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FIGURE 1: Application scenario 
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Abstract— Inter-vehicle and roadside-to-vehicle 
communications can contribute to a safer and more 
efficient driving experience by providing time-sensitive 
and location-aware information. However, its 
performance suffers from vehicle mobility, intermittent 
user connectivity, and wireless channel unreliability. In 
this paper, we propose a novel cross-layer optimization 
approach based on our Adaptive Distributed Cooperative 
Medium Access Control (ADC-MAC) protocol to 
guarantee the quality-of-service (QoS) of real-time 
applications. Markov chain based theoretical analysis 
show that our proposed priority preemption approach 
can improve the quality of a real-time application by 
guaranteeing its bandwidth and reducing its transmission 
latency. 

Keywords-  Cross Layer, Protocol Optimization, 
Cooperative Relaying, QoS, Vehicular Networks 

I.  INTRODUCTION 
In the foreseeable future, most new vehicles will be 

equipped with wireless radio device, which will 
provide time-sensitive and location-aware information 
to drivers and other vehicles from localized traffic 
updates to warning signals. Such timely information 
conveyed over a vehicular network is envisioned to 
help significantly reduce the number of annual traffic 
fatalities and injuries [1]. 

The basic idea of cooperative relaying is that a 
wireless station with low data rate can achieve higher 
performance with the help of neighboring stations with 
high data rate if available. These assisting nodes are 
referred to as relay nodes or helper stations. A concrete 
example is shown in Fig. 1: vehicles B and C can 
communicate with its service access point (AP 0) 
directly to get the maximum throughput, while vehicle 
B can only achieve its maximum throughput with the 
assistance of vehicle C. Even worse, without the relay 
service provided by vehicle B, vehicle A cannot 
communicate at all with access points (AP). 

Thus far, only few research papers have been 

published for cooperative MAC protocol design. Relay-
enabled DCF (rDCF) is firstly proposed in [2] to 
exploit the multi-rate capability of IEEE 802.11 [3], 
which can intelligently apply two-hop data 
transmission to achieve higher throughput by triangular 
handshakes among a transmitter, a receiver and a 
predetermined helper. CoopMAC I and II are presented 
in [4-5] to study the performance impact of cooperation 
on inter-cell interference. In CoopMAC, each mobile 
station and AP maintains a table, referred as 
CoopTable, which includes a set of candidate helpers 
for data transmission assistance.  

To dynamically select relay nodes, another relay-
enabled MAC protocol is proposed in [6]. In this 
scheme, after receiving request-to-send (RTS) and 
clear-to-send (CTS) packets, in according with the 
channel condition, a helper transmits ready-to-relay 
(RTR) packets to declare that it has the ability to relay.  
However, when there are coexisting two or more 
qualified relay nodes, a collision will unavoidably 
occur. Another approach is vehicular cooperative 
media access control (VC-MAC) protocol, which is 
proposed in [7-8]. It assumes that all vehicles within an 
AP’s coverage range can be synchronized by receiving 
data packets from that AP, so it is only suitable for 
downlink traffic scenarios. Because the whole network 
needs to synchronize once for each data transmission, 
the overhead of VC-MAC is much heavy and in the 
worst case, only less than 10 per cent of the channel 
bandwidth can be used to transmit data. 

Therefore the aforementioned studies shown in the 
above are not optimal for vehicular networks and not 
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FIGURE 2: The state machine of ADC-MAC protocol 

able to sufficiently exploit spatial diversity for mobile 
wireless communications.  

The motivation of our research is to design a new 
adaptive distributed cooperative relay MAC protocol to 
improve the achieved system throughput, maximize the 
service range and guarantee the real-time application 
QoS in vehicular networks. 

In this paper, a novel cross-layer QoS guarantee 
approach based on our proposed ADC-MAC protocol 
[9] is presented. By exchanging both information of the 
channel condition in the physical layer and the QoS 
requirement knowledge in the application layer, higher 
priority traffic can interrupt the current data 
transmission of lower priority traffic to preempt the 
bandwidth resource for its communications.  So by this 
way, the service quality of real-time applications in 
vehicular networks can be guaranteed. We also 
validated the performance of our proposed approach by 
Markov chain based theoretical modeling. The 
analytical results show that the proposed priority 
preemption approach can improve the quality of a real-
time application by guaranteeing its bandwidth and 
reducing its transmission latency. 

The remainder of this paper is structured as follows. 
The proposed priority preemption approach is 
presented in Section II while its theoretical 
performance analysis is presented in Section III. 
Finally, section IV concludes this paper.  

