The use of personality test norms in work settings: Effects of sample size and relevance

Robert P. Tett
University of Tulsa, robert-tett@utulsa.edu

Jenna R. (Fitzke) Pieper
University of Nebraska-Lincoln, jpieper@unl.edu

Patrick L. Wadlington
Pearson Testing, Bloomington, Minnesota

Scott A. Davies
Pearson Testing, Bloomington, Minnesota

Michael G. Anderson
CPP Inc., Mountain View, California

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/managementfacpub

Part of the Applied Behavior Analysis Commons, Business Administration, Management, and Operations Commons, Community Psychology Commons, Human Resources Management Commons, Industrial and Organizational Psychology Commons, Management Sciences and Quantitative Methods Commons, Organizational Behavior and Theory Commons, Personality and Social Contexts Commons, and the Strategic Management Policy Commons

Tett, Robert P.; Pieper, Jenna R. (Fitzke); Wadlington, Patrick L.; Davies, Scott A.; Anderson, Michael G.; and Foster, Jeff, "The use of personality test norms in work settings: Effects of sample size and relevance" (2009). *Management Department Faculty Publications*. 114.

http://digitalcommons.unl.edu/managementfacpub/114

This Article is brought to you for free and open access by the Management Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Management Department Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
The use of personality test norms in work settings: Effects of sample size and relevance

Robert P. Tett,1 Jenna R. Fitzke,2 Patrick L. Wadlington,3 Scott A. Davies,3 Michael G. Anderson,4 and Jeff Foster 5

1. Department of Psychology, University of Tulsa, Tulsa, Oklahoma
2. University of Wisconsin–Madison, Madison, Wisconsin
3. Pearson Testing, Bloomington, Minnesota
4. CPP Inc., Mountain View, California
5. Hogan Assessment Systems, Tulsa, Oklahoma

Corresponding author — Dr. Robert P. Tett, Department of Psychology, University of Tulsa, Tulsa, OK 74104-3189, USA, email robert-tett@utulsa.edu

Abstract
The value of personality test norms for use in work settings depends on norm sample size (N) and relevance, yet research on these criteria is scant and corresponding standards are vague. Using basic statistical principles and Hogan Personality Inventory (HPI) data from 5 sales and 4 trucking samples (N range = 394–6,200), we show that (a) N >100 has little practical impact on the reliability of norm-based standard scores (max=±10 percentile points in 99% of samples) and (b) personality profiles vary more from using different norm samples, between as well as within job families. Averaging across scales, T-scores based on sales versus trucking norms differed by 7.3 points, whereas maximum differences averaged 7.4 and 7.5 points within the sets of sales and trucking norms, respectively, corresponding in each case to approximately ±14 percentile points. Slightly weaker results obtained using nine additional samples from clerical, managerial, and financial job families, and regression analysis applied to the 18 samples revealed demographic effects on four scale means independently of job family. Personality test developers are urged to build norms for more diverse populations, and test users, to develop local norms to promote more meaningful interpretations of personality test scores.

Personality test scores are often interpreted in employment settings with reference to scale norms (i.e. means and standard deviations; Bartram, 1992; Cook et al., 1998; Muller & Young, 1988; Van Dam, 2003). Accordingly, the accuracy of norm-transformed scores in capturing an individual’s relative standing on a set of personality scales rests on the quality of the underlying norms. Two critical and generally recognized concerns regarding norm use are (a) the size of the normative sample (N) and (b) the relevance of the normative sample to the population to which the given test taker belongs. Despite being recognized as important,
sample size and population relevance (i.e. representativeness) have received little research attention and standards regarding these qualities are ambiguous. In this article, we show what happens when personality profiles are generated under varying conditions regarding the size and source of the normative sample, with the overall aim of refining best practices in the use of personality test norms. We begin by considering how such norms are used in work settings.

Uses of personality test norms in the workplace

A scale score, by itself, reveals little as to the location of an individual on the measured dimension. Standard scores, such as z or T, use a norm sample mean and standard deviation to clarify where an individual respondent falls on the measured construct relative to other people. Personality test norms have several work-related applications. First, they can facilitate individualized developmental feedback. For example, workers may be better prepared to interact with others in a team or with customers if they have a clearer understanding of their relative standing on traits relevant to such interactions (e.g. emotional control, sociability, tolerance). Second, personality test norms can facilitate selection decisions. Top-down hiring does not require test norms, but exclusionary strategies based on test score cut-offs (e.g. hiring from among applicants scoring above a given cut-off) call for normative comparisons. Norms are especially important in hiring when applicants are few in number, as this mitigates reliance on top-down methods. Third, norms can help an organization judge the overall standing of a targeted work-group (e.g. a sales team) relative to a larger, more general, job-relevant population (e.g. American sales people), as a basis, perhaps, for determining future hiring standards. Success in all such norm applications rests on norm quality. Best practices in this area are reviewed next.

Best practices regarding test norms

Virtually every book on psychological testing offers recommendations on the use of test norms (e.g. Anastasi & Urbina, 1997; Crocker & Algina, 1986; Kline, 1993). The most consistent message is that the norm sample should be relevant to the individual whose scores are being interpreted. Some (e.g. Croker & Algina, 1986; Kline, 1993) articulate further that norm samples are more credible if stratified in terms of variables most highly correlated with the test. Accordingly, to permit reasoned judgments of norm relevance, test developers are urged to report key demographic characteristics (e.g. mean age, gender composition, job category). Also important to report are the sampling strategies used, the time frame of norm data collection, and the response rate, as all such information speaks to the representativeness of the normative sample with respect to the targeted population.

The 1999 Standards for Educational and Psychological Testing specify that:

- **Norms, if used, should refer to clearly described populations. These populations should include individuals or groups to whom test users will ordinarily wish to compare their own examinees (Standard 4.5, p. 55)**

- **Reports of norming studies should include precise specification of the population that was sampled, sampling procedures and participation rates, any weighting of the sample, the dates of testing, and descriptive statistics. The information provided should be sufficient to enable users to judge the appropriateness of the norms for interpreting the scores of local examinees. Technical documentation should indicate the precision of the norms themselves. (Standard 4.6, p. 55).**
Local norms\(^1\) should be developed when necessary to support test users’ intended interpretations. (Standard 13.4, p. 146)

Focusing on test use for the purpose of hiring, the *Principles for the Validation and Use of Personnel Selection Procedures* (SIOP, 2003) state that:

> Normative information relevant to the applicant pool and the incumbent population should be presented when appropriate. The normative group should be described in terms of its relevant demographic and occupational characteristics and presented for subgroups with adequate sample sizes. The time frame in which the normative results were established should be stated (p. 48).

Two points warrant discussion here. First, the issue of sample size is raised in the Principles, but what counts as ‘adequate’ \(N\) is unclear. Statistical theory (readily confirmed in practice) tells us that the reliability of norms is closely tied to \(N\). Lacking specifics, practitioners are left to define ‘adequate’ on their own, which undermines standardization of sound testing practice and norm use. Second, the Standards encourage development of local norms ‘when necessary to support test users’ intended interpretations’. Ambiguity, again, precludes standardized practice. Our primary aim in this article is to clarify what counts as ‘adequate’ \(N\) and ‘sufficient’ representativeness in a normative sample, as a basis for refining use of personality norms in work settings.

