of laser radiation is
considered in [31, 42]. A considerable differencein the
one- and two-photon scattering cross sections in the
cases of linear and circular laser polarizations for elec-
trons scattered by hydrogen [43] and helium [44] atoms
is demonstrated in [43, 44]. However, the most impres-
sive polarization effect is the dichroism manifested in
the difference in the cross sections for the opposite
polarities of the degree of circular polarization of pho-
tons. It was found [4] that the differential cross section
of single-photon BrS for electron scattering by a
nucleus differs significantly for photons with right and
left circular polarizations (circular dichroism, CD). A
general analysis of the CD in bremsstrahlung in the
case when an electron is scattered by an atom with a
nonzero angular momentum was carried out in [45].
The polarization dependence of correctionsto the Cou-
lomb scattering, which are associated with the effect of
the light wave, was studied in [13, 36]. The CD effect is
sensitive to the electron energy and the photon fre-
guency and vanishesin the Born limit aswell asin the
low-frequency limit and for small scattering angles.
Outside these regions, CD has a noticeable magnitude
and is quite accessible for experimental observation. It
should be noted that CD in photoprocesses with nonpo-
larized atomic targets is an essentially quantum-
mechanical interference effect, which is absent, in par-
ticular, in the classical analysis of BrSin astrong laser
field [46]. At the same time, numerical quantum cal cu-
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lations of single-photon Coulomb BrS, which are not
confined to perturbation theory in the laser field [47]
indicate significant CD. Electron scattering by a hydro-
gen atom in the presence of two fields with linear and
circular polarizations is considered in [48]. The emer-
gence of dichroism effects in the presence of the two
fields is quite obvious; in this case, CD differs from
zero for certain geometries of the fields for fast (Born)
electrons aso and in the total cross section.

It was noted above that the first Born approximation
is insufficient for correctly describing the polarization
effect, and the interaction of an electron with the target
must be taken into account more exactly; this involves
considerable difficulties for processes with two or more
photons even in the framework of perturbation theory
in the electron interaction with radiation. Since the
problem has several vector parameters, the separation
of dynamic (depending on the energy and structure of
the potential) and kinematic (depending on the photon
polarization and the geometry of the problem) factors
in the general expressionsfor cross sectionsis of prime
importance. We will carry out partia-wave analysis of
two-photon free—free transitions as applied to potential
scattering U(r) both in the field and by atoms with non-
zero angular momentum. General results areillustrated
by analytic and numerical calculationsfor scattering by
a Coulomb potential. In Section 2, the analytic expres-
sion for the amplitude of two-photon dipole transitions
is simplified to the maximum possible extent for the
case of a central potential U(r), which generalizes
results (3) and (4) to the case of single-photon BrS. In
contrast to binomia expression (3), the two-photon
amplitude in the general case of different photons can
be written in the form of five products of invariant
(independent of photon polarizations) atomic parame-
ters Q, and the scalar products of photon polarization
vectors by the initial and final electron momenta. By
analogy with Eq. (4), parameters Q, are presented in the
form of a series of products of the second-order radial

MEs M~ ** between the states of the continuum with

fixed values of the orbital angular momental and I' and
the Legendre polynomials in the scattering angle 6.
Such aform of representing the amplitude makesit pos-
sible to obtain explicit expressions for the atomic
parameters that describe dichroic polarization effects
depending on the sign of the photon helicity (Subsec-
tion 2.3) and to demonstrate, in particular, a new dich-
roic effect, viz., elliptic dichroism (ED), which emerges
in induced two-photon processes along with CD and
vanishes in the case of a purely circular laser field
polarization. The optimal conditions for the observa-
tion of CD and ED are analyzed. Closed analytic

expressions for the Coulomb MEs My; are obtained in
Section 3 (see a'so Appendix B) in the form of the sum
of theMEs d,, (E', E) for conventional bremsstrahlung

and a single integral of the function ,F;. In Section 4,
elastic two-photon transitions are considered and it is
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shown that singularities appearing in M,L.I in the case
when the energy difference between theinitial and final
states becomes insignificant (E' — E) are compen-

sated in the calculation of theinvariant parameters Qie' :

for which explicit analytic expressions are derived in
the case of Coulomb scattering. The limiting ranges of
low and high photon frequencies are investigated, and
simple asymptotic forms of inelastic scattering ampli-
tudes are obtained for the central field U(r) in Sec-
tion 5. The frequency and energy dependences of the
Coulomb radial MEs and the accuracy of approxi-
mate methods of computation are discussed in Sub-
section 6.1. The results for the angular distributions
and the polarization dependence of induced two-photon
emission and absorption are given in Subsection 6.2,
wherethe numerical values of the cross sections of one-
and two-photon bremsstrahlung transitions are com-
pared. The analytic formulas derived by usfor the Cou-

lomb MEs M |L.| arethe most general expressionsfor the
amplitudes of two-photon transitions in the Coulomb
field between the states with fixed orbital angular
momenta | and I'. It is shown in Appendix B that the
well-known results for the case when both states or one
state belong to the discrete spectrum can be obtained
from these formulas by the analytic continuation in
energy (p — imzZe?/nf and/or p' — imZe?/n'h) [49].

In the subsequent analysis, we will use the atomic
system of units.

2. POLARIZATION-ANGULAR STRUCTURE
OF CROSS SECTIONS OF TWO-PHOTON
BREMSSTRAHLUNG PROCESSES

2.1. General Formulas

The amplitude of a two-photon electron transition
between two scattering states with asymptotic
momenta p; = p and p; = p' in potential U(r) is deter-
mined by the second-order ME in perturbation theory
(cf. EQ. (2)):

M(e, &, €)

,
= < W5|(e, )G (', 1) (e )], 0

where @$(r) and w{(r) arethewavefunctionsof the

continuum with the asymptotic forms of corverging (-
and diverging (+) waves, normalized by the condition
Plwy’o= 2n’sp -p),

and Gy is Green's function of the Hamiltonian with

potential U(r) and with the asymptotic form for diverg-
ing waves for € > 0. The differential cross section of a
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spontaneous 2BrS with the photon emission in direc-
tionsk, andk, (|ki|=1,¢& - €' =1,i =1, 2) hastheform

do® _a’p
_— 6_(1)1(02
dQ,dQ, dQ, doydw,  (2m)°P 6)

x|M(e5, el E—w) + M(el, €, E— w,)|”.

For an electron scattered by a force center U(r) in
the presence of a high-intensity light wave whose elec-
tric vector iswritten in the form

F(t) = FRe{eexp(-iwt)}, eleld=1,

induced multiphoton processes are of prime impor-
tance. Induced two-photon transitions determine dou-
ble bremsstrahlung emission and absorption as well as
the correction to the elastic scattering cross section,
which is linear in the wave intensity | = cF%/41m The
cross sections of the above-mentioned processes are
also determined by ME (7). For example, the differen-
tial (with respect to the angles of a scattered electron)
induced 2BrS cross section has the form

do _ 1 gF'p 2
de. - 4]_[2[2& p|M(e|:! eD, %)| ’ (9)
where the electron energy € in the intermediate state is
connected to the energies in the initial (E = p%2) and
fina (E' = p'?/2) states through therelation € =E—w=
E'+ w. Similarly, the double bremsstrahlung absorption
Cross section is given by

do _ 1 gF'p

30, = 7] le(e, e, €)%, (10)

where¢ =E+ w=E'—w.

In the case of elastic scattering (E' = E), the inclu-
sion of the interaction with the light wave in the lowest
(second) order of perturbation theory givesacorrection
to the amplitude linear in wave intensity,

f = f0+f2, (11)

where f, is the amplitude of elastic scattering by poten-
tial U(r) in the absence of alight wave, while

f, = iDEDZ
27 2nlbd

x[M(e, el E—w) + M(el] g, E + w)]

is the correction associated with the two-photon transi-
tion induced by the wave (reemission of a photon by an
electron during scattering, Fig. 1). A correction on the
order of F? to the elastic scattering cross section is
determined by the interference of amplitudesf, and f:

do.
dQ,

(12)

= |fo° + 2Re(f} ). (13)
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|p'(—)|] |p(+)D |p'(—)|] |p(+)D

Fig. 1. Feynman diagrams for reemission of a photon by an
electron in the continuum.

2.2. Partial-Wave Expansion of the Amplitude

Since ¢, and e, appear linearly in Eq. (7), ME
M(e,, €;, €) can be presented as the sum of the products
of linearly independent combinations of vectors e, e,
and n, n' (wheren = p/pand n' = p'/p’) and theinvariant
amplitudes 2; depending only on p, p', €, and theangle
0 between n and n'. There are five linearly independent
combinations e, e, and n, n'; choosing these combina-
tions appropriately, we can write M(e,, €, €) in the
form

M(e, €, €) = Pi(e, [h)(e, [h)
+P (e, () (e, (') + P(e, [h) (e, [')
+Py(e; (M) (e, [h) + Ps(e, [ky).

(14)

It should be noted that the analytic expressions for the
amplitude of two-photon transitions in the Coulomb
field, derived in [11-13] without using partial expan-
sions, have exactly the same structure. The explicit
form of the amplitudes %; = P;(p, p', 6, €) for an arbi-
trary potential U(r) can be obtained only by specific
calculations of ME (7). A general method for simplify-
ing expressions of form (7) is the use of multipole
expansions of the wave functions and operators appear-
ing in Eq. (7), followed by integration with respect to
angular variables by the methods of quantum theory for
angular momentum [50]. Let us write the wave func-
tions and Green’s function in Eq. (7) in the form of
expansionsin spherical functions:

(Zn)3/2

Jp

ZI exp(+|6(p))REl(r)Ylm|:H:|Y m(n),

(*)( ) —
(15)

Gyl(r, r) = ZQL(r r %)YLMQDYtMgE,

where Rg(r) are the radial functions of the continuum
in potential U(r), normalized to energy, and &,(p) are
scattering phases. Substituting expressions (15) into
Eq. (7), integrating with respect to angles, and carrying
out summeation over the angular momenta components,
we obtain
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(2m)°
Jop

2
Z z "expli (81(p) + 3(p))]
c=0II'L

M(e21 el! %) ==

(16)

g ad
X 1lc DERE'I'”DgLD" Re U
ol'l Lo

x({eDe} LY(m) D Y(n)}.)
(wewill use below the standard notation in the quantum
theory of angular momentum [50]).

