
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Nutrition and Health Sciences -- Faculty
Publications Nutrition and Health Sciences, Department of

2018

ARMMs as a versatile platform for intracellular
delivery of macromolecules
Qiyu Wang
Harvard T.H. Chan School of Public Health

Jiujiu Yu
University of Nebraska - Lincoln, jyu18@unl.edu

Tatenda Kadungure
University of Massachusetts Medical School

Joseph Beyene
Harvard T.H. Chan School of Public Health

Hong Zhang
University of Massachusetts Medical School, Hong.Zhang2@umassmed.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/nutritionfacpub

Part of the Human and Clinical Nutrition Commons, Molecular, Genetic, and Biochemical
Nutrition Commons, and the Other Nutrition Commons

This Article is brought to you for free and open access by the Nutrition and Health Sciences, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Nutrition and Health Sciences -- Faculty Publications by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Wang, Qiyu; Yu, Jiujiu; Kadungure, Tatenda; Beyene, Joseph; Zhang, Hong; and Lu, Quan, "ARMMs as a versatile platform for
intracellular delivery of macromolecules" (2018). Nutrition and Health Sciences -- Faculty Publications. 118.
https://digitalcommons.unl.edu/nutritionfacpub/118

https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fnutritionfacpub%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/nutritionfacpub?utm_source=digitalcommons.unl.edu%2Fnutritionfacpub%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/nutritionfacpub?utm_source=digitalcommons.unl.edu%2Fnutritionfacpub%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/nutrition_healthsci?utm_source=digitalcommons.unl.edu%2Fnutritionfacpub%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/nutritionfacpub?utm_source=digitalcommons.unl.edu%2Fnutritionfacpub%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/97?utm_source=digitalcommons.unl.edu%2Fnutritionfacpub%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/99?utm_source=digitalcommons.unl.edu%2Fnutritionfacpub%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/99?utm_source=digitalcommons.unl.edu%2Fnutritionfacpub%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/101?utm_source=digitalcommons.unl.edu%2Fnutritionfacpub%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/nutritionfacpub/118?utm_source=digitalcommons.unl.edu%2Fnutritionfacpub%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors
Qiyu Wang, Jiujiu Yu, Tatenda Kadungure, Joseph Beyene, Hong Zhang, and Quan Lu

This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/nutritionfacpub/118

https://digitalcommons.unl.edu/nutritionfacpub/118?utm_source=digitalcommons.unl.edu%2Fnutritionfacpub%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages


ARTICLE

ARMMs as a versatile platform for intracellular
delivery of macromolecules
Qiyu Wang1, Jiujiu Yu1,2, Tatenda Kadungure3, Joseph Beyene1, Hong Zhang3 & Quan Lu1

Majority of disease-modifying therapeutic targets are restricted to the intracellular space and

are therefore not druggable using existing biologic modalities. The ability to efficiently deliver

macromolecules inside target cells or tissues would greatly expand the current landscape of

therapeutic targets for future generations of biologic drugs, but remains challenging. Here we

report the use of extracellular vesicles, known as arrestin domain containing protein 1

[ARRDC1]-mediated microvesicles (ARMMs), for packaging and intracellular delivery of a

myriad of macromolecules, including the tumor suppressor p53 protein, RNAs, and the

genome-editing CRISPR-Cas9/guide RNA complex. We demonstrate selective recruitment of

these macromolecules into ARMMs. When delivered intracellularly via ARMMs, these

macromolecules are biologically active in recipient cells. P53 delivered via ARMMs induces

DNA damage-dependent apoptosis in multiple tissues in mice. Together, our results provide

proof-of-principle demonstration that ARMMs represent a highly versatile platform for

packaging and intracellular delivery of therapeutic macromolecules.
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Mammalian cells secrete into extracellular milieu a variety
of tiny membrane-encapsulated vesicles1. These extra-
cellular vesicles (EVs) contain functional molecules

such as proteins and RNAs, which can be taken up by recipient
cells to mediate intercellular communication2, 3. Because of their
ability to carry and transfer bioactive molecules, EVs have been
proposed as a new vehicle for therapeutic delivery4, 5. Since EVs
are encapsulated by a lipid bilayer membrane, cargos enclosed in
the vesicles are protected from protease- or nuclease-mediated
degradation and shielded from possible detection as foreign
antigens by the immune system. Several studies have used exo-
somes, the most common and the best characterized EVs, for
delivery of siRNAs6 and proteins7. However, exosome-mediated
therapeutic delivery is limited by the inability to control vesicle
production and by crude packaging methods (e.g., electropora-
tion). In addition, the biogenesis of exosomes in the degradative
late endosomes further reduces the packaging and delivery
efficiency8.