Current practices regarding personality test norms

In light of the recognized standards regarding norm use, we examined technical manuals for eight popular personality instruments: the *Adjective Checklist* (ACL), *California Psychological Inventory* (CPI), HPI, *Jackson Personality Inventory – Revised* (JPI-R), and *NEO Personality Inventory-R* (NEO-PI-R form S), *Occupational Personality Questionnaire* (OPQ), *Personality Research Form* (PRF), and *16PF Select* (16PF).\(^2\)

The goal of our review was to assess the degree to which the noted standards regarding norms are being met in practice. The manuals were reviewed primarily for norm sample size and the reporting of demographics and sampling procedures. We also took note of the number of norm samples reported and whether or not dates of testing and response rates were provided. Results of our review are provided in Tables 1 and 2.

Several observations bear comment, the first two regarding results in Table 1 and the remainder with respect to Table 2. First, a variety of norm groups is available for five of the tests, including, most frequently, samples of high school students, college students, and assorted occupational categories. Second, normative sample sizes are large, on the whole, averages per test ranging from 695 to 22,023. Third, with respect to demographics, gender composition is most often reported, followed by education level. Least often reported are ethnicity and age. Some manuals (e.g. OPQ, CPI, and PRF) offer additional descriptive data, such

1. The meaning of ‘local norms’ varies by application. In cross-cultural research, for example, they are norms specific to a country or language. In this article, we use the term to denote norms specific to a particular job or job type within a specific organization.

2. We were unable to obtain technical manuals for two other popular tests: the Guilford-Zimmerman Temperament Survey and Multidimensional Personality Questionnaire; hence, we offer no summary for those tests.
Table 1. Summary of norm samples reported in eight personality test manuals

<table>
<thead>
<tr>
<th>Measure</th>
<th>N of samples</th>
<th>Sample composition</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL</td>
<td>7</td>
<td>High school students, college students, graduate students, medical students, delinquents, psychiatric patients, and adults</td>
<td>Mean: 1,340</td>
</tr>
<tr>
<td>CPI</td>
<td>6</td>
<td>Basic normative sample, high school students, college students, graduate students, occupational samples, and other samples</td>
<td>Range: 102–4,078</td>
</tr>
<tr>
<td>HPI</td>
<td>1</td>
<td>Total sample</td>
<td>Mean: 22,023</td>
</tr>
<tr>
<td>JPI-R</td>
<td>5</td>
<td>High school students, college students, blue collar, executives, and combined (college, blue collar, and executives)</td>
<td>Range: 555–2,555</td>
</tr>
<tr>
<td>NEO-PI-R</td>
<td>2</td>
<td>American adults from three subpopulations, Canadian and American college students</td>
<td>Mean: 695</td>
</tr>
<tr>
<td>OPQ<sup>a</sup></td>
<td>6</td>
<td>UK general population, UK managerial and professional sample, UK standardization sample, US standardization sample, and US managerial and professional sample</td>
<td>Range: 329–2,028</td>
</tr>
<tr>
<td>PRF</td>
<td>17</td>
<td>Two college student samples, employment agency workers, hitchhikers, education students, nurses, physical education students, varsity athletes, non-varsity athletes, schoolchildren and adolescents, high school students, juvenile offenders, adults, military (enlisted selectees), military (officer candidates), military (air traffic control officers), and military (enlisted personnel)</td>
<td>Mean: 763</td>
</tr>
<tr>
<td>I6PF Select</td>
<td>1</td>
<td>Total sample</td>
<td>Range: 42–2,775</td>
</tr>
</tbody>
</table>

ACL = Adjective Checklist (Gough & Heilbrun, 1983); CPI = California Psychological Inventory (Gough & Bradley, 1996); HPI = Hogan Personality Inventory (Hogan & Hogan, 1995); JPI-R = Jackson Personality Inventory – Revised (Jackson, 1994); NEO-PI-R = NEO Personality Inventory-R (Form S; Costa & McCrae, 1992); OPQ = Occupational Personality Questionnaire (SHL Group, 2006); PRF = Personality Research Form (Jackson, 1999); I6PF Select (Kelly, 1999).

^a Standardization samples reported here only; 86 norm groups from different countries are also presented in the OPQ technical manual.
Table 2. Summary of norm sample demographics and data collection conditions reported in eight personality test manuals

<table>
<thead>
<tr>
<th>Measure</th>
<th>Number of samples reported</th>
<th>Number of males and females (%)</th>
<th>Age (M and/or range) (%)</th>
<th>Ethnicity (%)</th>
<th>Education level (%)</th>
<th>Dates of testing (%)</th>
<th>Sampling procedures (%)</th>
<th>Response rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL</td>
<td>7</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>57</td>
<td>0</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>CPI</td>
<td>6</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HPI</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>JPI-R</td>
<td>5</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>NEO-PI-R</td>
<td>2</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>OPQ<sup>a</sup></td>
<td>6</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>PRF</td>
<td>17</td>
<td>71</td>
<td>24</td>
<td>0</td>
<td>41</td>
<td>12</td>
<td>47</td>
<td>0</td>
</tr>
<tr>
<td>16PF Select</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

ACL = Adjective Checklist (Gough & Heilbrun, 1983); CPI = California Psychological Inventory (Gough & Bradley, 1996); HPI = Hogan Personality Inventory (Hogan & Hogan, 1995); JPI-R = Jackson Personality Inventory – Revised (Jackson, 1994); NEO-PI-R = NEO Personality Inventory-R (Form S; Costa & McCrae, 1992); OPQ = Occupational Personality Questionnaire (SHL Group, 2006); PRF = Personality Research Form (Jackson, 1999); 16PF Select (Kelly, 1999).

^a Standardization samples only reported here; 86 norm groups from different countries are further presented in the OPQ technical manual.
as work functions, industries, and job titles, which is more informative than simply ‘adults’ or ‘managers’. Fourth, few manuals report specific sampling procedures (e.g. random, cluster, stratified). Along the same lines, many of the norm groups are convenience samples. For example, the ACL was normed, in part, on ‘local’ school systems. Fifth, dates (e.g. years) of testing and participation rates are rarely reported. The OPQ and 16PF manuals are the only sources consistently providing dates of testing.

All told, our review of personality test manuals yields mixed results regarding compliance with recognized standards of norm use. On the plus side, the majority of norm samples appear to be ample in size, norms for most tests are available for a variety of populations, and basic descriptive information is offered in most cases. More challenging are the lack of descriptions of sampling procedures, reliance on convenience samples, and failure to report dates of testing and participation rates. A more fundamental question, however, is whether or not these things matter when a test user turns to available norms as a frame of reference for interpreting the scores of a given individual or group. It is this latter question that the current article seeks to address. In particular, we focus on both norm sample size and population relevance with respect to how each can affect an individual’s personality profile.

Research questions and overview

We assessed the effects of sampling error and population relevance in terms of the standardized T-score distribution. T is defined as

$$T = \frac{10(X - M)}{s} + 50$$

where X is an individual’s raw test score, and M and s are the normative mean and standard deviation, respectively. A person’s true T-score is derived when M and s are accurate estimates of μ and σ. Thus, to the degree a given sample mean (M) over- or underestimates μ, a person’s observed T-score will be inaccurate. If M underestimates μ, T will be overestimated, and if M overestimates μ, T will be underestimated.