II. PRIORITY PREEMPTION  SCHEME BASED ON 
ADC-MAC PROTOCOL 

The framework of our proposed fully adaptive 
distributed cooperative medium access control (ADC-
MAC) protocol has been presented in [9]. The key idea 
of this protocol is coordinating cooperative relay 
activities by RTS-CTS-HTS triangular handshake to 
choose the most suitable transmission mode among 
direct transmission (DT), cooperative relay (CR) 
transmission and two-hop relay (TR) transmission and 
the most suitable helper for assistance during data 
transmissions. The key features of ADC-MAC protocol 
are fully distributed, which does not depend on time 
synchronization among nodes within the entire network, 

and self-learning, which predetermined knowledge is 
not necessary.  

ADC-MAC is designed to be backward-compatible 
with the IEEE 802.11 protocol, so that it can be 
deployed in coexistence scenarios, which are side-by-
side with traditional IEEE 802.11 networks and 
cooperative-relay enhanced vehicular wireless 
networks.  Its internal state machine is shown in Fig. 2. 

There are two stages for each data transmission in 
ADC-MAC protocol: Three party handshake stage and 
data transmission stage.  The first stage is used to select 
the most suitable transmission mode and the most 
suitable helper for data transmission. In the first stage, 
all handshake packets are transmitted with the basic 
data rate. 

The transmitter detects the channel state by the 
physical carrier sensing. If the received signal power is 
constantly lower than the given time interval, it will 
consider that the channel is idle and send an RTS 
packet to the receiver, which includes an optional 
helper candidate address field.  

After a SIFS interval upon receiving this RTS 
packet, the receiver will respond with a CTS packet 
back to the sender.  An additional RTS-SNR field is 
attached in CTS packets to report the signal-to noise 
ratio (SNR) value of the received RTS packets. A 
helper candidate address field is optional if the receiver 
recommends a better helper for assistance. 

When a relay node’s address matches the helper 
candidate address field of the received CTS packet, and 
the SNR values of the received RTS and CTS packets 
are greater than the given threshold, it will declare that 
it has the ability to relay data by transmitting an HCTS 
packet, which includes the RTS-SNR field and the 
CTS-SNR field to report the SNR value of the received 
RTS and CTS packets. When the transmitter receives 
this HCTS packet, if the value of RTS-SNR field and 
the value of the CTS-SNR field are both greater than 
the given Relay-SNR threshold, the transmitter will 
choose this relay node as its helper; otherwise it will 
send DATA packets to the receiver directly. 

When a relay node’s address matches the helper 
candidate address field of the received RTS packet, if 
during a PIFS interval, the channel is still idle, it will 
send a helper-request-to-send (HRTS) packet to trigger 
TR transmission mode. If the receiver gets this HRTS 
and misses the previous RTS packet, it shall response a 
CTS packet. The relay node will send a helper-clear-to-
send (HCTS) packet to the transmitter as soon as 
receiving this CTS packet. By this way, the transmitter 
knows that it can relay data to the receiver through this 
relay node. When the relay node receives an 
acknowledge (ACK) packet from the receiver, it will 
transmit a helper-acknowledge (HACK) to the 
transmitter. From the HACK sent by the helper, the 
transmitter will ensure that the current data 
transmission is successful. This mechanism in effect 
provides an extended coverage. 
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FIGURE 3: the priority preemption timeline examples in CR and TR mode 

Via the above three-party handshake process, a 
transmitter can exploit diversity gain to select the most 
suitable transmission mode and the most suitable helper 
to send DATA frames.   

Based on our proposed ADC-MAC protocol, to 
guarantee the quality of real-time applications, we 
design a priority preemption scheme to allow a higher 
priority traffic interrupt the current handshake owned 
by lower priority traffic by sending a modified RTS 
packet within this SIFS interval, and then start a new 
one.  

The modified format of RTS packet contains a 
duration field that reports the transmitting time for the 
following DATA frame, and a priority field to notify if 
the data is best-effort or real-time application. 

Higher priority traffic with a shorter contention 
window size and can send a RTS packet within this 
SIFS interval upon receiving a RTS packet by the 
transmitter of the lower priority traffic to interrupt the 
current handshake and restart a new one. Also in TR 

mode, if the priority of the current traffic is best effort, 
the current handshake may be canceled when another 
transmitter sends a RTS packet within this SIFS 
interval upon receiving the HRTS packet.  Fig. 3-(a) 
shows how a real-time (RT) traffic (between Node A 
and Node D) interrupts the current transmission of best 
effort (BE) traffic (between Node C and Node D) and 
preempts the bandwidth to start its new data 
transmission in CR mode, which Node A, the sender of 
the RT traffic can received the broadcasted RTS packet 
from Node C directly.  In TR mode, Node C cannot 
receive the broadcasted RTS packet from Node A 
directly, however it can interrupt the current BE traffic 
transmission between Node A and Node D as soon as it 
receives a HRTS packet from Node B (Fig. 3-(b)). 

By the above priority preemption scheme, our 
proposed MAC protocol design can utilize the 
characteristics of vehicular networks and take fully into 
account the impact of spatial diversity and application 
QoS requirements.  