Expressions of type (16) are usually considered as
the final result of analytic transformations of the “geo-
metrical” part of the amplitudes by the methods of
guantum theory of angular momentum, and subsequent
calculations are based on numerical computations of
tensor constructions in Eq. (16) in an appropriately
chosen system of coordinates (see, for example, the
publications [30] on the induced one- and two-photon
emission and absorption in alinearly polarized field; it
should be noted that the function w$’(r) with the

asymptotic form for diverging waves is groundlessly
used by the author of [30] as the fina state of ME (2)
and (7)). A specia technique for simplifying tensor
products of the spherical functions Y,,(n) based on the

reduced formula for bipolar harmonics Y\ \,(n", n)
defined as

Yim(n', ) = { Y, () O YN} Ly

(17)
= Z CI mImYI m(n )Ylm(n)

was developed in [45] (see also [51]). This technique

makesit possibleto present Ym k(n n) with arbitrary

values of I, I' > L in the form of afinite sum of “mini-
mal” harmonics Y¥: (', n)with 0 < k < L and Leg-
endre polynomials. For example, for the bipolar har-

monic ng(n', n), we have [45]
30(2l + 1) }”2

_1)I—1

4am [(ZI -DI( +1)(21 +3)
x (POY{n' O n} o,
+PPO{ [ xn] O [ xn]} o),

vi ) = &
(18)

wherex=n - n' = cosB and P(x) = (d/dX)*P,(X). The
expressions for the remaining bipolar harmonics
Y., (', n) withc=0, 1, 2, which appear in Eq. (16), are
also given in [45]. Using these expressions and writing
the appearing tensor constructions in the form ({e, O
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e}.-{n" 0 n},) interms of the scalar products of vec-

tors e, €,, and n, n' (Section 3 in [50]), we can reduce
expression (16) for M(e,, €,, €) to the form (14). It is

convenient to write the final result in the form

M(e, ., €) = Q) (e, ) (e, () - 3(e &) |
+Q;f (e, ()&, () ~3(e () |

+3Qs[ (e ) (e () + (e, t)(e, ) (19)

2 .
-5 ) (e, CBy) |

+ Q[ (e, (') (e, [h) — (e, [h)(e, [N')] + Qs(e, [By),
where

0

@:=-3 [

1=2

M+ M2 3))

21 +3
1 - -
# g G+ 6730 [P0,

[

Q= Z[2|+3(/‘/t:|+1 J‘/L:sz)

ST (U + ) [P0,

_ - 1 -1, 1 1+17] (1)
Qs = lzl[z—l_lml. oM PR (20

-1 1 1+ 1]

+ZZ|: J‘/LH 2|+3J‘/L|||:|X

2|+1(J‘/L| 1|+1+JM«|+1| 1)}P|(2)(X)

Qu = 33 LT~ PP,
=1

- %Z[IM:71+(| + 1) TP
1=0

Radial MEs M|L.I contain the phase factors from rela-
tions (15):

My, = (2121./pp)
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x exp[i(5(p) + &(p))] My ((E, E, €), 21)
M; (E, E,€)
= [D(L, IY'Re|9.(€)| D(L, DR
D(.1) = d 4 S9(lz—lymax(ly, 1) +1 22

r

Formulas (20) give five invariant parameters Q, (which
are obviously associated with %; in Eq. (14)) in explicit
form in terms of radial MEs. Relations (20) directly
demonstrate the symmetry properties,

Qu(p, P) = QAP, P); Qs 45, P) = Qg 4,5(P, P)-

2.3. Effects of Circular and Elliptic Dichroism
in free—free Transitions

Parametrization of the amplitude in the form (19)
and (20) makes it possible to completely analyze the
polarization and angular dependences both in spontane-
ous 2BrS (with different polarizations e, and e,) and for
induced processes (with e, = &,). Let us first consider
induced 2BrS (the results for double bremsstrahlung
absorption follow from the formulas given below with
the substitution e, w — €*, —w). Assuming that e, =
e = e in Eq. (19), we see that parameter Q, for
induced processes is omitted and the expression for M
has the form

M = Que0th)” + QT

+ Qz(elh) (eHh') + 2 (elel), (23)
1
9 = Q5‘§(Q1+ Q, +xQs).
Asaresult, cross section (9) assumes the form
do _ 1QgFfp
dQ, = 222 p (freg+Acp +Aep), (24)
where

freg = |Qul’le C|* +]Q,°le (" +|Qq*le (| h?
+17]9]” + 2Re(Q% Q,)Re{ (e [h)*(el ')}
+2Re(Q} Q;)|e [l Ref{ (e [h)(eDrh')}
+2IRe(Q* 9)Re{ (e [h)3 (25)
+2Re(Q5 Qy)le ['|*Re{ (e (') (eDh)}
+2IRe(Q 2)Ref (e [")3
+ 2IRe(Q3; 2)Ref{ (e [h)(e [h')} ,
Vol. 95
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Acp = 2Im{ (e Ch)(eDh")} (Im(QEQs)IeEh‘IEZG)

—2Im(Q} Q,)Re{(e th)(eDh} —Im(Q} QJ)le h|?),

Agp = —21(IM(QF 2)Im{ (e )3

+Im(Q:92)Im{ (e h")} (27)

+1m(Q% Q) Im{(e h)(e 1)) .

Obviously, f, remains unchanged upon the substi-
tution e == €*, i.e,, isindependent of the sign of pho-
ton helicity. In order to analyze Ay and Agp, it is con-
venient to write the unit complex polarization vector in
an invariant (relative to the choice of the coordinate
system) form,

_etin[kxe]

A/1+r]2

where the unit vectors e and k define the directions of
the principal axis of the polarization ellipse and of the
propagation of waves, while dlipticity n is connected
to thedegreesof linear (1) and circular (&) polarizations,
which we defineasin [3]:

—-1<n<1, (28)

2
| = 1_n2 = e[k = eDEED,
1+n
A | I 0
§ = ——= =ik [Jelx¢g.
1+n

Using relations (28), we can easily find that
2lm{ (eUh)(e)} =& (k Onxn7),

2im{(eCh)(eh)} =& {(eh)([k x€] ) (29)
+(e[h')([k x €] [h)},
so that
Acp UE, Agp DEL. (30)

Relations (30) show that the last two terms in
Eq. (24) lead to a dependence of the cross section on
the sign of & and describe the CD and ED effects. The
value of Agp vanishes for purely circular polarization
(¢ = 1,1 =0), while the CD term Ay attains its maxi-
mum value in this case. Although the quantitative
results for CD and ED can be obtained only from
numerical calculations, the distinguishing features of
these effects can be seen even from general formulas
(24)—«27). In particular, the CD and ED terms in
Eq. (24) exhibit essentially different dependences
not only on the polarization parameters of the waves,
but also on the geometry of the process. For example,
the term Aqp contains the common pol arization-angu-
lar factor &(k - [n x n']) (see relations (29)) and attains
the “geometrical” maximum for alight wave propagat-
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ing orthogonally to the plane of electron scattering:
k || Hnn". Inthis case, the term A hasthe form

Aep = EsinG
* * * (31)
x [2Im(Q; Q) cosb + IM(Q; Qz) — IM(Q; Qg)] .

If, however, the initial electron momentum is collinear
to the direction of wave propagation (n x k = 0), CD
vanishes in the same way asin the case of forward and
backward scattering, n' = £n. It should be noted that the
kinematic factor §(k - [a x b]) determining Ap iS uni-
versal by nature and describes CD in various single-
phonon processes with nonpolarized atoms in the pres-
ence of two polar vectors, a and b, say, in the case of
conventional and induced single-photon BrS [4] and
two-electron ionization of an atom by a hard photon
[45, 52]. ED is possible only in processes with two or
more identical photons and is |less sensitive to the pro-
cess geometry; in accordance with Eq. (27), the neces-
sary condition for vanishing Acp issimultaneous fulfill-
ment of the conditionse-n=0ande-n'=0. The ED
effect is manifested in “pure form” (without CD
accompanying it) in the angular distribution of scat-
tered electrons, when the initial momentum p is col-
linear to the light beam, [k x n] = 0. In this case, only
thetermswith 2 and Q, remaininrelation (23) and Agp
has the smple form

Agp = —21IM(Q5 ) Im{ (e [1")3 -

= 21EIm(Q; 2)(e [h')(k (Je xn17)

and attains its maximum value for scattering at right
angles (i.e., in the polarization plane) in the directions
forming the angles +1774 and 3174 with the direction of
the principal axis of the polarization ellipse.

In contrast to CD, the ED effect persistsin the cross
section of the induced 2BrS (or double bremsstrahlung
absorption), integrated over the directions n' of a scat-
tered electron momentum. In this case, the cross section
depends only on vectors e and n and has the following
structure:

1 OFf'p
o= REEE Rp(A1+A2|2+A3|Re{(e )3

+ A l&(e[h)(e LIn xK])
+ Agle [h|* + Agle ™).

It can be seen that the ED term in the expression for o
attains its maximum value when the initial electron
momentum p is orthogonal to the direction of the light
beam and forms an angle of ¢4 with principal axis of
the polarization ellipse. It should be noted that expres-
sion (33) is completely identical kinematically to the
angular distribution of photoelectrons in the case of
two-photon ionization of an atom with a nonzero
orbital angular momentum in an ellipticaly polarized

(33)
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field (polarization effects and ED in this problem were
analyzed in [53]). We can derive explicit expressions
for dynamic parameters A; in relation (33) in terms of
radial MEs (21) by integrating the squared modulus of
amplitude (16) with respect to n'. By way of an exam-
ple, we consider only the expression for the “dichroic
parameter” A,:

11 + 1)

_ 1611 ZI D(2|

1)(21 + 3)
+ (M ()M

W[ AFEDA+2) 6o -3
&m+1xm+3)

I+ 1%

MI 1+2

I(1-1) i(3(P) =3 _o(P) p 1~ 1% ] U
212 + 1) M”Z}D

In all investigated cases, the numerical values of
dichroic parameters (Acp, Agp, and A,) in the cross sec-
tions is determined in the long run by the relation
between the real and imaginary parts of the radial ME

My, ie, by the interference of Hermite and anti-Her-
mite parts of the process amplitude. Consequently,
dichroism effects disappear in the Born electron energy
range E and E' aswell asin thelow-frequency limit (see
Section 5 below, where it is proved that the parameters
Q, differ in this limit differ only in the real multipliers

so that Im(Qf"Q;) = 0). In the remaining cases, the
dichroic terms in the cross section have no smallness
parameter symbols and the relative magnitude of the
dichroism effects (in a favorable geometry of the pro-
cess) may be as high as 100%. Thus, in contrast to sin-
gle-photon bremsstrahlung processes in which only the
CD effect can take place and the cross section of ellip-
tical polarization can be reconstructed from experimen-
tal datafor linear and circular polarizations, the fullest
information on the processin the case of double-photon
bremsstrahlung emission and absorption can be
obtained only from alight wave with an elliptical polar-
ization.