It is well understood that random error in estimating μ decreases monotonically as sample size (N) increases. This is directly evident in the equation for the standard error of the mean:

$$SE_M = \frac{s}{\sqrt{N}}$$

which is the expected standard deviation of means from multiple samples of size N drawn randomly from a population. We used the standard error to determine upper and lower estimates of μ (as M) under different Ns and different levels of certainty. Wider intervals, at any specified level of certainty, pose greater concerns in interpreting a given norm-transformed score. What is considered an acceptable margin of error in estimating μ, however, is unclear. We suggest that an interval of 5 T-score points (i.e. ±2.5), representing the middle 20% of the normal distribution (i.e. $\pm10\%$ around μ), is worthy of concern, as error of that magnitude could be expected to alter test score interpretations in practically meaningful terms. Thus, for example, underestimating a person’s T-score by 2.5 points

3. Error in s as an estimate of σ is less than error in M as an estimate of μ and is ignored in the current undertaking. Inaccuracies arising from measurement error are ignored here, as well.
(due to overestimating \(\mu \) by 2.5 points) would place that person up to 10 percentile units lower on the scale. In a selection situation, this means that 1 in 10 applicants could be falsely rejected based on the test score cut-off. If the \(T \)-score is overestimated by 2.5 points (due to underestimating \(\mu \) by 2.5 points), the individual stands a 1-in-10 better chance of being selected based on the cut-off. In brief, error in estimating \(\mu \) undermines the fidelity of the test score cut-off, increasing the likelihood of either hiring an unqualified applicant or not hiring a qualified applicant. Similar concerns arise in developmental applications.

The degree of over- or underestimation in percentile units varies along the \(T \)-score continuum, owing to the curvilinear relationship between \(T \) (a transform of \(z \)) and percentiles. This is revealed in Table 3 for the case where \(\mu \) is under or over-estimated (as \(M \)) by 2.5 \(T \)-score points. The noted 10% difference occurs only at the middle of the distribution. Specifically, if an individual’s true \(T \)-score is 50 and \(M \) overestimates \(\mu \) by 2.5 points, then the individual’s observed \(T \)-score will be 47.5, dropping that individual’s standing by 9.87 percentiles. The same degree of overestimation of \(\mu \) has less impact in percentile units for people whose true \(T \)-scores depart from 50. For example, as indicated in Table 3, someone with a true \(T \)-score of 45 (and where \(\mu \) is overestimated by 2.5 points) will fall 8.19 percentiles below his or her true percentile of 30.85. The drop in percentiles reduces to around one when true \(T=30 \). We advocate the ±2.5 \(T \)-score difference between \(M \) and \(\mu \) as a benchmark, notwithstanding the smaller difference in percentiles that occurs at extreme values of \(T \), because it is unclear at what point along the scale personality score cut-offs are most often invoked, and the mid-point, where the maximum 10 percentile point difference occurs, seems a reasonable expectation in many hiring situations.

The question of population relevance concerns the representativeness of a normative sample regarding the population to which the individual test taker belongs. Comparing an individual’s test score to a sample mean representing an irrelevant population defeats the purpose of norm-based comparisons, fostering inaccurate interpretations. Unlike the effects of sampling error, which are random, the effects of population relevance are tied to systematic differences between populations, including demographic (e.g. age, sex) and situational variables (e.g. job type). We assessed the question of population relevance directly by deriving personality profiles using norms from multiple sales and truck driver populations, allowing comparisons both between and within job types. Differences in profiles between job types would confirm the widely held belief that norms are specific to job types. Notable differences within job types would raise concerns about the value of job-type-specific norms derived from convenience samples, calling for local norming.

Method

Data sources

The data were derived from a large archival database of HPI responses at Hogan Assessment Systems (HAS). The HPI was the first measure of normal personality developed explicitly to assess the Five Factor Model in occupational settings. The measurement goal of the HPI is to predict real-world outcomes, and it is an original

4. What one considers an acceptable margin of error in practical terms is subjective. Readers targeting error rates below 10% will seek a \(T \)-score margin less than ±2.5 units in width, calling for normative samples larger and more representative of the test-taker’s population than the standards advanced in the current article.
Table 3. Drops and lifts in percentiles associated with over and underestimation of μ by 2.5 T-score points

<table>
<thead>
<tr>
<th>Condition</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
<th>75</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu = 50$</td>
<td></td>
</tr>
<tr>
<td>Obs. T</td>
<td>20.00</td>
<td>25.00</td>
<td>30.00</td>
<td>35.00</td>
<td>40.00</td>
<td>45.00</td>
<td>50.00</td>
<td>55.00</td>
<td>60.00</td>
<td>65.00</td>
<td>70.00</td>
<td>75.00</td>
<td>80.00</td>
</tr>
<tr>
<td>z</td>
<td>23.00</td>
<td>22.50</td>
<td>22.00</td>
<td>21.50</td>
<td>21.00</td>
<td>20.50</td>
<td>0.00</td>
<td>0.50</td>
<td>1.00</td>
<td>1.50</td>
<td>2.00</td>
<td>2.50</td>
<td>3.00</td>
</tr>
<tr>
<td>percentile</td>
<td>0.13</td>
<td>0.62</td>
<td>2.28</td>
<td>6.68</td>
<td>15.87</td>
<td>30.85</td>
<td>50.00</td>
<td>69.15</td>
<td>84.13</td>
<td>93.32</td>
<td>97.72</td>
<td>99.38</td>
<td>99.87</td>
</tr>
<tr>
<td>$M(over) = 52.5$</td>
<td></td>
</tr>
<tr>
<td>Obs. T</td>
<td>17.50</td>
<td>22.50</td>
<td>27.50</td>
<td>32.50</td>
<td>37.50</td>
<td>42.50</td>
<td>47.50</td>
<td>52.50</td>
<td>57.50</td>
<td>62.50</td>
<td>67.50</td>
<td>72.50</td>
<td>77.50</td>
</tr>
<tr>
<td>z</td>
<td>23.25</td>
<td>22.75</td>
<td>22.25</td>
<td>21.75</td>
<td>21.25</td>
<td>20.75</td>
<td>20.25</td>
<td>0.25</td>
<td>0.75</td>
<td>1.25</td>
<td>1.75</td>
<td>2.25</td>
<td>2.75</td>
</tr>
<tr>
<td>percentile</td>
<td>0.06</td>
<td>0.30</td>
<td>1.22</td>
<td>4.01</td>
<td>10.56</td>
<td>22.66</td>
<td>40.13</td>
<td>59.87</td>
<td>77.34</td>
<td>89.44</td>
<td>95.99</td>
<td>98.78</td>
<td>99.70</td>
</tr>
<tr>
<td>percentile dropa</td>
<td>0.07</td>
<td>0.32</td>
<td>1.06</td>
<td>2.67</td>
<td>5.31</td>
<td>8.19</td>
<td>9.87</td>
<td>9.28</td>
<td>6.79</td>
<td>3.88</td>
<td>1.73</td>
<td>0.60</td>
<td>0.17</td>
</tr>
<tr>
<td>$M(under) = 47.5$</td>
<td></td>
</tr>
<tr>
<td>Obs. T</td>
<td>22.50</td>
<td>27.50</td>
<td>32.50</td>
<td>37.50</td>
<td>42.50</td>
<td>47.50</td>
<td>52.50</td>
<td>57.50</td>
<td>62.50</td>
<td>67.50</td>
<td>72.50</td>
<td>77.50</td>
<td>82.50</td>
</tr>
<tr>
<td>z</td>
<td>22.75</td>
<td>22.25</td>
<td>21.75</td>
<td>21.25</td>
<td>20.75</td>
<td>20.25</td>
<td>0.25</td>
<td>0.75</td>
<td>1.25</td>
<td>1.75</td>
<td>2.25</td>
<td>2.75</td>
<td>3.25</td>
</tr>
<tr>
<td>percentile</td>
<td>0.30</td>
<td>1.22</td>
<td>4.01</td>
<td>10.56</td>
<td>22.66</td>
<td>40.13</td>
<td>59.87</td>
<td>77.34</td>
<td>89.44</td>
<td>95.99</td>
<td>98.78</td>
<td>99.70</td>
<td>99.94</td>
</tr>
<tr>
<td>percentile liftb</td>
<td>0.17</td>
<td>0.60</td>
<td>1.73</td>
<td>3.88</td>
<td>6.79</td>
<td>9.28</td>
<td>9.87</td>
<td>8.19</td>
<td>5.31</td>
<td>2.67</td>
<td>1.06</td>
<td>0.32</td>
<td>0.07</td>
</tr>
</tbody>
</table>