 

 

III. THEORETICAL ANALYSIS 
In this section the theoretical throughput and delay 

performance of the proposed priority preemption 
approach based on ADC-MAC protocol is evaluated by 
Markov based modeling, which mathematically 
evaluates the performance of the Distributed 
Coordination Function (DCF) in IEEE 802.11 protocol 
[10-14]. The influences of backoff windows, collision 
probability, retransmission limitation, and channel bit 
error rate are taken into consideration. 

Without loss of generality and maintaining 
tractability of the analytical performance model of the 
IEEE 802.11 protocol and other existing cooperative 
relaying protocols, we stipulate the following 
assumptions for our design and theoretical analysis: 

• Each node only has one MAC interface, which 
cannot transmit and receive at the same time; 

• The packet transmissions among all nodes 
share the same medium; 

• When receiving a packet, a station can also 
obtain the physical layer information of that 
packet, such as received SNR value, noise 
floor, channel number, by reading 
corresponding registers, which is  similar to the 
functionalities  provided by Atheros baseband  
process chipsets [15]; 

• The network will consist of a single source, a 
destination and some potential helper nodes. 
This role assignment is time varying; 

• The MAC header and the data payload are 
transmitted with data rate ܴௗ  (in bits per 
second) while the physical layer preamble, 
management and control packets (i.e., Beacon, 
RTS, CTS, HRTS, HCTS, HACK and ACK 
packets) are transmitted with basic data rate ܴ  
(in bits per second); 

• The channel is prone to error and the channel 
bit error ܲ  is uniformly distributed with error 
events being independent of each other;  

• There is no error correction mechanism in the 
physical layer; 

• Each node transmits packets with probability τ;  

•  Omni-directional antennas are employed 

The normalized throughput S can be expressed as 
the ratio 

[ ]
[ ]
E pS

E slot
=  (1) 

where ܧሾ. ሿ is the expectation operator, ܧሾሿ is the 
average transmitted payload length in a slot time and  ܧሾݐ݈ݏሿ is the average length of a slot time. 

 Let ୲ܲ be the probability that the channel is busy. 
This means that there is at least one transmission in the 

considered slot time. If each of the n stations transmits 
a packet with probability τ, we can get the following 
equation: 

1 (1 )n
tP τ= − −  (2) 
Let Ps be the probability of a non-collision 

transmission. 

1(1 )
1 (1 )

n

s n

nP τ τ
τ

−−=
− −

 (3) 

Let ܲୣ  be the probability that the transmission 
failure is caused by channel bit errors.  Since we 
assume that channel bit errors are uniformly distributed 
and error events are independent we can express ܲୣ  of 
our ADC-MAC protocol for the cases of direct 
transmission, cooperative relaying and 2-hop relaying, 
respectively, as: 

1 (1 ) DTL
e DT bP P− = − −  (4) 

1 (1 ) RTS CTS HCTS DATA DATA ACKL L L L L L
e CR bP P + + + + +
− = − − (5) 

1 (1 ) RTS HRTS CTS HCTS DATA DATA ACK HACKL L L L L L L L
e TR bP P + + + + + + +

− = − − (6) 
where ோ்ௌܮ  ்ௌܮ , ்ܮ , ܮ , ுோ்ௌܮ ,  ு்ௌܮ ,  and  ܮுare the length of the RTS, CTS, DATA, ACK, 

HRTS, HCTS, HACK packets, respectively. 

For our proposed protocol, without priority 
preemption, S can therefore be expressed as: 

e

(1 ) [ ]S=
(1 ) (1 ) H + 1- )

tr s e

tr tr s e s tr s tr s c

P P P E P
P P P P T P P P P Tσ

−
− + − + （        

 

(7) 

where ܶ  is the average payload transmit time, ௦ܶ 
and ܶ are the average time of a successful transmission 
and a collision, respectively, and ߪ is the duration of a 
slot time. ୣܪ  is the network overhead due to channel 
errors, in which packets received with bit errors have 
been dropped. 

H = T + T + T + Trts rts cts cts data data ack ack
e DT e e e e e e e eP P P P−  (8) 

H = T + T + T + T + Trts rts cts cts hcts hcts data data ack ack
e CR e e e e e e e e e eP P P P P−

  (9) 

' '

H = T + T + T + T

T + T + T + T

rts rts hrts hrts cts cts hcts hcts
e TR e e e e e e e e

data data data data ack ack hack hack
e e e e e e e e

P P P P

P P P P
− +

  (10) 

For CR mode 

( ) rtsL1 1rts
e bP P= − −   (11) 

( ) ( )( )rts ctsL L1 1 1cts
e b bP P P= − − −   (12) 

( ) ( )( )rts cts hctsL L L1 1 1hcts
e b bP P P+= − − −   (13) 