It should be bornein mindin an analysisof polariza-
tion effectsin elastic scattering that Q, = Q, for E' = E,
and, hence, the correction to the elastic cross section in

Eq. (13) contains four invariant parameters QF :

do
dQ

1DFD

= [fo*+ ETAN

x{Re(fo Q1) (leh|*+|eh|*—2/3) ()
+Re(fo Q3)(Re{ (eJh) (e [h")} —(1/3)cosh)

+Re(fo Q3) +Im(fo Q3)E(k (Inxn7)}.
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Fig. 2. Geometry of induced bremsstrahlung emission and
absorption: 8 and ¢ are the spherical angles of the momen-
tum vector p' of a scattered electron in the coordinate sys-
tem with the polar axis along vector p and the x axis along
the direction k of the laser beam; angle a defines the orien-
tation of the polarization ellipse in the yz plane.

Thus, elastic scattering of an electron in a light field
givesrise only to the CD effect, which is described by

the term containing Qg and characterized by the same

interference nature and the kinematic dependence as
CD ininelastic processes as well as in the case of sin-
gle-photon scattering [4]. Explicit expressions for the
parameters Qie' similar to expressions (20) will be
given below (see Egs. (48)).

In view of the presence of several vector parameters
in the problem, the symmetry properties of angular dis-
tributions of scattered electrons in the genera case of
elliptic photon polarization can be established only for
the simplest initial configurations of the electron and
laser beams. The most informative and convenient
experimental configuration is the “orthogonal” geome-
try, inwhich theinitial electron momentum p (zaxis) is
orthogonal to the direction of the light beam (x axis),
whilethe principal axisof the polarization ellipseforms
angle a with the y axis (Fig. 2). In this case, the yz
(polarization) plane is the symmetry plane of the angu-
lar distribution in the general case of dlliptic polariza-
tion. Since in the case of circular polarization the
results are independent of angle a, the angular distribu-
tion in the absence of CD would also possess a symme-
try relativeto thexz plane, i.e., tothe substitution p —
—. The CD terms break this symmetry since &(k - [n x
n']) = <€sinB@sing. Nevertheless, this relation shows
that the angular distributions in a circular field are
transformed into one another for & = 1 and § = —1 upon
reflection by the xz plane (or rotation through 180°
about the z axis); i.e., the cross section do/dQ isinvari-
ant relative to the substitutionsg — - and ¢ — —¢.
In an elliptic field, symmetry is lowered and the above
invariance is preserved only for values of a multiple
to Tv2.

For spontaneous 2BrS, the cross section integrated
over thedirections n' of ascattered electron is of exper-
imental interest. The general form of the polarization—
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angular dependence of cross sections for this case fol-
lows from Egs. (8) and (19) (cf. Eq. (33)):
do*
dQ, dQ, dw,dw,

= a; +ayle D5‘2|2 + a3|e1 EE;|2

+ayle [h|2 +as|e, Eh|2 +agle, Eh|2|62 Eh|2 (35)

+a;Rel | + agRel, + aglml + a,glml,,
where
I, = (e, [h)(e; [h)(ef LE3),
I, = (e, Th)(e; Ch)(e] (k).

Omitting cumbersome expressionsfor coefficients g, in
terms of radial ME, we note that factors Iml, and Iml,
in the last two termsin Eqg. (35) change their sign upon
the simultaneous replacement of the polarization vec-

tors by their complex conjugate, e, = €] and e, —

€5 ; for thisreason, the cross section containsterms lin-

ear in &, and &, and depends on the sign of the degree
of circular polarization of photons. Thus, the CD effect
in spontaneous 2BrSisalso preserved in theintegration
over n'. The complex quantities I, and I, can be
expressed in terms of the real vectors g and k; for any
polarizations e, and e, (such expressions can be found
in [54]); however, the case when one of the photonsis

polarized linearly (say, €, = €5 =¢,) ismost interesting
for CD observation. Inthiscase, I, =1, =1, and thekine-
matic dependence of the CD term in Eq. (35) is given
by

2Iml = &,(e; [h)(e; LN xk4]).

This expression has a maximum in the orthogonal
geometry (k, O n, k, = —K;) used in experiments [§],
when bremsstrahlung photons are detected in the oppo-
site direction at right angles to the incident electron
beam. Using polarization-sensitive detectors, the CD
effect can be observed in these experiments by measur-
ing the differencein theyields of photonswith right and
left circular polarizations for afixed linear polarization
of the second phaoton at an angle of 174 to the plane of
vectors n, k;, and K.

When an electron is scattered by a freely oriented
atom with a nonzero total angular momentum, the
polarization structure of the cross section of two-pho-
ton bremsstrahlung processes is much more compli-
cated. Indeed, in this case only the cross section (and
not the amplitude) of the processis ascalar that can be
presented as a combination of scalar and mixed prod-
ucts of photon polarization vectors and electron
momenta p and p'. Accordingly, the number of termsin
the expression for the cross section, which are deter-
mined by linearly independent polarization-angular
factors, increases considerably. Nevertheless, the gen-
eral expression for the cross section in vector form, as
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well as explicit expressions for dichroic terms repre-
sented in terms of reduced MEs of the momentum oper-
ator, can be abtained in analogy to the case of potential
scattering.

3. COULOMB TWO-PHOTON RADIAL
MATRIX ELEMENTS

Formulas (20) express parameters Q; in terms of the

radial MEs My (E', E, €) (21) of transitions between

the states of the continuum with fixed values of the
orbital angular momentum in potential U(r). In accor-
dance with the dipole selection rules, MEs of the fol-
lowing four types appear in expressions (20):

M1 (E, E, €)
= [D( +1,)Rg|g+1(€)|D( + 1, )Rg O
Mi 21 42E, E,€)
= [D(+ 1,1 +2)Rg 45|09+ 1(€)|D(I + 1,1 + 2)Rg; , .
M!13(E.E €) 0
D@ +1,1 +2)Rey 5|9+ 1(€)|D( + 1, )R

Mi1+oE, E,€)
D +1, |)RE'||g|+1(<é)| D(+1,1+2)Rg, 1

It can be seen from the definition that M| | (E', E, €) =

M| (E, E', €): consequently, it is sufficient to calcu-
late Mi 1", Mi131.2, and M; 3, only.

In the case of the Coulomb potential U(r) =-2Z/r, the
MEs M, can be calculated in closed analytic form. It
isshown in Appendix A that each ME from M, can be

presented as a sum of six terms of which two contain
first-order dipole MEs,

d.(E,E) = [Re|D(I DR I' =121, (37)

while the remaining four terms include the integrated
terms J™ (A.4) withm, m' =0, 1

1+ 1, _ P l+1-ia ,

Mll (E,E,%)_E—%|I+1—ia|dll+1(E’E)
__p I+1-ia .
Eu_%||+1_ianldl+ll(E1E)

+ gi'izj(—‘-’Plz)-lcE,cE.l[(l +2+ia)(l +2+ia)d%
[(21+3)!] (38)

+(+2+ia)(+1-ia)d™
+(I+1-ia)( +2+ia)J"™
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+(1+1-ia)(l +1-ia)d"],

+ . | +2—i ,
M:+;|+2(E’E’%)= . | a.Idl+2I+:l.(E,E)

E-¢l+2-ia
p [I+2—ia .
1 : -dl+1l+2(E’E)
E-¢l+2-ia (39)
. 22|+222(pp.)|
[(2I+3)!]2(I+2—ia)(|+2—ia')
><C:El+2CE'|+2[~]OO_JOl_JlO"'Jll]’
141 _ p lI+1-ia .
M|+2|(E,E,%) - E_%|I+l_ia|d|+zl+1(E1E)
p |[I+2-ia] ,
E_¢1+2-ia -uE B
o2+ ZZZ(pp')l (40)

+

[(21 +3)1]%(1 +2—-ia)
X Cg Crypanl(l +2+i)d% + (1 + 1—ia)3™
—(+2+ia)d°—(1+1-ia)d".

Here, a = Z/p is the standard Coulomb parameter, and
Cg is the normalization factor for the continuum state

Re(r):

Cg = Eap(nﬁZ)lr(l +1-ia)l.

1015

The MEs d,- satisfy the symmetry relations
di+1(E\E) = —d,.y(E E),
dis2+1(E, BE) = —di,q4o(E E)

and can be expressed explicitly (see Appendix A) in
termsof thefunctions,F, (cf. the expression for the ME
for asingle-photon transition with the interaction oper-
ator in the “form of length” [55]):

' 22I+2Z J+1 ]
d.y(E B = =—=E_F
[(2] +3)!]
X Cey,1Ca[(1 +2+ia)1™+ (I + 1—ia)l™],
e1+1Ca[( )22'+§Zp-'+1p') ] (1)
dI+1I+2(E" E) = 2 .
[(21+3)!]°(1+2-ia)
><CE‘|+1CE|+2(|1O—|11)-
Here,
I"M(E, E) = (=1)'(2I +3)!
' . —-1-m+ia ' . —I-1-m+ia
«(P=P+i0) (P=p+i0) (42)

2+ia+ia-m-m

(p+p)
x,F(l+1+m—ia,l+1+m-—ia, 2l +4,A),
where Ay = —4pp'/(p — p')%
Expression (A.4) for J™ can be written only in the

form of a one-dimensional integral of the function ,F;
with the same parameters asin Eq. (42):

1

J"(E, E, €) = 27 421 + 3)Iv Ot

° (43)

T R (I + 1+ m—ia, |+ 1+m—ia, 21 +4; \)
X AI+1+m—iaB|+1+m‘—ia’C2—m'—m+ia'+ia ’

wherev = 1/./—2€ , A = (16pp|vPt)/AB, and
A = (1-plv|+i0)(1+ p'|v| +i0)
—t(1+ plv[ =i0)(1~p'lv|-i0),
B = (1+plv|+i0)(1-p'|v| +i0)
—t(1-plv[=i0)(1 + p'|v| -i0),
C = (1+plvl+i0)(1+ p'v| +i0)
—t(1-p|v|=i0)(1-p'lv| =i0).