a. Percentile drop = (percentile based on $\mu = 50$) / (percentile based on $M = 52.5$).
b. Percentile lift = (percentile based on $M = 47.5$) / (percentile based on $m = 50$).
and well-known measure of the Five Factor Model. Eleven normative samples were used in the main analyses. Five are from sales people, four are from truck drivers, and the remaining two are, respectively, the combination of the five sales samples and the four trucking samples, using the N-weighted mean and the standard deviation for combined groups (Ferguson, 1959). Sales and trucking jobs were targeted, in part, due to the availability of multiple subsamples within each job family and because the job families were expected to yield distinct norms. The subsamples in both jobs were selected only because they were the largest available, ranging in N from 953 to 6,200 in the case of sales (mean=2,977), and from 394 to 2,520 in the case of truckers (mean=971). Total Ns for the two broader samples are 14,885 (sales) and 3,885 (truckers). Means and standard deviations for the seven HPI scales in the main samples are reported in Table 4. Norms for nine additional samples, three from each of the clerical, managerial, and financial job families, were drawn from the HAS database using the same criteria to assess the generalizability of the main results. These additional norms, based on Ns ranging from 609 to 13,450, are provided in Table 5. All samples consist entirely of job applicants. Alpha reliabilities range from .30 to .87 across scales and samples, with median=.77.

Data analysis

Effects of sampling error in estimating the normative population mean were assessed using T-scores with $\mu = 50$ and $\sigma = 10$, at 5 levels of certainty: 50% (corresponding to $z = \pm 0.67$ standard errors), 68% ($z = \pm 1.0$), 80% ($z = \pm 1.28$), 95% ($z = \pm 1.96$), and 99% ($z = \pm 2.58$). Standard errors were generated using the equation provided earlier, for selected Ns ranging from 5 to 10,000, and with $\sigma = 10$. Lower bound estimates of μ were calculated by subtracting from 50 the product of the standard error and the z associated with the given level of certainty (e.g. 1.96 for 95% certainty), and upper bound estimates of μ were calculated by adding that product to 50.

Effects of population relevance were assessed by deriving HPI profiles for each of the 11 primary normative samples, assuming the individual scored at the mean on each scale. Profile comparisons between the overall sales and trucking norms would speak to gross misapplications (e.g. applying trucking norms to raw scores for salespeople), whereas comparisons within sets would permit evaluation of less obvious misuses (e.g. applying sales norms from one organization to the raw scores of a salesperson from another organization). In the between-set comparison, the sales profile was generated using the combined trucking sample as the norm sample, and the trucking profile was generated using the combined sales sample as the norm sample. In the within-sales and within-trucking comparisons, profiles for each sample were generated by comparing scores falling at the mean for that sample against the combined norms from the remaining samples in the given job category. Lack of bias would be evident in a profile forming a flat line falling at the 50 T-score mark. We adopted the ± 2.5 T-score benchmark.

5. As the main point here is to examine the variability in norms across samples within job families, between job differences serve more as a benchmark for comparison than as a key focus of study per se.
6. The lowest alphas are for Likeability (LIK: range = .30–.57, median = .41; all other scales: range = .59–.87, median = .78). In addition to being more heterogeneous in content, LIK is also the shortest scale, with 22 items relative to 37 in adjustment, the longest scale. (Correcting to 37-item length, using the Spearman–Brown formula, yields range = .42–.69, median = .53). Of particular relevance to the current effort, the modest alphas for LIK suggest that normative differences between samples on that scale underestimate those expected for more reliable scales targeting similar constructs.
Table 4. Normative means and standard deviations for five sales and four trucking samples

<table>
<thead>
<tr>
<th>HPI scale</th>
<th>Sales people</th>
<th>Truck drivers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A (N = 6,200)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Adjustment</td>
<td>31.74</td>
<td>4.33</td>
</tr>
<tr>
<td>Ambition</td>
<td>25.93</td>
<td>3.18</td>
</tr>
<tr>
<td>Sociability</td>
<td>14.31</td>
<td>4.46</td>
</tr>
<tr>
<td>Likeability</td>
<td>20.78</td>
<td>1.31</td>
</tr>
<tr>
<td>Prudence</td>
<td>23.83</td>
<td>3.80</td>
</tr>
<tr>
<td>Learning approach</td>
<td>10.36</td>
<td>2.91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HPI scale</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>All(^a) (N = 14,885)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>Adjustment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.95</td>
</tr>
<tr>
<td>Ambition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27.00</td>
</tr>
<tr>
<td>Sociability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.03</td>
</tr>
<tr>
<td>Likeability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.78</td>
</tr>
<tr>
<td>Prudence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23.58</td>
</tr>
<tr>
<td>Intellectance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.38</td>
</tr>
<tr>
<td>Learning approach</td>
<td>10.36</td>
<td>2.91</td>
<td>10.88</td>
<td>2.47</td>
<td>10.85</td>
<td>2.53</td>
<td>10.40</td>
</tr>
</tbody>
</table>

\(^a\) All groups combined; Mean, N-weighted mean; SD, standard deviation of combined groups.
corresponding to the middle 20% of cases in a normal distribution, in offering practical guidance on norm use. We adopted a similar strategy in replication using the nine samples from clerical, managerial, and financial job families. Rather than draw comparisons between jobs, however, we focused on within job comparisons, creating profiles for individuals falling at the HPI means from one sample using norms combined across the remaining two samples per job family.