Arrestin domain containing protein 1 [ARRDC1]-mediated
microvesicles (ARMMs) are EVs that are distinct from exo-
somes9. The budding of ARMMs requires ARRDC1, which is
localized to the cytosolic side of the plasma membrane and,
through a tetrapeptide motif (PS/TAP), recruits the ESCRT-
I complex protein TSG101 to the cell surface to initiate the
outward membrane budding9. Thus, in contrast to exosomes, the
biogenesis of ARMMs occurs at the plasma membrane. ARMMs
exhibit several additional features that make them potentially
ideal vehicles for therapeutic delivery. ARRDC1 is not only
necessary but also sufficient to drive ARMMs budding. Indeed,
simple overexpression of the ARRDC1 protein increases the
production of ARMMs in cells9. This allows controlled produc-
tion of ARMMs using modern biological manufacturing methods.
Moreover, endogenous proteins such as cell surface receptors are
actively recruited into ARMMs and can be delivered into reci-
pient cells to initiate intercellular communication10, suggesting
that the exogenous cargo molecules may be similarly packaged
and delivered via ARMMs.

In this study we explore the ability of ARMMs to efficiently
package and deliver diverse classes of cargo macromolecules,
including p53 protein, RNA molecules, and the CRISPR-Cas9/
gRNA complex. In all cases, we show selective packaging of the
respective cargos into ARMMs. We demonstrate that the cargo
molecules packaged in ARMMs, when transferred to recipient
cells or tissues, carry out specific biological functions. Together,
our data provide a proof-of-principle demonstration for the uti-
lity of ARMMs to package and deliver a variety of bioactive
macromolecules.

Results
Packaging of p53 protein into ARMMs. We first tested the
ability of ARMMs to package and deliver potential therapeutic
proteins. We chose tumor suppressor p53 as the cargo protein, as
restoration of p53 protein function in cancer cells triggers
apoptosis or senescence11, leading to regression of tumors with
p53 dysfunction12. Thus, delivery of functional p53 is a viable
therapeutic strategy against many cancers in which p53 function
is compromised. During ARMMs biogenesis, ARRDC1 itself is
incorporated into the vesicles9; thus we reasoned that fusing p53
to ARRDC1 may enable p53 protein to also be incorporated into
ARMMs. We made a construct with ARRDC1 fused directly to
the N-terminus of wild-type p53 (Fig. 1a). Expression of the
ARRDC1-p53 fusion protein (Supplementary Fig. 1a) sig-
nificantly increased the transcription of p53 target genes, MDM2,
and p21, in H1299 cells (Supplementary Fig. 1b), which lack
functional p53 protein13. Although less potent than the unfused

wild-type p53 protein in inducing the target gene expression
(Supplementary Fig. 1b), ARRDC1-p53 fusion protein retains the
important transcriptional activity of p53 protein.