Formulas (43) and (44) are written under the assump-
tion that the energy of the intermediate stateis positive:
€ >0.f € <0 (thiscaseisrealized in elastic scattering
with reemission of a photon with w > E), the parameter

v =1/.,/-2€ isreal-valued and the substitution [v| —~

(44)
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—iv must be carried out in Egs. (43) and (44). Infinitely
small corrections +i0 in Egs. (42) and (44), which
determine the rules for raising negative quantities to a
power, appear as a result of regularization of inte-
grals (A.3) and (A.4) with oscillating functions. It can
be seen that expressions (38)—(40) contain two types
of terms. the hypergeometric functions ,F; and inte-
grals of ,F;. Relatively simple “integrated” terms make

a dominating contribution to M|.L|(E', E,€) in the
domain of the variables (see Section 5) and contain, in
particular, the Born limit since the terms with integrals
J"M have an extra factor Z.

In spite of the cumbersome form typical of analytic
calculations with Coulomb functions of the continuum,
formulas (38)—(40) and (43) cannot apparently be sim-
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plified further and are the simplest expressions general -
izing Coulomb matrix elements of the type (41), (42)
for single-photon bremsstrahlung processes to the case
of two-photon free—free transitions. At the same time,
the analytic expressions for the MEs for bound—bound
and bound-free transitions following from them for
analytic continuationsin E and E' can be simplified and
reduced to two-photon Gordon formulas [49], which
arefree of integrations. The corresponding transforma-
tions can be found in Appendix B.

4. ELIMINATION OF SINGULARITIES
IN THE AMPLITUDE
OF ELASTIC TWO-PHOTON TRANSITIONS

Elastic two-photon transitions in the continuous
spectrum require special analysisin view of the conver-
gence of the radial MEs of dipole transitions between
the states of the continuum with identical energies even
in the single-photon case. The situation in two-photon
transitions is analogous: it can be seen from expres-

sions (42) and (43) that all MEs M, diverge for
E' — E (p' — p). Thereason for the divergence can
be easily grasped if we consider the asymptotic form of

the radial Coulomb Green function integrated with the
wave function of the continuum:

Zv-1_—r/lv
Cir

e

fdr' rgu(é; , r)EF REl(r>

Cz Z Tt
+ Tcos%or + Bln(Zpr) _§I + 6,(p)%,

where A, C,, and C, are constants. The presence of the
second term oscillating with the same frequency as the
wave function Rg(r) in the asymptotic form is respon-

sible for the divergence of M|.L|(E', E,€) forE' — E

both in the case of the Coulomb potential and for Z = 0.
Since the cross sections of elastic processes are finite,

the singularities in M, must be compensated in the
calculation of thelimit E' — E in the sum

M(ed e, E + w) + M(e, el] E—w), (45)

defining the total amplitude f, of the transition in rela-
tion (12). The first term in expression (45) corre-
sponds to the absorption of a photon followed by its
emission (see Fig. 1a), while the second term corre-
sponds to the reverse process (see Fig. 1b). The quan-
titiesw and w' in sum (45) are connected through therela
tionw—-w=E —E.

It follows from expression (19) for M(e*, e, €) that
the polarization-angular parameter Q, reversesits sign

upon the transposition of e and e*, while the signs of
the remaining Q; remain unchanged. It follows hence
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that singularitiesfor E' — E must be compensated in
the combinations of MEs,

S = lim[M;(E, E, E+w)
E-E (46)
+ M/ (E, E, E-w)],

R(€) = lim [M(E, E, €)-M[(E, E, €)], (47)

through which we can express the parameters Qid of
elastic trangition in formula (34):

Qf = -3 [z + A
* s (1 + 917 [P,

00

d _ 1 -1 1+17] (1)
QZ - Izl|:2|_1£f|| 2| +3g)|| :|P ()
z ol -1 1 1+ 1]
+2|Zz[[2|—18p| +2I+38P

(ggl 1|+1+9)|+1| 1)}P(Z)(X) (48)

2I+1

Q& = 5 [R(E+w) - R(E-W)]P(¥),
=1

_ Wik

Z N+ (1 + 1) TP,

where
Sr1 = (218 p)expli(3:(p) + (P Fr 1,

Ri(€) = (101 p)exp[2i8(P)] R(E).

In order to verify the compensation of the diver-
gences and to find the limits of expressions (46) and
(47), we must explicitly separate the diverging and
finite parts of the ME MlL. .- Wewill illustrate the corre-
sponding results using analytic expressions (38)—(40)
for the Coulomb potential. This can easily be done for
the integrated terms through the known asymptotic
expansion of function ,F; in inverse powers of argu-
ment [56]. The separation of singularities from J™™ in
expressions (38)—(40) requires more complex transfor-
mations. It should be noted above all (see Eq. (43)) that
integrals J® and J'* are finite for E' = E, while J°* and
JW diverge as In(E' — E). The presence of the logarith-
mic singularity alone allows usto set E' = E in the coef-
ficients of the integrated termsin expressions (38)—(40)
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everywhere except in factors A and B. Using the tech-
nique for separating singularities described in [13], we
can present the diagonal MEsin the form

N , 1 —prf
Mit2 1o E €)= = HntP B - 200

L1 a 2%
E-¢émn(l+2-ia)lE_¢

+iap(l +2—ia) + 2iap(l +3+ia)

+ia(l +1-ia)
(49)
—2(1 + 2 +ia)Rey(l + 2-ia)J

+72 22I+2[2)2I CE|+2 JOO+J11—K],

(21 +3))?(I + 2—ia)?

MYE, E € = 21 n[fp‘pbz}—zq;(l)g

ne-¢U [U2p 0
L1 a 0 2¢ ia
E-¢n(l+1+ia)d E-¢ I+1-ia
32— —iay(I+ 1~ia)~iay(l +2ia) (50)

—2iay(l +3+ia)-2(1 + 1-ia)Rey(l + 2—ia)J

22| +2 2|
22(—2—5-—__3’?)020;'[(' +2+ ia)2J00

+Z

+(+1-ia)?3"+(+1-ia)(l +2+ia)K],
where K isthe regular part of the sum JO + J'°,
20+4 y2+5 1 I-2v

2 2(2|2+3).V . Idt 2|+2t—2ia 1+2ia
(1-p°v| )(I+1—|a)0 A C

x| Ha(x—piv) + &1+ 2ia) (1 - piv)

x F (I+1—ia|+1—ia 2l +4,))

(51)

+(I+1—ia),F,(I +1—ia | +2—ia,2l +4,>\)},

and P(x) = (d/dx)InT (x) is the psi function. Integrals
J™ in expressions (49) and (50) are defined by for-
mula (43) with p' = p. In this case,

A =B = (1-p’ V) (1-1)+i0,
_ 16pvit 42

C = (1+pvl)’*=t(L-plv)? A
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Considering that E — € = —w for the diagram presented
inFig. laand E—¢ = w for thediagramin Fig. 1b and
that the singular termsin expressions (49) and (50) are
identical and independent of |, we can easily seethat the
divergencesin the calculation of R(¢€) in expression (47)
and in the diagonal elements S, in expression (46) are
compensated and the final results obviously follow
from expressions (49) and (50).

The nondiagonal MEs contain, in addition to the
logarithmic singularity, a power singularity; conse-
quently, their singular part has the form

a
ml+1-ia|l+2+ia

><d+1—ia+l+2+iag p

[M} 3 (E, E, €)]gng =

UE-% E-¢ Up-p (53)
[C(E. ), CE, ), [p— P
TOE—g © E'—%Dln[ﬂ 2p D]

When we evaluate the limit E' — E in sum (46) with
I' =1 + 2, the terms with the logarithmic singularities
vanish, while the terms with the power singularities
make afinite contribution. As aresult, the final expres-

. 1
sionfor § 1%, assumes the form

§+1 _ Zp(1l+2ia) 1
207 i+ 1—ial|l +2+ia| 2
2A/21+2 21
+ Z°2°°°p

[(2 +3)!1]%(1 +2—ia)
x[(1 +2+ia)(IJ®E + w) + IX(E-w)

—(+1-ia)(J™(E+w) +IE-w))
— (U2 +ia)(K(E+ w) + K(E-w))].

The functions ,F, in the integrands of the integrals J™
and K appearing in expressions (49), (50), and (54)
have a branching point for A = 1, lying on the integra-
tion contour. The choice of the required anaytic branch
is determined by the imaginary correction in expres-
sion (52) for A. Expressions (49), (50), and (54) com-
pletely determine the amplitude f, in expression (12)
and the cross section (34) of elastic two-photon transi-
tion in the Coulomb field.

(54)

5. ASYMPTOTIC ANALY SIS
OF THE AMPLITUDES OF INELASTIC
TWO-PHOTON TRANSITIONS

The partial-wave approach leads to expressions for
parameters Q;(p, p', 6) only intheform of seriesin Leg-
endre polynomials, and the radial MEs appearing in
these series can be calculated analytically only in the
Coulomb case. Nevertheless, we can derive quite sim-
ple closed expressions for Q; and transition amplitudes
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in potential U(r) of the general form for the number of
limiting ranges of the parameters of the problem, which
will be considered below.

5.1. Low-Frequency Limit (w/p? < 1)

Let usfirst consider first-order MEs d,(E', E) (37).
Since the oscillation frequencies of the wave functions
of theinitial and final statesbecomeclosefor E' — E,
the radial integral in formula (37) diverges at infinity.
Replacing the wave functions by their asymptotic
expressions for r — oo,

2p . 1
RE,HEsn%)r—énH&(p)g,

and retaining in expression (37) only the principal
termsin 1/r, we obtain

R exp(=4 (BE)

(55)

dp

°0 E-E+i0 U
aE (56)
= psind (E)3(E - ) + B2 B2,

where A (E) =§(p) — 8,(p) — (1W2)(1 —1"). The presence
of the & function in the MEs of the free—free transitions
and the method of determining of their asymptotic form
are well known (see Section 21 in [57]). In real single-
photon transitions between the states of the continuum
(with E' # E), the singular term is omitted; however, in
compound MEs, integration is carried out with respect
to the energies of virtual states and the & term in d;.,
plays a significant role. The problems associated with
its inclusion in numerical and analytic calculations
have been repeatedly discussed in the literature [14,
58-62].