Results

Upper and lower bounds of intervals around a T-score $\mu = 50$ under various Ns and levels of certainty are reported in Table 6. The table shows, for example, that when $N = 100$, 80% of sample means are expected to fall between 48.7 and 51.3. Increasing N to 300 yields 49.3 and 50.7 as the lower and upper 10% boundaries. What is perhaps most notable in this table is the stability of M as an estimate of μ with even modest sample sizes. With $N = 100$, for example, 99% of sample means are expected to fall within a relatively narrow interval of ± 2.6 T-score points (i.e. 47.4–52.6). Thus, with respect to sampling error alone, an individual’s T-score falling at the true population mean (i.e. 50) will be overestimated as no higher than 52.6 and underestimated as no lower than 47.4, using norms from 99% of samples with $N = 100$. The range of distortion in observed T reaches a noisy 10-point span (i.e. 45–55) within 99% of samples only when N drops below 30.

Table 5. Normative means and standard deviations for three clerical, three managerial, and three financial samples

<table>
<thead>
<tr>
<th>Job family/HPI scale</th>
<th>Mean (N = 13,450)</th>
<th>SD</th>
<th>Mean (N = 11,299)</th>
<th>SD</th>
<th>Mean (N = 6,406)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clerical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjustment</td>
<td>31.86</td>
<td>4.16</td>
<td>31.98</td>
<td>4.08</td>
<td>32.11</td>
<td>4.19</td>
</tr>
<tr>
<td>Ambition</td>
<td>24.95</td>
<td>3.63</td>
<td>26.95</td>
<td>2.52</td>
<td>25.93</td>
<td>3.15</td>
</tr>
<tr>
<td>Sociability</td>
<td>13.46</td>
<td>4.30</td>
<td>16.38</td>
<td>4.08</td>
<td>14.36</td>
<td>4.40</td>
</tr>
<tr>
<td>Likeability</td>
<td>20.96</td>
<td>1.19</td>
<td>20.93</td>
<td>1.14</td>
<td>20.94</td>
<td>1.20</td>
</tr>
<tr>
<td>Prudence</td>
<td>24.43</td>
<td>3.44</td>
<td>23.40</td>
<td>3.76</td>
<td>24.04</td>
<td>3.67</td>
</tr>
<tr>
<td>Intellectance</td>
<td>15.67</td>
<td>4.54</td>
<td>18.35</td>
<td>4.08</td>
<td>17.62</td>
<td>4.31</td>
</tr>
<tr>
<td>Learning approach</td>
<td>11.19</td>
<td>2.55</td>
<td>11.16</td>
<td>2.50</td>
<td>11.31</td>
<td>2.48</td>
</tr>
<tr>
<td>Managerial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjustment</td>
<td>31.42</td>
<td>4.44</td>
<td>32.73</td>
<td>4.00</td>
<td>31.34</td>
<td>4.49</td>
</tr>
<tr>
<td>Ambition</td>
<td>27.15</td>
<td>2.49</td>
<td>27.68</td>
<td>2.16</td>
<td>27.11</td>
<td>2.57</td>
</tr>
<tr>
<td>Likeability</td>
<td>20.29</td>
<td>1.40</td>
<td>20.40</td>
<td>1.44</td>
<td>20.48</td>
<td>1.33</td>
</tr>
<tr>
<td>Prudence</td>
<td>24.17</td>
<td>3.63</td>
<td>23.45</td>
<td>3.70</td>
<td>23.09</td>
<td>3.79</td>
</tr>
<tr>
<td>Intellectance</td>
<td>16.85</td>
<td>4.59</td>
<td>18.65</td>
<td>4.83</td>
<td>17.47</td>
<td>4.26</td>
</tr>
<tr>
<td>Learning approach</td>
<td>11.08</td>
<td>2.74</td>
<td>11.38</td>
<td>2.71</td>
<td>9.73</td>
<td>3.18</td>
</tr>
<tr>
<td>Financial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjustment</td>
<td>31.93</td>
<td>4.21</td>
<td>32.15</td>
<td>4.32</td>
<td>31.19</td>
<td>4.65</td>
</tr>
<tr>
<td>Ambition</td>
<td>26.69</td>
<td>2.68</td>
<td>27.75</td>
<td>1.82</td>
<td>26.72</td>
<td>2.12</td>
</tr>
<tr>
<td>Sociability</td>
<td>14.97</td>
<td>4.25</td>
<td>17.02</td>
<td>4.04</td>
<td>16.27</td>
<td>4.17</td>
</tr>
<tr>
<td>Likeability</td>
<td>20.82</td>
<td>1.15</td>
<td>20.63</td>
<td>1.31</td>
<td>20.61</td>
<td>1.45</td>
</tr>
<tr>
<td>Prudence</td>
<td>24.46</td>
<td>3.57</td>
<td>23.22</td>
<td>3.80</td>
<td>22.64</td>
<td>3.90</td>
</tr>
<tr>
<td>Intellectance</td>
<td>16.67</td>
<td>4.40</td>
<td>16.46</td>
<td>4.51</td>
<td>16.69</td>
<td>4.28</td>
</tr>
<tr>
<td>Learning approach</td>
<td>10.78</td>
<td>2.66</td>
<td>10.54</td>
<td>2.71</td>
<td>10.67</td>
<td>2.60</td>
</tr>
</tbody>
</table>
Table 6. Under- and overestimation of μ for selected Ns and levels of certainty