( ) ( )( )rts cts dataL L L1 1 1hctsLdata
e b bP P P+ += − − −   (14) 

( ) ( )( )rts cts hcts data dataL L +L L L' 1 1 1data
e b bP P P+ += − − −   (15) 

( ) ( )( )rts cts hcts data data ackL L +L L L L1 1 1ack
e b bP P P+ + += − − −   (16) 



 

 

  
FIGURE 4: The real-time application throughput and delay performance comparison for under different packet sizes and channel bit error rates, when a real-
time application and best-effort traffic compete with a channel. 
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data timeout
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  (20) 

'
'

5 4

data
e rts cts hcts data data

timeout
ack

T T T T T T

T SIFS DIFSδ
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  (21) 

'

6 5

ack
e rts cts hcts data data
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T T T T T T
T SIFS DIFSδ
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  (22) 

c rtsT T DIFSδ= + +   (23) 

'

6 5
s rts cts hcts data data

ack

T T T T T T
T SIFS DIFSδ

= + + + +
+ + + +

  (24) 

where δ is the propagation delay, Tୢ ୟ୲ୟ  is the data 
transmission time from the source node to the relay 
node, while Tୢ ୟ୲ୟ′ is the data transmission time from 
the relay node to the destination node. The ways to get 
He-DT  and He-TR are nearly same. ܧሾܦ௧ሿ, the average packet interval time between 
two successfully received packets at one receiver, can 
be obtained from the throughput expression by 
substituting equation (7): 

int
[ ] [ ][ ]

(1 )t s e

n E p n E slotE D
S PP P

⋅ ⋅= =
−

  (25) 

By combining this expression with equation-7 and 
equation -8, the above equation can be rewritten as: 

int 1

[ ][ ]
(1 ) (1 )n

e

E slotE D
Pτ τ −=

− −
  (26) 

The average time to drop a packet can be expressed 
as: 

[ ] ( 1) [ ] [ ]drop c dropE D m T E X E slot= + + ⋅                      (27) 

where EሾXୢ୰୭୮ሿ is the average number of slot times 
for a dropped packet after m retransmissions. 

Due to the fact that ܲାଵ is the probability that a 
packet will finally be dropped after m retransmissions, 
and the average number of time slots spent in the 

backoff stage j is equal to  ௐೕାଵଶ   , EሾXୢ୰୭୮ሿ can be 

expressed as: 

0

1[ ]
2

j
i

d rop
i

WE X
=

+
= ∑                      (28) 

For శభଵିశభ  is average number of dropped packets 
relative to a successful transmission, the average 
packet delay in the saturated channel can be expressed 
as: 

e
dr 1

0

1-P )[ ] [ ] [X ]
1

jm
e

s c op m
j e

PE D T jT E slot E
P +

=

= + +
−∑ （        (29) 

To Guarantee the QoS of real-time applications, in 
the preemptive mode, the guaranteed throughput of 
real-applications in a saturated channel can be 
expressed as: 

preemptive e

(1 ) [ ]S =
(1 ) (1 ) H H + 1- )

tr s e
realtime

tr tr s e s tr s tr s tr s c

P P P E P
P P P P T P P P P P P Tσ

−
− + − + + （   

(30) 

where ܪ୮୰ୣୣ୫୮୲୧୴ୣ is the operation overhead. 

preemptive DT preemptive CR rtsH H T δ− −= = +                      (31) 

preemptive TR rts hrtsH T PIFS T δ− = + + +                      (32) 
Assuming ܴௗ and ܴ  are 11Mbps and 1Mbps, 

respectively, the numerical results of the saturation 
throughput and delay performance of the real-time 
applications of ADC-MAC protocol with/without 
priority preemption (PP) can be calculated. Fig.4 
shows both the theoretical throughput and delay 
performance comparison for three modes in the ADC-



 

 

MAC protocol under different packet sizes and 
channel bit error rates when a real-time application and 
best-effort traffic compete with a saturated channel. It 
is observed that the priority preemption approach 
brings little more control overhead, however it can 
guarantee the bandwidth of real-time applications, and 
much reduce the transmission latency. 

IV. CONCLUSION 
Our motivation for this research was to design a 

new adaptive distributed cooperative relay MAC 
protocol to improve the achieved system throughput, 
maximize the service range and guarantee the real-time 
application. In this paper, a novel cross-layer 
optimization approach based on our Distributed 
Cooperative Medium Access Control (ADC-MAC) 
protocol is developed and presented to guarantee real-
time application QoS. Its performance is analyzed by 
Markov chain modeling, which shows that our 
proposed approach can effectively provide guaranteed 
QoS provisioning including bandwidth and delay for 
real-time applications by utilizing the concept of 
cooperative communications and exploiting spatial and 
user diversities.   
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