Let us now consider the low-frequency limit of the
second-order MEs M; (E', E,€) with€ = E + wand

=€ * w'. Using the spectral expansion for the Green

function in relations (21), we can represent M,L., inthe
form

MIL'I(EIa E, %) - _Z dI L(EfEEn)_dCI(_gI(Eni E)
n " (57)
g H (. 9dy (e B)
I e—¢—-i0 '

where summation is carried out over the states of the
discrete spectrum, while integration is carried out over
the states of the continuous spectrum of the Hamilto-
nian with potential U(r). In the low-frequency range,
the two termsin Eq. (57) have different values, we can
easily verify that the sum over the discrete spectrum
givesafiniteresult for w, w — 0, whiletheintegral is
of the order of 1/ww in accordance with the general
nature of the frequency dependence of the amplitude of
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scattering accompanied by the emission of soft photons
[3]. It turns out that the main contribution to the integral
in expression (57), leading to the above-mentioned sin-
gularity for w, w — 0, is associated with &-shaped
termsin theintegrand function, whose presence follows
from relation (56) and from the well-known relation

1
e VPe %“”5(6 —€).

Omitting the sum over the discrete spectrum in expres-
sion (57) and taking into account only the contribution
from the points e = E, E', € in the integral, we obtain

the following intermediate expressi on for Mﬁ |

(58)

|V||| = p'sinj, L(E) LI(E' E)

(59)

+psinA (E)=—d: (E’ E)

E_ %
—ind, (B, €)d, (&, E).

Replacing the MEs d,, (E; E) by their limiting
expressionsfor E, — E; (second termin Eq. (56)) and
retaining only the principal termin the asymptotic form
for w, w — 0, we obtain
L _ p’sindy,(E)cosh,(E)
"7 (E-€)(E-E)
, p°costy (B)sinA, (E)
n (E-¢€)(E'-E)
i p”cosA (E) cosA,(E)
n (E-¢€)(€-E)
In the low-freguency limit, we cannot only simplify
partial MEs, but also sum the seriesin relations (20) in
the general form for parameters Q;. Let us consider for

definiteness the process of induced 2BrS: e, = e, = €*,
€ = E-w,E'=E—2w Then relation (60) leads to the

following expressions for ., :

(60)

TP , 2i3 23,
J‘/L:|+1 - p( i3(p) e' | 1(9))1
|co
-1 ! 2i5(p) 2% _4(p)
My = p( T—e ), (61)
I(JL)
TT 23, 23, 25
J‘/’«::; - .p2(2€l | 1(p)_el | 2(p)_e| |(p)).
{0))

Substituting expressions (61) into (20) and using the
recurrence relation for the derivatives of the Legendre
polynomial [56], we present parameter Q; in the form

2i3,(p)

=n—p22(2l+1)P,(x)e
1O =y,
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Taking now into account the well-known relation for the
amplitude f, of dastic scattering in thefield U(r) [57],

£4(6) = %Z(ZI +1)P(cos8)e™™®,  (62)
|

we express Q, interms of f,:
2
T
Q= _pzfo-
W

Similarly, we can express the remaining parameters
Q inrelations (20) in terms of f, with the help of appro-

priate recurrence relations for P,ﬂm)(x) and find that

Q= Qu Q= -20, Q= 5(1-c0s0)Q;

As aresult, we obtain the following expression for the
2BrS amplitude M(e*, e, E — w) in expression (19),
2
M = 25 fedn-m)?, (63)
W

and the low-frequency asymptotic form of the cross
section (see Eq. (9)) hasthe form

do = (64)

The same result follows from the Kroll-Watson for-
mula (expression (6) with dog — da, = |f,[2dQ) if we
passto alow field strength F init.

Let uswrite for reference the low-frequency asymp-
totic expressions for 2BrS partial MEs (61) in the Cou-
lomb field. In this case,

ism _ M(l+1-ia)

" v i) e
so that we obtain from relations (61)
+ Z [+1-ia
J‘/L:Il = —pz—zz,
nw((l+1) +a
+ Zp I+2+ia
Mitzies =
1+21+2 d1 2+ (66)
Zp 1/2+ia

I+1
Mz = = T T i) + -3

We considered above the arbitrary potential U(r)
(the general method of estimating ME in the low-fre-
quency region was used earlier [62]); however, the
behavior of Coulomb amplitudes in the low-frequency
range can also be analyzed proceeding from exact
expressions derived in Section 3. Expanding the func-

tions,F, in the expression for M, ininverse powers of

the argument and retai ning the principal termin L/w, we
arrive at results exactly coinciding with relations (66).
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It turns out that the contribution to the main term of the
asymptotic form comes only from the integrated terms.
Formula(59), taking into account the contribution from
the &-type singularities in the compound ME only and
appearing in our calculations as an intermediate expres-
sion, was derived in an analogous way by Korol [14]
and was used for approximate evaluation of Coulomb
amplitudes in the entire range of variables. A compari-
son with the available data from the literature [11, 12]
shows that formula (59), which is ssmple for calcula
tions, successfully reproduces the results of exact cal-
culations of the spontaneous 2BrS cross section. The
existence of exact anaytic expressions for Coulomb
amplitudes makes it possible to establish the source of
such good agreement. Comparing relation (59) with
(38)—(40) and taking into account rel ations (65), we can
easily verify that the real part in Korol’'s formula (59)
exactly coincides with the real part of the integrated

termsin M|L.I . At the same time, the imaginary part in

relation (59) is exact. Thus, formula (59) disregards
only the real part of the integral terms in (38)—(40). It
was mentioned above that the integrated terms make
the main contribution to the amplitude in the Born and
low-frequency region. The first term in the asymptotic

form of the integral part of MlL.I in the Born region, as

well as in the low-frequency range, turns out to be
purely imaginary so that correction appearsin formula
(59) onIy in the next order and has the relative value

where C and C' are constants. This estimate determines

the accuracy of approximation of formula (59) for the
Coulomb field.

It should be noted that the low-frequency Kroll—
Watson approximation isinapplicable for small scatter-
ing angles, when the inclusion of only the principal
term of expression (60) of the asymptotic form of the
ME Mh for w, W — Oisinsufficient for estimating
amplitudes Q,. Since the estimation of corrections to
expression (60) for the field U(r) of the general formis
complicated, we will illustrate this statement for the

Coulomb scattering. In this case, the low-frequency
asymptotic form (64) is given by

2B 4 cinB

i S+ C‘}, (67)

do _ 1QFgp, _
a0 " a2loa pfreg Ble[(n— n)| (68)
where
B = F'z2 1
T A8 8. 4 :
2°w’sin (6/2)

Corrections of the next order in frequency are cumber-
some and can be obtained from the exact formulas
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obtained in Section 3. In particular, in the next order in
w, there appears the CD term

LEEg s
417 P (69)

- B%’(Inwb)a(k [InxnT)len-m)>

where
y= PP zsinzg
(p-p)

and b = b(a) is a smooth function of the momentum p.
Obviously, the condition of applicability of the Kroll—
Watson approximation is the fulfillment of the ine-
guality

%;I(k qnxn])| <lefn-m)’.  (70)

Sincele: (n—n")?~6%and |n xn'|~6 for 8 —= 0, con-
dition (70) is obviously violated for small scattering
angles (the fulfillment of this condition naturaly
depends also on the azimuth angle). It should be noted
that, since correction (69) depends on &, dichroism
effects are significant in the 2BrS cross section even
for small values of the ratio w/p? in this range of
angles (although the CD effect obviously vanishes for
0=0)

5.2. High-Frequency Limit (Z/p < 1, WE' > 1,
W/E ~ 1) and Born Approximation

Let a fast electron lose a considerable part of its
energy during induced 2BrS so that thefinal stateis not
of the Born type. In this case, the replacement of the
wave function of theinitial state by the function of free
motion,

Re(r) —RE(, R = f;pj.(pr), (71)

leads to the following results of the action of operators D
on the wave function:

D(I +1,)RY = —pRY, ,,
(0) (0) (72)
D(I+11+2)Rg., = PRy

Substituting now Green's function for a free electron
for Green'sfunction g, inrelations (36) and using rela-

tions (72), we reduce M, to the form

iy 2E
M1 = (1) 2= Rer| RED. (73)
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Evaluating the overlap integra <RE,,.|R(E°,.)> [63] and
proceeding to the limit E — o, we obtain

Cep(I'+ 1)1 p"
Jﬁ(Zl' +2)! p|'+7/2'

Comparing relations (72) with (A.1) and (A.2), we can
easly establish that expression (74) in the Coulomb
case correspondsto the inclusion in relations (38)—40)
of only the integrated term with d;.,,, in which the

wave function of theinitial state is replaced by R(E(i.) A

more detailed analysis of expressions (38)—(40) in the
high-frequency range shows that the term with d,. |, ;

makes the main contribution to the asymptotic form of

My, only for L =1'+ 1, whileall thetermswith M, ;3

M|L'| — (_1)(|—|')/222|-+9/2Z (74)

and M:i §|+ » (including the real part of the integral
terms) are of the same order of magnitudefor L =1'—1.
Thus, expression (74) is a correct high-frequency
I+1 I+1

asymptotic form for the MEs M,, ~ and M,,,, and dif-

fers from the correct result for M|+ 5, and M| %3, in
the coefficient of p'~72,

It is interesting to note that an analogous situation
also emerges in an analysis of single-photon transi-
tions: substitution (71) in the MEs of photoionization,

dii(Er, Ey) = <REf|f|D(|fa )| Rnili>1

leads to a correct asymptotic form of MEs with I; =
l; + 1 and gives an erroneous factor in the energy
dependencefor |; = |; — 1 (thisfact is mentioned in the
monograph [55], although its origin is not discussed).
In order to clarify the reason for such results, we con-
sider the formation of the high-frequency asymptotic
form of the photoionization MEs in the Born approx-
imation:

(75)

od ,1+10

dl((i)ll(Efi Eni) = <R(E0f)|-1 CHr [

Rnil> . (76)

The integral in this relation contains the rapidly oscil-
lating (for E; — o) spherical Bessel function j, (pr);
consequently, the main contribution comes from the

neighborhood of point r = 0. Since R, ~ Nni,rI for
small r, it follows from expression (76) that
di-11(Er, En)
” 77
= (21 + 1)an|J’r'+1R(E°f)|_l(r)dr. ()
0
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Using the well-known formula [63], we obtain the fol-
lowing expression for an integral of the form (77):

J’r'lR%z(r)dr
0
pletlit 3 (79)
o 2 0O,_ 2l +
_ ZH 1/2(2E)(2|1 nm'
pde—lit
o 2 0O
Forl,=1+1andl,=1-1, the gammafunction in the

denominator of this expression becomes infinitely
large; consequently, the principal term in the expansion
of R, inr does not contribute to the asymptotic form.
In order to evaluate the first nonvanishing term of the
high-frequency asymptotic form of d,_,(E;, E,), we

must not only continue the expansion of R, inr, but

also take into account the next terms in the expansion
of the wave function Ry in 1/E, i.e., the correction to

RY in expressions (71), as well as the Coulomb cor-
rection to Green's function of a free electron for the
second-order MEs. We omit here these cal cul ations and
only note that the main contribution to the asymptotic
form of the total ME M(e*, €, E — w) in relation (7)
comes from the partial amplitudes with I' = 0, whose
high-frequency asymptotic form is given by formu-
la (74) (it should be recalled that all partial ampli-
tudes in the low-frequency region had the same order
of magnitudein w).