<table>
<thead>
<tr>
<th>N</th>
<th>SE</th>
<th>Lower 25%</th>
<th>Upper 25%</th>
<th>Lower 16%</th>
<th>Upper 16%</th>
<th>Lower 10%</th>
<th>Upper 10%</th>
<th>Lower 5%</th>
<th>Upper 5%</th>
<th>Lower 2.5%</th>
<th>Upper 2.5%</th>
<th>Lower 0.5%</th>
<th>Upper 0.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4.47</td>
<td>47.0</td>
<td>53.0</td>
<td>45.5</td>
<td>54.5</td>
<td>44.3</td>
<td>55.7</td>
<td>42.6</td>
<td>57.4</td>
<td>41.2</td>
<td>58.8</td>
<td>38.5</td>
<td>61.5</td>
</tr>
<tr>
<td>10</td>
<td>3.16</td>
<td>47.9</td>
<td>52.1</td>
<td>46.8</td>
<td>53.2</td>
<td>45.9</td>
<td>54.1</td>
<td>44.8</td>
<td>55.2</td>
<td>43.8</td>
<td>56.2</td>
<td>41.9</td>
<td>58.1</td>
</tr>
<tr>
<td>15</td>
<td>2.58</td>
<td>48.3</td>
<td>51.7</td>
<td>47.4</td>
<td>52.6</td>
<td>46.7</td>
<td>53.3</td>
<td>45.8</td>
<td>54.2</td>
<td>44.9</td>
<td>55.1</td>
<td>43.3</td>
<td>56.7</td>
</tr>
<tr>
<td>20</td>
<td>2.24</td>
<td>48.5</td>
<td>51.5</td>
<td>47.8</td>
<td>52.2</td>
<td>47.1</td>
<td>52.9</td>
<td>46.3</td>
<td>53.7</td>
<td>45.6</td>
<td>54.4</td>
<td>44.2</td>
<td>55.8</td>
</tr>
<tr>
<td>25</td>
<td>2.00</td>
<td>48.7</td>
<td>51.3</td>
<td>48.0</td>
<td>52.0</td>
<td>47.4</td>
<td>52.6</td>
<td>46.7</td>
<td>53.3</td>
<td>46.1</td>
<td>53.9</td>
<td>44.8</td>
<td>55.2</td>
</tr>
<tr>
<td>30</td>
<td>1.83</td>
<td>48.8</td>
<td>51.2</td>
<td>48.2</td>
<td>51.8</td>
<td>47.7</td>
<td>52.3</td>
<td>47.0</td>
<td>53.0</td>
<td>46.4</td>
<td>53.6</td>
<td>45.3</td>
<td>54.7</td>
</tr>
<tr>
<td>40</td>
<td>1.58</td>
<td>48.9</td>
<td>51.1</td>
<td>48.4</td>
<td>51.6</td>
<td>48.0</td>
<td>52.0</td>
<td>47.4</td>
<td>52.6</td>
<td>46.9</td>
<td>53.1</td>
<td>45.9</td>
<td>54.1</td>
</tr>
<tr>
<td>50</td>
<td>1.41</td>
<td>49.0</td>
<td>51.0</td>
<td>48.6</td>
<td>51.4</td>
<td>48.2</td>
<td>51.8</td>
<td>47.7</td>
<td>52.3</td>
<td>47.2</td>
<td>52.8</td>
<td>46.4</td>
<td>53.6</td>
</tr>
<tr>
<td>75</td>
<td>1.15</td>
<td>49.2</td>
<td>50.8</td>
<td>48.8</td>
<td>51.2</td>
<td>48.5</td>
<td>51.5</td>
<td>48.1</td>
<td>51.9</td>
<td>47.7</td>
<td>52.3</td>
<td>47.0</td>
<td>53.0</td>
</tr>
<tr>
<td>100</td>
<td>1.00</td>
<td>49.3</td>
<td>50.7</td>
<td>49.0</td>
<td>51.0</td>
<td>48.7</td>
<td>51.3</td>
<td>48.4</td>
<td>51.6</td>
<td>48.0</td>
<td>52.0</td>
<td>47.4</td>
<td>52.6</td>
</tr>
<tr>
<td>150</td>
<td>0.82</td>
<td>49.4</td>
<td>50.6</td>
<td>49.2</td>
<td>50.8</td>
<td>49.0</td>
<td>51.0</td>
<td>48.7</td>
<td>51.3</td>
<td>48.4</td>
<td>51.6</td>
<td>47.9</td>
<td>52.1</td>
</tr>
<tr>
<td>200</td>
<td>0.71</td>
<td>49.5</td>
<td>50.5</td>
<td>49.3</td>
<td>50.7</td>
<td>49.1</td>
<td>50.9</td>
<td>48.8</td>
<td>51.2</td>
<td>48.6</td>
<td>51.4</td>
<td>48.2</td>
<td>51.8</td>
</tr>
<tr>
<td>300</td>
<td>0.58</td>
<td>49.6</td>
<td>50.4</td>
<td>49.4</td>
<td>50.6</td>
<td>49.3</td>
<td>50.7</td>
<td>49.1</td>
<td>50.9</td>
<td>48.9</td>
<td>51.1</td>
<td>48.5</td>
<td>51.5</td>
</tr>
<tr>
<td>400</td>
<td>0.50</td>
<td>49.7</td>
<td>50.3</td>
<td>49.5</td>
<td>50.5</td>
<td>49.4</td>
<td>50.6</td>
<td>49.2</td>
<td>50.8</td>
<td>49.0</td>
<td>51.0</td>
<td>48.7</td>
<td>51.3</td>
</tr>
<tr>
<td>500</td>
<td>0.45</td>
<td>49.7</td>
<td>50.3</td>
<td>49.6</td>
<td>50.4</td>
<td>49.4</td>
<td>50.6</td>
<td>49.3</td>
<td>50.7</td>
<td>49.1</td>
<td>50.9</td>
<td>48.8</td>
<td>51.2</td>
</tr>
<tr>
<td>750</td>
<td>0.37</td>
<td>49.8</td>
<td>50.2</td>
<td>49.6</td>
<td>50.4</td>
<td>49.5</td>
<td>50.5</td>
<td>49.4</td>
<td>50.6</td>
<td>49.3</td>
<td>50.7</td>
<td>49.1</td>
<td>50.9</td>
</tr>
<tr>
<td>1,000</td>
<td>0.32</td>
<td>49.8</td>
<td>50.2</td>
<td>49.7</td>
<td>50.3</td>
<td>49.6</td>
<td>50.4</td>
<td>49.5</td>
<td>50.5</td>
<td>49.4</td>
<td>50.6</td>
<td>49.2</td>
<td>50.8</td>
</tr>
<tr>
<td>2,500</td>
<td>0.20</td>
<td>49.9</td>
<td>50.1</td>
<td>49.8</td>
<td>50.2</td>
<td>49.7</td>
<td>50.3</td>
<td>49.7</td>
<td>50.3</td>
<td>49.6</td>
<td>50.4</td>
<td>49.5</td>
<td>50.5</td>
</tr>
<tr>
<td>5,000</td>
<td>0.14</td>
<td>49.9</td>
<td>50.1</td>
<td>49.9</td>
<td>50.1</td>
<td>49.9</td>
<td>50.1</td>
<td>49.8</td>
<td>50.2</td>
<td>49.8</td>
<td>50.2</td>
<td>49.6</td>
<td>50.4</td>
</tr>
<tr>
<td>10,000</td>
<td>0.10</td>
<td>49.9</td>
<td>50.1</td>
<td>49.9</td>
<td>50.1</td>
<td>49.9</td>
<td>50.1</td>
<td>49.8</td>
<td>50.2</td>
<td>49.8</td>
<td>50.2</td>
<td>49.7</td>
<td>50.3</td>
</tr>
</tbody>
</table>
The effects of population relevance on HPI profiles are depicted in Figures 1–3. In Figure 1, HPI T-score profiles are plotted for both the combined sales and the combined trucking samples, based on hypothetical raw scores falling at the mean on each scale and using the other combined group as the reference sample in each case. Differences between samples vary across HPI scales. The largest difference arises on sociability (15.4 T-score points) and the smallest difference on prudence (.4 points). The average difference is 7.3 T-score points. Figure 2 depicts profiles for the five sales samples and Figure 3, for the four trucking samples. Notable differences are evident within each figure. T-scores on ambition and sociability in the sales group, in particular, vary considerably across samples (range = 40.0–55.4 for ambition; 42.7–57.6 for sociability). The largest differences within the trucking norm set arise for learning approach (range = 44.1–56.1). The average maximum differences in the sales and trucker groups (i.e. averaging across the seven scales in each case) are 7.4 and 7.5, respectively.

Within job family differences in HPI profiles for each of the clerical, managerial, and financial job families are depicted in Figure 4. The largest differences are evident in the clerical samples, where, for example, T-scores on ambition, sociability, and intellectance vary by more than 10 points between samples A and B. The largest differences in the managerial samples are for sociability (7.2 points), intellectance (7.0), and learning approach (6.6); and the largest differences in the financial samples are for sociability (8.6), prudence (8.4), and ambition (7.1). Averaging differences across all seven HPI scales within job families yields 5.5 for clerical jobs, 5.2 for managerial jobs, and 4.6 for financial jobs. These are smaller than the averages from sales and trucking (i.e. 7.4 and 7.5), but 10 of the 21 HPI scales-in-jobs exceed the ±2.5-point standard adopted here, corresponding to a 10% decision error rate with a $T = 50$ cut-score.