We next determined whether the ARRDC1-p53 fusion protein
can be packaged into ARMMs. We first evaluated the vesicle
budding activity of the fusion protein. We transfected ARRDC1-
p53 into the human embryonic kidney 293T (HEK293T) cells and
harvested EVs for assessment by the NanoSight particle analysis.
ARRDC1-GFP, which drives ARMMs formation9, was used as a
positive control. As shown in Fig. 1b, the size distribution as well
as the amount of EVs secreted from ARRDC1-p53-transfected
cells was comparable with those from cells transfected with
ARRDC1-GFP. We also used transmission electron microscopy
(TEM) to image EVs isolated from cells expressing either control
GFP, ARRDC1-GFP, or ARRDC1-p53 (Supplementary Fig. 2).
The diameter of most EVs is less than 100 nm, consistent with
our previous characterization of ARMMs at 50–80 nm9. While
not particularly quantitative, the TEM data also showed more
EVs from ARRDC1-p53-overexpressing cells than the GFP
control. Together these data indicate that the fusion of ARRDC1
to p53 did not compromise the ability of ARRDC1 to drive
ARMM generation. Importantly, Western blotting showed that
ARRDC1-p53, not endogenous unmodified p53, was present in
the EV fractions (Fig. 1c). Interestingly, in the EVs, ARRDC1-p53
as well as ARRDC1-GFP appeared to exist as multiple protein
bands (Fig. 1c), which presumably are results of ubiquitination on
ARRDC1, as our previous study has shown that ARRDC1 is
ubiquitinated and that such ubiquitination enhances ARMMs
budding9. Together, these data indicate that ARRDC1-p53
functions similarly to ARRDC1 in driving ARMMs budding,
and that p53 fusion to ARRDC1 mediates p53 packaging into
ARMMs. To quantify cargo packaging in ARMMs, we did
Western blotting using recombinant GFP protein standard at a
range of 50–1000 ng along with ARMMs produced from
ARRDC1-GFP-expressing cells (Supplementary Fig. 3a). From
the standardized plot we estimated that each ARMM vesicle
contains an average of ~540 cargo protein molecules (Supple-
mentary Fig. 3a).

Delivery of p53 protein in vitro and in vivo. To determine
whether ARRDC1-p53 in ARMMs can be delivered into recipient
cells, we incubated p53-null H1299 cells with either ARRDC1-
p53 ARMMs or the control ARRDC1-GFP ARMMs. Western
blotting showed that incubation of H1299 cells with ARRDC1-
p53 ARMMs led to robust detection of ARRDC1-p53 protein in
the recipient cells (Fig. 1d). We used GFP-standardized Western
blotting to quantify the amount of ARMMs transfer to recipient
cells, and estimated that each recipient cell received an average of
3.1 × 106 cargo protein molecules from 5.8 × 103 of ARMMs
(Supplementary Fig. 3b). Immunofluorescence staining further
showed that ARRDC1-p53 protein delivered via ARMMs was
present in the cytoplasm as well as the nuclei of the recipient
H1299 cells (Supplementary Fig. 4). Importantly, ARRDC1-p53-
containing ARMMs induced transcription of MDM2 and p21 in
H1299 cells (Fig. 1e), indicating that ARRDC1-p53 protein
delivered via ARMMs is able to induce p53-dependent gene
expression in recipient cells.

To investigate whether ARMMs can deliver functional p53
in vivo, we used p53 knockout (KO) mice. In wild-type animals
ionizing radiation induces DNA damage, which leads to p53-
dependent apoptosis14. In p53 KO mice, DNA damage response
and apoptosis are compromised. We tested whether ARMMs can
deliver functional p53 protein to restore DNA-damage-induced
apoptosis in p53 KO mice. P53-null mice were intravenously
injected with ARMMs that contain either ARRDC1-p53 or the
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control ARRDC1-GFP. Mice with wild-type p53 were included as
a positive control. We irradiated the mice to induce DNA damage
and then harvested irradiation-sensitive tissues such as thymus
and spleen for TUNEL staining to evaluate apoptosis (Fig. 1f). As
expected, irradiation induced significant apoptosis in the spleen
and thymus of mice with wild-type p53 (Fig. 1g, top panels;
Fig. 1h), whereas p53 KO mice injected with control ARMMs
containing ARRDC1-GFP were almost completely resistant to
irradiation-induced apoptosis (Fig. 1g middle panels, Fig. 1h).
Importantly, in p53 KO mice that received intravenous injection
of ARRDC1-p53 ARMMs, there was significant induction of
apoptosis post irradiation in both spleen and thymus (Fig. 1g
lower panels, Fig. 1h). This result indicates that ARMMs can

efficiently package and deliver functional p53 into multiple tissues
in vivo.