In the Coulomb case, taking into account in rela-
tions (20) only the termswith |' = 0, which appear only
in Q; and Qs,

Q, = 3Q, = 2°mze™ r(1-ia)p™, (79)

we arrive at the following expression for the total
amplitude:

M(el ell E—w)
= 2°rze™’r (1—ia) p (D).

It should be noted that the quantitative agreement
between the asymptotic and exact results is improved
significantly if we cal culate the asymptotic form retain-

ing the exact normalization factor Cg in Mﬁ 1, which

corresponds to the substitution /2p/t — Cg/l! in
relations (71).

Since the high-frequency asymptotic form of M, }*

and M:T}Z is determined by the integrated terms (see

above), formula (59), taking into account these terms,
exactly givesthe correct limit (74) for these MEsin this
region a so. On the contrary, the high-frequency limit of

(80)
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formula(59) for M 1%,,, and M, 13, , coincideswith
relation (74) and differs from the correct result.

If an electron remainsfast in thefinal stateaso (a' =
Zlp' < 1), we can apply the Born approximation.
According to the results obtained by Bunkin and
Fedorov [25] (see Eqg. (6)), the induced 2BrS cross sec-
tion inthe Coulomb field in this case hasthe el ementary
form

do,
dQ

_ F'Z’ledp-p)l’p
240)8 (p_p|)4 p
p? = p’—4w.

(81)

This result can aso be obtained directly from the exact
results of partia-wave analysis. In the low-frequency
region w < p? (athough the frequency in this case may
be significant as compared to the binding energy, w ~ 1),
the partial Born series can be reduced to low-frequency
seriesin which we must assume that a —» 0 (see Sub-
section 5.1). For an arbitrary w, partial Coulomb MEs
M|L.I are aso simplified significantly in the Born
region: first, the terms containing integrals in relations
(38)—40) aresmall for a, @' < 1 since these terms con-
tain an extrafactor Z/p; second, the parameters of func-
tions ,F; become integral so that these function can be
reduced to elementary functions. For example, the

expression for M: N ! inthe Born limit assumestheform

Mitt = 2G040+ 1)(pp)

@+3)t (p-p)***
x [(| + 2)%2&0 +1,1+2,21 +4; Ap)

AL+ 1), F (12,1 +2,2 +4; Ao)},

where A, = —4pp'/(p—p')%. Moreover, assuming that a =
a = 0in the integrand in formulas (38)—40), we can
calculate the second Born correction from the inte-
grated termsin radial MEsin elementary form as well.
However, the explicit expressions of theseintegralsand
of functions ,F; with integral parameters in terms of
elementary (power and logarithmic) functions turn out
to be cumbersome and become more and moreinvolved
with increasing |, which complicates the summation of
partial series in | in formulas (20). In the first Born
approximation, such asummation can be carried out by
using the expansion (see formulas (5.17.26) and
(5.17.32) in [50])

1 w
= a(p, p)P,(cosb),
(p-p) & |
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Fig. 3. Frequency dependences of the matrix elements of 2BrS for the initial electron energy E = 0.1 (a, b) and 1.0 (c, d). Solid
curves correspond to ReM, dot-and-dash curves to ImM, and rhombs to ReM in approximation (59).

I!(pp)'
(v2)(p-p)**?

.__4pp O

x FA+1L1+1,2 +2; ———.

] (p-p)™
Using the recurrence relations for functions ,F; and
Legendre polynomials, we can verify that the summa-

tion of partial seriesfor the amplitude in the Born limit
resultsin expression (81).

a(p, p) =

6. NUMERICAL RESULTS FOR THE COULOMB
POTENTIAL AND DISCUSSION

6.1. Frequency and Energy Dependences
of Radial Matrix Elements

Since the cross sections of two-photon bremsstrahl-
ung processes remain multiparametric functions even
for fixed experimental geometry and photon polariza-
tion, it would be interesting to analyze qualitatively the

dependence of MEs MlL. | (E', E, €) on the frequency of
photons and on the electron energy for various values

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 95

the orbital angular momental, L, and I'. The existence
of exact formulas (38)—(40) for the Coulomb potential
makes it possible to obtain quantitative results for MES
and cross sections in a wide range of these parameters
since the problem is reduced to the evaluation of func-
tions,F; and their integrals, which can easily be carried
out using standard computer programs. It was shown in
[64] that single-photon Coulomb MEs d,.(E', E) are
positive monaotonic functions of energy, which decrease
monotonically with increasing E', say, for afixed E and
E' > E and diverge for E' — E (in the presence of a
non-Coulomb part in potential U(r), the MEsS may
change their sign in a certain energy range depending
on the value of the non-Coulomb correction to scatter-
ing phases [65]). In the two-photon case, the situation
is complicated significantly due to the presence of an
additional parameter, viz., the photon frequency w (or
the energy of an electron € = E + winthevirtual state),

and in view of the complex nature of the MEs M|L.I

(these matrix elements are real-valued only for € < 0,
which corresponds to the re-emission of a photon with
w > E in the course of elastic scattering (see Fig. 1b)).
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Fig. 4. Thesame asin Fig. 3 for the matrix elements of double bremsstrahlung absorption.

Since the imaginary parts of the MEs M|L.I can be

reduced to the simple product of single-photon MEs
(see formula (59)), it becomes especially interesting to
establish the range of the parameters, in which the
imaginary part makes a dominating contribution to
two-photon MEsin view of the obvious radical simpli-
fication of the results.

It was mentioned above that, for afixed |, the contri-
bution to two-photon cross sections comes from two

“diagonal” (M, and M, ,,.,) and two “nondiago-

nal” (M| ]+, and M| 3,) radial MEs. According to the

results of calculations madein awiderange of E, w, and
[, al these elements exhibit quite a universal behavior.
The real and imaginary parts of al radial MEs (except
ReM:Tl) are negative and decrease monotonically in
absolute value with increasing frequency without
reversing their signs (the imaginary part decreases a a
higher rate than the real part). The signs of ReM|L. , and
ImM;, are preserved upon achangein |. The absolute

values of ReM;, and ImMy, for agiven initial energy

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 95

(outside the low-frequency region) decrease with
increasing | (the imaginary part decreases at a higher
rate than thereal part in this case also), the rate of their
decrease with increasing frequency increasing with .
Figure 3 illustrates some examples of numerical calcu-
lations of the frequency dependence of radial MEswith
| =0and5for induced 2BrS (é = E—w,E' = E - 2w)
for small (E =0.1) and intermediate (E = 1.0) values of
the initial energy E. It should be noted that all MEs
assume finite values at the threshold frequency w = E/2
(E'=0).

Figure 4 shows the frequency dependence of radial
MEs of double bremsstrahlung absorption (€ = E + w,
E'=E + 2w) for the samevauesof Eand | asinthecase
of 2BrS (see Fig. 3). It can be seen that the behavior of

MlL.I for emission and absorption processes is qualita
tively the same (monotonic decrease of ReM|L.I and

IliL.I upon an increase in w and angular momentum
| preserving fixed sign, and the rapid decrease in the
imaginary part). The only difference is that there is no
threshold limitation on frequency in the case of
bremsstrahlung absorption, and the M Es decrease upon
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an increase in w, tending to an asymptotic form of type
(74) (in a very far frequency range). For a given fre-
guency w, the “diagonal” MEs for absorption are con-
siderably larger than the corresponding MEs for 2BrS,

and [M}7Y > |M|,1 .. An interesting correspon-
dence is observed between the numerical values of

“nondiagona” MEs for emission and absorption:
M (E + 20, E + 0, E) = M| (E~20, E~w, E).

In particular, the MEs in which the change in energy
and in the orbital angular momentum occurs “in the
same direction” have the largest magnitude in both
casesinthemajor part of the frequency range. Thiscor-
responds to the well-known Bethe rule for single-pho-
ton transitionsin adiscrete spectrum [55]. However, for
two-photon transitions in the continuous spectrum, this
rule turns out to be not very stringent; it is violated in
the low-frequency range, this region expanding with
increasing angular momentum |.