Discussion

Our goal was to clarify best practices regarding use of personality tests in work settings by assessing the impact of normative sample N and population relevance on the reliability of judged personality test scores. Where personality scores are
standardized using norms (e.g., expressed here in terms of T-scores), we found that over and underestimation of μ due to random sampling error is relatively minor as N exceeds 100. Clearly, such errors will decrease as N increases, but the gains diminish quite rapidly in practical terms at $N = 300$ and above. We suggest that, with respect to sampling error alone, norms based on Ns as low as 100 need not raise serious concerns regarding norm-based test score interpretations. This may be surprising to some test users, as test developers typically tout normative sample sizes well in excess of 500 in their test manuals in a spirit of ‘more is better’. Although precisely true, the practical merit of samples exceeding $N = 100$ is generally weaker than the effect of choosing one norm sample over another, even from within the same job category.

T-score profiles generated using sales and trucking norm sets in the current undertaking revealed a mix of similarities and differences. Profiles based on the combined sales and combined trucking norms (see Figure 1) are notably discrepant, exceeding the ±2.5 T-score point benchmark (corresponding to ±10 percent-

![Figure 2. HPI profiles from five sales samples.](image)

![Figure 3. HPI profiles from four trucker samples.](image)
Figure 4. HPI profiles from three clerical, three managerial, and three financial samples.
tile points at the middle of the distribution) for five of the seven HPI scales (all but prudence and adjustment). The average difference of 7.3 T-score points corresponds to ±14 percentile points. HPI sociability yielded a difference of 15.4 T-score points, corresponding to ±28 percentile points. Such errors support the widely held belief that an individual’s test scores bear comparison to norms representing the same job category to which that person belongs.

Notably, however, similar differences are evident within both the sales group and the trucking group (averages = 7.4 and 7.5 T-score points). Large differences were observed for both ambition and sociability among the sales groups (15.3 and 14.9, respectively), corresponding in each case to approximately ±27 percentile points. Thus, someone falling at the mean of their local cohort on either of these two scales could be judged as falling as low as the 23rd percentile or as high as the 77th percentile when compared to others in the same job category at other organizations combined. (The situation worsens if norms are based on any single organization rather than combining across organizations as the latter averages out extreme values.) Such discrepancies are especially problematic given that ambition and sociability are arguably among the most relevant traits in selecting and developing sales people and are, therefore, likely to be prime targets of concern.

Similar, albeit weaker, discrepancies emerged within the clerical, managerial, and financial norm sets. Prudence, the most closely related of the seven HPI scales to Conscientiousness, yielded maximum T-score differences of 4.7 in both the clerical and managerial samples, and 8.4 in the financial samples, corresponding to ±9 percentile points and ±16 percentile points, respectively. To the degree that prudence is relevant to performance in these jobs, use of non-local job family norms in each case, especially in the financial samples, could lead to non-trivial errors in judging the relative merits of a job applicant or current employee with respect to true local standards.

Our results suggest that differences in norm-based standard scores within the same job category can be similar to those derived between job categories, challenging reliance solely on job type as a basis for judging the suitability of a normative sample. Underlying the noted differences are any of a host of demographic and situational variables with possible links to personality scale scores. Identifying all the variables that might explain the differences depicted in Figures 1–4 is beyond the scope of the current discussion. Some possibilities, based on available demographics, are reported in Table 7. To assess the linear effects of these variables on the HPI means, we regressed the means, per scale, on to proportion white, proportion black, proportion male, and mean age ($N = 18$ samples). Differences among the five job families were assessed by entering four corresponding dummy-coded variables in the first step. Results are reported in Table 8. Step 1 results show that the sample means vary among the five job families for all HPI scales except adjustment and prudence. Additional effects are evident in results from Step 2. Specifically, after controlling for job family effects, ambition means are lower in samples with higher %blacks, Likeability means are higher in samples with higher %whites, prudence means are lower in older samples, and learning approach means are lower in

7. Conscientiousness is relevant to performance in most jobs; e.g. Barrick and Mount (1991).
8. Missing mean ages for the three clerical samples were substituted by the mean from the remaining 15 samples. Results for mean age based on the 15 samples reporting usable data were very similar to those obtained using mean substitution and are available on request. Also, the remaining ethnic groups were not assessed owing to their relatively small proportions within the normative samples.
samples with higher %males. Whether or not these findings replicate in larger sample sets (i.e. with \(N > 18 \) samples) is a matter for further research. Our point here is that comparing an individual to norms from the same job family can, nonetheless, pose uncertainties owing to other characteristics of the norm sample that may also be related to personality scale scores.

Independent research supports current findings suggesting that personality scores are related to job category (e.g. RIASEC; Barrick, Mount, & Gupta, 2003) and demographic characteristics most often described in test manuals (Roberts, Walton, & Viechtbauer, 2006). Other work-related correlates of personality have recently been identified. Judge and Cable (1997) report that personality is related to organizational culture preferences such that, for example, conscientious people prefer detail-oriented and results-oriented cultures. Thus, means for conscientiousness (and more specific traits falling within that category) can be expected to be elevated in organizations with those types of cultures. Similar results linking personality with organizational culture preferences have been reported by Warr and Pierce (2004) and Ang, van Dyne, and Koh (2006). Along similar lines, Furnham, Petrides, and Tsaoousis (2005) found that the Big Five, especially Openness to Experience, are related to work values pertaining to cultural diversity. To the degree that organiza-

Table 7. Norm sample demographics

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ethnicity (%)</th>
<th>Gender (%)</th>
<th>Mean age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>White</td>
<td>Black</td>
<td>Hisp.</td>
</tr>
<tr>
<td>Sales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>46.1</td>
<td>40.0</td>
<td>10.9</td>
</tr>
<tr>
<td>B</td>
<td>85.1</td>
<td>6.9</td>
<td>4.3</td>
</tr>
<tr>
<td>C</td>
<td>73.9</td>
<td>17.3</td>
<td>5.0</td>
</tr>
<tr>
<td>D</td>
<td>67.4</td>
<td>16.1</td>
<td>15.2</td>
</tr>
<tr>
<td>E</td>
<td>66.7</td>
<td>16.7</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>65.0</td>
<td>23.2</td>
<td>8.4</td>
</tr>
<tr>
<td>Trucking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>81.0</td>
<td>9.5</td>
<td>4.8</td>
</tr>
<tr>
<td>B</td>
<td>79.6</td>
<td>11.8</td>
<td>6.1</td>
</tr>
<tr>
<td>C</td>
<td>50.5</td>
<td>33.8</td>
<td>15.7</td>
</tr>
<tr>
<td>D</td>
<td>25.9</td>
<td>35.5</td>
<td>35.5</td>
</tr>
<tr>
<td></td>
<td>71.7</td>
<td>15.3</td>
<td>9.3</td>
</tr>
<tr>
<td>Clerical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>78.3</td>
<td>4.1</td>
<td>10.4</td>
</tr>
<tr>
<td>B</td>
<td>60.1</td>
<td>7.4</td>
<td>22.1</td>
</tr>
<tr>
<td>C</td>
<td>56.4</td>
<td>10.4</td>
<td>23.0</td>
</tr>
<tr>
<td></td>
<td>67.2</td>
<td>6.6</td>
<td>17.2</td>
</tr>
<tr>
<td>Managerial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>50.6</td>
<td>27.4</td>
<td>19.1</td>
</tr>
<tr>
<td>B</td>
<td>50.9</td>
<td>43.4</td>
<td>3.8</td>
</tr>
<tr>
<td>C</td>
<td>69.0</td>
<td>15.7</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td>52.0</td>
<td>29.5</td>
<td>15.6</td>
</tr>
<tr>
<td>Financial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>66.0</td>
<td>21.0</td>
<td>7.7</td>
</tr>
<tr>
<td>B</td>
<td>77.1</td>
<td>10.8</td>
<td>6.8</td>
</tr>
<tr>
<td>C</td>
<td>86.0</td>
<td>2.4</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>69.5</td>
<td>17.7</td>
<td>7.4</td>
</tr>
</tbody>
</table>
tional culture and work values each affect personality scores independently of job type, personality test developers are urged to report details of norm sample culture preferences and values as a basis for judging norm relevance in work settings.