The existence of exact results makes it possible to
verify the correctness of approximations used for calcu-
lating My, (E', €, E). The simplest among them is the
“pole” approximation, which consists in the inclusion
of only theimaginary part of M|L.I inrelation (57) (orig-
inating from the term with the & function in Eq. (58)).
In the conditions of applicability of perturbation theory
in the wave field, the model of “significant states’ [66,
67] in the theory of multiphoton transitions in a strong
field can also be reduced to this approximation.
Asymptotic estimates (66) and numerical calculations
show that the imaginary part dominates in the low-fre-
guency rangefor low initial electron energies (the accu-
racy of the pole approximation for “nondiagonal” MEs
inthiscase is much higher than for “diagona” MEs). In
the pole approximation, a two-photon transition can be
regarded as a “cascade” transition, i.e., a transition
occurring only via an intermediate state of the contin-
uum with energy €, which correspondsto the factoriza-
tion of the process amplitude:

M; (E, €, E) — ilmMy,
= —MRe|D(I', )[Ry Ry, [D(L, DIRe

As the frequency and/or the electron energy increases,
the contribution of the omitted real part of MEs
increases. In the high-frequency region (a <<€ 1, WE' > 1,
WE~1foremissonanda <1, wE'~1, WE> 1for
absorption), the real part of Mh becomes dominat-
ing, while the imaginary part has arelative smallness

of the order of 1/./w. In the intermediate frequency
range w ~ E, the quantities ReM;, and ImM;:, are of

the same order of magnitude so that transitions through
various intermediate states corresponding to the real

part of Mh become as significant as “ cascade” transi-
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tions. By way of an example, we give below a number
of MEs My, (E + 2w, E + w, E) for the energy E =

0.0536 = 1.458 eV and w = 0.0735 = 2.0 eV, which
appear when we estimate the contribution of correc-
tions to the photoionization cross section of the state of
ahydrogen atom with n =5, | = 4, which are quadratic
inintensity and associated with virtual transitionsin the
continuum [68] (the results are given for the dipole
interaction operator in the “form of length,” which was
used in [68]):

M3 = —(14.71+i x 24.76),
Mgs = —(3.882 +i x 0.910) x 107,
Mg = (3.323—i x 0.594) x 10,
MS = —(2.386—i x 3.100) x 10,
M3 = —(1.353 +i x 2.793) x 10°,
M3 = —(1.369 +i x 0.606) x 10°,
M3 = (1.141—i x 0.346) x 10°,

Mg = —(0.819 +i x 1.270) x 10°.

It can be seen that, in the case under investigation, the
pole approximation (as well as the Bethe rule) is inap-
plicable; this situation is typical of “superthreshold”
multiphoton processes, when the photon frequencies
are comparableto the el ectron energy in the continuum.
It should also be borne in mind that individual radial
MEs in the total amplitude of the process “interfere”
considerably (cancelled out) as arule; this renders the
regquirementsto their accuracy much more stringent.

Approximation (59) (1-delta approximation [14])
takes into account exactly the real part of the integrated
terms in relations (38)—(40) along with the imaginary

part of My, . It was established in Section 5 that this

leads to correct results in the low-frequency range (for
any values of the initial electron energy) in the Born
region and gives a quite accurate result for two out of

four MEs M, (those whosefinal state hasthe smallest

possible orbital angular momentum, see Subsection 5.2)
aswell asthe correct form of the frequency dependence
and the order of magnitude of the remaining two MEs
in the high-frequency region. Consequently, this
approximation is in good agreement with exact results
practically for all values of the laser field frequency and
electron energy (see Figs. 3 and 4). A noticeable dis-
crepancy is observed only for small energies and for
small values of momentum | (the largest discrepancy is
observed for the MEs in which the integrated terms do
not provide a correct high-frequency asymptotic form).
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Fig. 5. Spatia distribution of electronsin 2BrS, which are
scattered (with initial energy E = 1.0) by a Coulomb center
in the presence of a circularly polarized wave with fre-
quency w=0.01(a, b) and w=10.1(c, d) for £ =1 (g c) and
& = —1 (b, d). The initial electron momentum lies in the
polarization plane (yz plane).

6.2. Angular Distributions and Dichroism
in Induced Bremssrahlung Processes

It was established in Subsection 2.3 that angular dis-
tributions depend considerably not only on the initial
electron energy E and frequency w, but also on the
polarization of photons. Figure 5 shows qualitative fea-
tures of the spatial distribution of electrons scattered by
a Coulomb center in the presence of acircularly polar-
ized wave with & = +1 in the case of induced 2BrS for
two frequency values of w = 0.01 and 0.1, In accor-
dance with the geometry presented in Fig. 2, the direc-
tion k of the light beam is chosen to be orthogonal to
the initial momentum p = pn of electrons with energy
E = p%2 = 1.0 au. Figure 5 clearly demonstrates the
presence of CD: cross sections do/dQ for & = +1 and
& = -1 differ considerably (at the same time, they are
transformed into each other upon reflection relative to
the xz plane; see Subsection 2.3). The CD effect
decreases with frequency since the low-frequency
asymptotic form (68) contains only the “regular” term.
However, in the range of small scattering angles, the
values of do/dQ for & = +1 differ significantly even for
wE =0.01 (see Figs. 5aand 5b and discussion in Sub-
section 5.1). As the value of 6 decreases further, the
value of Acp again becomes smaller than f.o, which is
also confirmed by numerical calculations: it can be seen
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Fig. 6. Thesame asin Fig. 5, but in the field with elliptical
polarization and frequency w=0.1: () a = W2. £ = 1/./2;
(b) o =12, & ==1/.J2; (c) a = 104, & = 1/./2; (d) o = 174,
E=-1/.2.

from Fig. 5 that the values of do/dQ for { = +1 and -1
coincidefor 6 = 0.

Inafield with elliptic polarization, the asymmetry in
the angular distribution is caused, apart from CD, by
the effect of ED (the term with Az inrelation (24)). In
this case, the cross section depends to a considerable
extent on the orientation of the polarization ellipse,
whichisdefinedin Fig. 2 by theangle a between vector
€ and they axis. Figure 6 showsthe angular distribution
of electrons for the same values of E and w as in

Figs. 5¢c and 5d, but for § = 1/ J2 and for two values
of anglea: a =172 (e || p) and a = 174 (vector p forms
the angle 174 with the principal axis of the polarization
ellipse). Figures 6¢ and 6d visually illustrate the reduc-
tion of symmetry upon atransition from the circular to
elliptical polarization, which was considered in Sub-
section 2.3: for a = 174, the results obtained for & =

1/./2 and & = —1/./2 differ qualitatively, although the
yz plane remains the symmetry plane as before. It
should be noted that although the term A in generd for-
mula (24) has no smallness parameter, numerical cacula
tions show, however, that the effect of dliptical dichroism
on the asymmetry of angular distributions is considerably
wesker than the effect of circular dichroism.

By way of illustration of the absolute value of two-
photon cross sections and their dependenceson elliptic-
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Fig. 7. Dependence of the 2BrS cross section for electrons with E = 1.0 and w = 0.1 on the scattering angle 6 in the polarization
ellipse plane: £ =—1 (1), -1/ /2 (2), 0(3), 1/ /2 (4), and 1 (5). The values of angles a and ¢ in the geometry of Fig. 2 aregivenin

the figures.

ity, Fig. 7 shows the angular distributions in angle 6
between p and p' (in the plane of polarization ellipse)
for induced 2BrSfor E=1.0, &/E =0.1, and for various
values of & (the curves for double bremsstrahlung
absorption have an analogous form with the substitu-
tion & — —). The results are given for a = 172 and
o = 174. In the former case (a = 172), for 6 = 11, the
cross sections are exactly identical for & =+1 dueto the
absence of CD for backward scattering. At the same
time, the cross sections virtually coincide in the case of

elliptic polarization with & = +1/./2 alsoin view of the
smallness of Ag, as compared to the regular term f,o in
Eq. (24) for 8 = 1t In the latter case (o = 174), four

curves (with & = +1 and & = +1/./2) converge at one
point for 6 = msince the regular term . for these values
of anglesa, 6, and ¢ isindependent of polarization to a
high degree of accuracy (>95%) and makes a dominat-
ing contribution to the cross section. It can be seen that
the polarization sign reversal in the range of small
angles changes the cross section by aimost an order of
magnitude. A considerable dependence of theresultson
the orientation of vector p relative to the principa axis
of the polarization ellipse and the absence of symmetry
do(§; §) =do(—¢; —¢) for a = 174 are also worth noting.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 95

The dependence of the two-photon absorption cross
section on energy E for the same values of & and w as
inFig. 7isshowninFig. 8 for two values of angle 6 and
orientation of p at right anglesto the principal polariza-
tion axis (o = 0). Dichroism effects are most significant
for w ~ E, the energy dependence in this region chang-
ing qualitatively upon avariation of 6.

Double bremsstrahlung absorption differs from
2BrSin the existence of the “critical” scattering geom-
etry, in which the transferred momentum Ap = p — p'
turns out to be orthogonal to the polarization plane so
that e - Ap = 0. Inthiscase, the Born approximation (81)
and the low-frequency asymptotic form (64) give zero
value for the cross section, for which the value of
do/dQ is finite when the scattering potential is accu-
rately taken into account. Figure 9 shows the depen-
dence of the double bremsstrahlung absorption cross
section on angle ¢ (see Fig. 2) in the “critical” region.
For energy E = 1.0 and w = 1/6 (Fig. 9a), the Bunkin—
Fedorov formula (81) describes the cross section quite
satisfactorily (although the Born parameters are not
very small inthisregion: a = 0.7 and a' = 0.6) except in
the small angular region near the “critical” point 6 =
106, ¢ = 0 at which the Born results vanishes, and the
exact cross section has a clearly manifested minimum.
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Fig. 10. Double bremsstrahlung absorption cross section for electrons with energy E = 0.1 by a Coulomb center in the field of a
linearly polarized wave with frequency w=0.005 (&) and 0.001 (b). Theinitial electron momentum isdirected along the polarization
vector of the wave; 0 isthe scattering angle. Solid curves correspond to the exact result and the dashed curves to the low-frequency

approximation (64).
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Fig. 11. Scattering cross sections for electrons with energy E = 1.0 in the fields of linearly (§ = 0) and circularly (§ = +1) polarized

waveswith frequency w = 0.1, The momentum of a scattered electron liesin the polarization plane; ¢ =172. The quantitieﬁdo(”)/dQ
withn=-1,-2and n=+1, +2 correspond to (a) emission and (b) absorption of one or two photons. Theinsets show the cross section

do(®/dQ of Rutherford scattering in zero field.

At the same time, the low-frequency asymptotic form
(64) for E=0.1and w = 1/60 (Fig. 9b) leadsto amuch
worse quantitative agreement with exact results.
Another region of “critical” parameters, in which the
low-frequency Kroll-Watson asymptotic form leads to
a strong discrepancy with experimental values and
which has been discussed actively during recent years
(see references in [32]) is the low-energy scattering
(with energy E on the order of several electronvolts) via
small anglesin alinearly polarized field with theinitial
momentum p aong the direction of polarization.
Figure 10 shows the double bremsstrahl ung absorption
cross sections for E = 0.1 and w/E = 0.01 and 0.05 in
thisgeometry. It can be seen that the difference between
exact and approximate resultsfor small anglescan beas
large as five to six orders of magnitude, although an
increase in O leads to nearly complete agreement (the

—_
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—
~
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Fig. 12. Frequency dependence of the single-photon (dc(‘l)/dQ)
and double bremsstrahlung (dot2/dQ) emission of elec-
trons with energy E = 1.0 by a Coulomb center in the field
of acircularly polarized wave with € = 1 in the geometry of
Fig. 2 with 8 = ¢ = 1v2; do®/dQ is the Rutherford scatter-
ing cross section.
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resultsfor 2BrS are qualitatively the same asin Fig. 10,
but the difference for small angles 6 in this case does
not exceed one or two orders of magnitude). Thus, the
problem of simple approximations of bremsstrahlung
cross sections for describing small-angle scattering at
low energies (when the Born approximation is inappli-
cable) requires special analysis.

Figure 11 illustrates the relation between the cross
sections of one- and two-photon scattering as functions
of the laser radiation parameters and scattering angle.
The cross sections of conventional Rutherford scatter-
ing (do®/dQ) and one- and two-photon absorptions
(do™/dQ with n = +1, +2) are given as functions of
angle 0 in the polarization plane (analytic expressions
for factors Q in the amplitude of single-photon pro-
cesses (3) and (4) are given in [4] for the Coulomb
potential). It can be seen that the cross sections
(do™/dQ are more sensitive to a change in the elliptic-
ity for angles 6 < 172; in both cases, for small angles,
the cross sections have maximal values for circular
polarization, while scattering viaangles 6 > 172 ismore
effective in afield with linear polarization. In contrast
to the sharp angul ar dependence of the Rutherford cross
section do®/dQ for small angles 6, the cross sections
of bremsstrahlung processes depend on 6 more
smoothly, although single-photon cross sections also
increase by more than two orders of magnitude for
small angles, while two-photon processes exhibit a
nonmonotonic dependence. Dichroism effects are the
most significant for small angles, although the differ-
ence in the cross sections for scattering at right angles
attains 100% uponthe sign reversal of &. For afixedinitial
electron energy, the absolute value of bremsstrahlung
cross sections increases sharply with decreasing fre-
quency (Fig. 12); in this case, the frequency dependences
are successfully approximated by the expression

do®*"(w)/dQ D1/w™.
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It should be noted in conclusion that the above
results make it possible to qualitatively estimate the
limits of applicability of perturbation theory in the laser
field for describing bremsstrahlung processes. For
example, intherange of small angles, forE=land w=
0.1, atypical ratio of two-photon to one-photon cross
sections amounts to (10°-10*)F? and attains unity
(when perturbation theory becomes obvioudy inapplica
ble) for an intengity I, ~ (10%-10"%) W/cm?, which is
much smaller than the intraatomic intensity |, = 3.51 x
10 W/cm?. The value of | decreases rapidly with fre-
quency (in proportion to ) so that the effective parame-
ter of perturbation theory in the optica frequency rangeis
F/o¥ (or theratio of the amplitude of classica oscillations
of aneectronin alaser field to the Born radius). For small
0, theratio do®2(w)/do™? atainsunity only in ultrastrong
fidldswith |, ~ 1, (see Fig. 11), while the dominating con-
tribution to the cross section of scattering viasmall angles
in weaker fields comes from single-photon processes.
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APPENDIX A

Usng the recurrence relations for the degenerate
hypergeometric function ®(a, (3; x), we can present the
action of the dipole operators (22) on the Coulomb wave
function Rg(r) of the continuous spectrum in the form

l+1-—

DI+ 1 NRg(r) = meEHl(r)
27C
“@ +3)|(2pr) exp(-ipr) (A1)

x[(I+2+ia)P(l +3+ia, 2| +4; 2ipr)
+(l+1-ia)®P( +2+ia 2l +4; 2ipr)],

[l +2—ial

D(I +1,|+2)RE|+2(r) = p|+2_|a

Re) 4 4(r)

(2 + zi((:f:; .y a)(2 pr) exp(—ipr)

x[d(l +3+ia, 2| +4; 2ipr)
—d( +2+ia, 2| +4; 2ipr)].

Since the first terms on the right-hand sides of rela-
tions (A.1) and (A.2) are proportional to R , 4(r), the

corresponding terms in the MEs M,L. | inrelations (36)

(A.2)
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can be expressed in terms of MEs (37) in accordance
with relations (38)—40). The values of d,, can easily be
caculated using relations (A.1) and (A.2), which gives
formulas (41) for d,,,, and d, , 1, o, inwhich the integral

I"™(E, E) = Idrr2'+3exp[—i(p'+ p)r —er]
0 (A.3)

xP(l+3-m+ia, 2l +4; 2ipTr)

x®(l+3-m+ia, 2l +4; 2ip'r)

is atabular integral [56], which can be reduced to the
functions ,F, (see relation (42)).

The double integral J™™ in relations (38)—(40) con-
tainsthe radial Coulomb Green’s function g,(r, r', €):

= J’dr'dr(r'r)”zexp[—i p'r' —ipr —er]
(A.9)
xP(l+3-m+ia, 2l +4; 2ip'r)
xQ 1€, r, Mol +3-—m+ia, 2| +4; 2ipr).

In order to evaluate this integral, it is convenient to use
the integral representation of g, [69]:

2 dt w2z
Jﬁv_([l—t

au(r,r,€) =
04t
xexp[ 2L+ 10 (1 — )

where 1,(t) is a modified Bessd’s functions v =

1//-2%€ . It should be noted that integrals (A.3) and
(A.4) with oscillating functions contain regularizing fac-
torsexp(—r) withe — +0. Substituting expression (A.5)
into integral (A.4) and using theintegral representation
of the function ®(a, B, X) [56], we obtain

(A.5)

r+r1+t]
v 1

J"™E, E, €)
2(21 + 3)!
F(I +1+m+ia)l(l+3-m-ia)

Idt

J’dr' "+3’2exp[ %

-Zv— 1/2

— J’duuI mHA )

I+2-m-ia

+i pHr‘} (A-6)

00

x®O(l+1+m+ia, 2l +4; 2i p'r‘)'[drr'”'2

4./rr't
><eX|O[ Hp+ 12t ZIDLH} 2+30 (1))
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The specia relation between the index of Bessdl’s func-
tion |, the parameter 3 in ®(a, [3; X), and the exponentsr
andr'inintegrd (A.6), which was obtained using transfor-
mations (A.1) and (A.2), makes it possible to expressthe

KRYLOVETSKII et al.

integrals with respect to r and r' in terms of elementary
functions[63]. Asaresult, the integral with respecttouin
relation (A.6) gives a definition of the hypergeometric
function of two variables (Appd’s function),

Fil+1+m+ia; | +3-m—ia,|+1+m+ia; 2l +4; x,y),

which can be reduced, for the above values of parame-
ters, to ,F; in accordance with the well-known reduc-

tion formulas[56], and J"™ assumesthe final form (43).

APPENDIX B

Analytic continuation of formulas (38)—(40) in vari-
ables p and p' to the range of negative energies, p —
iZ/In and p' — iZ/n’, makes it possible to obtain the

2 E(+1+m—n, +1+m=n,2l +4;A)

MEs of two-photon transitions between the states |nl[]
and |n'I'Cof the discrete spectrum:

My (', n,€) = (n'T'|D(', L)g (€)D(L, Dinly. (B.1)

Asaresult of such asubstitution for p and p', the param-
eters of the functions ,F,; and the exponents in the
denominator in integral (43) become integral:

J"™(n', n, €) O ot B R — (B.2)
{ (1-ty) Ayt T (L -yt
where
2(2' 4)k (y)SF (1 +1+m=n,—k; 2l +4; 2)
y = (a—=v)(a'+v) y = (a=v)(a'—v) .
(a+v)(a'—v) (a+v)(a'+v) Fi(l+ 1+ - —k: 21 +4: 2),
160a'v’ t where z=—4av/(a —v)?, Z = —4a'v/(a’ —v)2. After this,

(@2 =vd) (a2 —v?) L=y (L -tly)’

o =n/Z, o =n/Z.

The integral in formula (B.2) can be expressed in
terms of the known functions by transforming the inte-
grand with the help of the relation (seeformula (2.5.2.12)
in [56])

(1_yt)n'—l—m'—l(l_t/y)n—l—m—l
(1_y.t)n+n'+2—m—m'

x,F(l+1+m—=n,l+1+m-n,2l+4;})

Oke(V; @,0) = v

theintegral informula(B.2) can be evaluated easily and
hastheformidentical for formula(13) from[49]. Using
the results obtained in [49], we can write J™™ in terms
of the hypergeometric polynomials ,F;(—k, b; ¢; x) and
Appel’sfunction F(a; -k, k+ 2l +2; d; X, y) of special
form, which can be expressions through the sum of k +
1 complete functions,F, or (in the case of negativeinte-
gra a) through the hypergeometric polynomial of two
variables:

Jm'm - —2I—4r2(2| +4)(C((X')I+2

k
+3 C-2)
p=1

1+1 (83)
><gnllmnllm(vaa)
where
(4vjaa)’? (@=v)*  (a'=v)* [Fuk1+1-n;21+2;2)
r(2|+2) (G+V)k+2I+2(a.+V)k'+2I+2 |+1_n
xF,(I+1-n;K;kK+21+2;1+2-n;V,Y)
Fi-k+p,l+1-n+p;20+2+p;2
p21 ' .
(2| + 2)p (Dp(kv Il r]v yl yl) 1 (B4)
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(I1+2+n-p),_1(1-y)"

oK, LNy Y) =

C! isthe binomial coefficient, and n = Zv.

In order to transform J™"™ to (B.3), (B.4), it is suffi-
cient that only one of the two numbers (n or n') in for-
mula (B.2) be an integer (this number will determine
the upper limit k of the sum over p in formulas (B.4)).
Consequently, the amplitudes of free-bound (but not
free—free) transitions can aso be presented in closed

form. Explicit expressions for all M|L.I (n', n, €) infor-
mula (B.1), which are alowed by the dipole selection

rules, in the form of linear combinations of g, aswell

as analogous expressions for the MEs of bound—free
transitions (two-photon Gordon’s formula), are given
in[49].
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