A potentially more important variable affecting normative means on personality scales may be reliance on job applicants versus incumbents. The question of faking in personality assessment has been a dominant focus of investigation for many years. There is now general consensus that people can fake when instructed to do so (e.g. Viswesvaran & Ones, 1999). More recently, the focus has shifted to whether or not people actually do fake in selection settings. Some (e.g. Arthur, Woehr, & Graziano, 2000; Hogan, Barrett, & Hogan, 2007; Hough & Schneider, 1996; Ones & Viswesvaran, 1998; Viswesvaran & Ones, 1999) downplay the effects of voluntary faking, whereas others (Griffith, Chmielowski, & Yoshita, 2007; Rosse, Stecher, Miller, & Levin, 1998; Stark, Chernyshenko, Chan, Lee, & Drasgow, 2001; Tett & Christiansen, 2007) argue that it is indeed problematic. Summarizing the ‘do-fake’ literature in selection contexts, Tett et al. (2006) report a meta-analytic mean d effect size of .35, averaging across the Big Five (excluding Openness, whose effect is close to 0, yields a mean of 0.52). This result supports the applicant/incumbent distinction raised in the SIOP Principles regarding norm use, and clarifies that test developers and publishers need to differentiate norms based on this distinction. Specifically, if a personality test is being used in hiring, the relevant norm group is one drawn from an applicant sample, as norms based on incumbents can be expected to yield (mostly) lower means and, hence, elevated T-scores (or their equivalent) in applicants.9 If targeted for use in developing personnel, on the other hand, personality test scores bear comparison to norms derived from incumbents, as reliance on applicant norms will likely underestimate individuals’ true standing.

9. All norm samples presented here, drawn from the HAS database, include only job applicants; the applicant/incumbent distinction may be relevant to other tests used in work settings, particularly those lacking applicant norms.

Table 8. Regression results for effects of job family and demographic variables on HPI scale means (N = 18 samples)

<table>
<thead>
<tr>
<th>HPI scale</th>
<th>Step 1a Adjusted R²</th>
<th>Step 2b</th>
<th>Change in adjusted R²</th>
<th>Sig. predictor</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustment</td>
<td>.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambition</td>
<td>.61**</td>
<td>.70</td>
<td>.09</td>
<td>%black</td>
<td>−.37*</td>
</tr>
<tr>
<td>Sociability</td>
<td>.60**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likeability</td>
<td>.76**</td>
<td>.81</td>
<td>.05</td>
<td>%white</td>
<td>.25*</td>
</tr>
<tr>
<td>Prudence</td>
<td>−.19</td>
<td>.15</td>
<td>.34</td>
<td>mean age</td>
<td>−.78*</td>
</tr>
<tr>
<td>Intellectance</td>
<td>.45*</td>
<td>.73</td>
<td>.10</td>
<td>%male</td>
<td>−.53*</td>
</tr>
<tr>
<td>Learning approach</td>
<td>.63**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* $p < .05$; ** $p < .01$ < two-tailed.

a. Forced entry.
b. Stepwise entry.
c. Mean substitution for three clerical samples.
That personality scores may be related to a diverse array of demographic and situational factors and, plausibly, to interactions among those variables, raises concerns regarding the generalizability of normative samples as, with increasing numbers of distinct correlates, comes a decreasing likelihood that a normative sample reported in a test manual is relevant to any individual not included in that sample. This goes beyond the issue of whether or not the norm sample is described in detail; the point is that, regardless of such descriptive detail, norm samples are inherently specific to populations identified mostly by convenience, which are very likely to be different from the population of interest in specific norm applications, namely, in the case of selection, the population of local applicants, or, in the case of personnel development, local incumbents. The concept of representativeness in judging norm suitability is, in this light, a fleeting ideal, and assuming representativeness given only a limited set of norm sample descriptors (e.g. job type, age, race, and gender composition) is likely to engender false interpretations regarding an individual’s or group’s standing on targeted personality traits relative to the true local population.

Our findings are generally consistent with the spirit of the Standards and SIOP Principles regarding norms, noted in the introduction. They are particularly supportive of more restrictive recommendations offered in conjunction with the international personality item pool (http://ipip.ori.org/newNorms.htm), which explicitly offers no norms:

One should be very wary of using canned ‘norms’ because it isn’t obvious that one could ever find a population of which one’s present sample is a representative subset. Most ‘norms’ are misleading, and therefore they should not be used.

Far more defensible are local norms, which one develops oneself. For example, if one wants to give feedback to members of a class of students, one should relate the score of each individual to the means and standard deviations derived from the class itself.

Conclusions

Our review of current standards and practice regarding use of personality test norms and our findings driven by basic statistical principles and real data suggest the following conclusions.

1. Sample size has little practical impact on the reliability of normative means and on standard scores and corresponding percentiles thereby derived, once an N of around 300 is reached. Test users need not be overly wary of norms based on N of even 100. Test developers are urged to seek norms for more diverse groups based on modest Ns rather than seeking larger samples per se.

2. Beyond $N = 100$, norm sample composition becomes the more important consideration. Notable discrepancies in personality profiles are likely not only between job families (e.g. sales vs. trucking in the present case) but also within job families (based on samples from different organizations). Such differences within categories raise concerns about the usefulness of norms provided in test manuals, which typically offer little more than job category and basic demographic descriptors as bases for judging norm suitability.

3. Personality scores vary for reasons other than those targeted in standards and principles regarding norm use. Organizational culture, work values, and incumbent versus applicant settings, all of which vary independently of job category and basic demographics, are also worthy of consideration in judgments of norm relevance.
4. The diversity and complexity of factors affecting personality scale scores encourage use of local norms over those provided in test manuals. That N need not be impractically large (e.g. 100) favors such efforts in furthering organizationally meaningful personality test score interpretations, especially for use in personnel development and selection.

5. Use of general norms may have merit at the group level (e.g. assessing where the sales group at Company A stands in relation to national sales people). Special efforts are required, however, to ensure that the general population, defined explicitly in terms of diverse personality correlates (e.g. job category, demographics, applicant vs. incumbent, organizational culture, work values), is suitably represented by the normative sample. Strategies for developing such norms are worthy of future research.

Acknowledgments — An earlier version of this article was presented at the 21st Annual Conference of the Society for Industrial and Organizational Psychology, May, 2006, Dallas, TX.

References