Packaging and delivery of RNAs via ARMMs. RNA molecules
are also broadly used as therapeutic agents15, but often have to
overcome cellular barriers16. We tested the ability of ARMMs to
package and deliver RNAs to recipient cells. To package RNAs
into ARMMs, we took advantage of the transactivator of tran-
scription (Tat) protein, which binds specifically to the stem-loop-
containing trans-activating response (TAR) element RNA17, 18.
We made an expression construct with a short Tat peptide fused
directly to the C-terminus of ARRDC1 and another construct
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Fig. 1 Packaging and in vivo delivery of p53 protein via ARMMs. a Schematic showing p53 fused to the C-terminus of ARRDC1. Domains and motifs in
ARRDC1 relevant to ARMMs budding are indicated. b Effect of ARRDC1-p53 expression on the production of EVs. pcDNA3, ARRDC1-GFP, or ARRDC1-p53
construct was transfected in HEK293T cells. EVs in the media were analyzed by the NanoSight NS300 instrument (left graph). Numbers of EVs from 3
independent experiments were quantified (right graph). Data were presented as the mean ± SEM. c Packaging of ARRDC1-p53 into ARMMs. pcDNA3, A1-
GFP, or A1-p53 was transfected in the production of HEK293T cells. EVs in medium were pelleted vesicles by ultracentrifugation. Western blotting for p53,
ARRDC1, and control protein vinculin was done on both cell lysates and EVs. d Transfer of ARRDC1-p53 fusion protein in ARMMs to recipient cells. Purified
ARMMs containing ARRDC1-GFP or ARRDC1-p53 were incubated with H1299 cells overnight. The cells were washed with PBS extensively and subjected to
Western blot analysis. e Induction of p53 target genes by ARRDC1-p53 fusion protein delivered via ARMMs. ARRDC1- or ARRDC1-p53 ARMMs were
incubated with H1299 cells for 48 h. Total RNAs were extracted from the cells and used for qRT-PCR to measure MDM2 and p21 mRNA expression. Data
were presented as the mean ± SD. The experiments were repeated for five times. f Schematic of in vivo delivery strategy. Control or ARRDC1-p53 ARMMs
were injected in the tail veins of p53 knockout (KO) mice, which were then subjected to DNA ionizing radiation. Irradiation-sensitive tissues such as thymus
and spleen were harvested for TUNEL staining. g Representative images of TUNEL staining of spleen and thymus from wild type mice or p53 KO mice
injected with indicated ARMMs. 2-month old mice (n= 3–4 for each condition) were injected with A1 or A1-p53 ARMMs and 36 h later subjected to
irradiation. Age-matched WT animals were used as positive controls for irradiation treatment. Scale bar for the images are shown. h Quantification of
apoptotic (TUNEL-positive) cells in tissue staining images. Data were presented as mean ± SEM. *p < 0.05; **p < 0.01
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with TAR fused directly to the 5′ end of a cargo mRNA (Fig. 2a).
We reasoned that the high binding affinity between the Tat
peptide and TAR will allow the recruitment of the TAR-fused
mRNA into ARMMs. We tested the packaging efficiency of both
GFP and p53 mRNAs into ARMMs. We transfected ARRDC1-
Tat with control GFP or TAR-GFP into production cells, and
harvested ARMMs for mRNA and protein analysis. GFP mRNAs
were significantly more enriched in ARMMs of ARRDC1-Tat and
TAR-GFP co-transfection (Fig. 2b). Similarly p53 mRNA fused to
TAR was significantly enriched in ARMMs when co-expressed
with ARRDC1-Tat (Fig. 2c). No GFP or p53 proteins were
detected by Western blot in either GFP or TAR-GFP-mRNA-
containing ARMMs (Supplementary Fig. 5), indicating that the
Tat-TAR system selectively packaged TAR-labeled mRNAs into
ARMMs. We next determined whether the TAR-GFP (or TAR-
p53) mRNA in ARMMs can be delivered into and expressed in
recipient cells. Incubation of ARMMs containing TAR-fused
mRNAs with recipient A549 cells led to the detection of high level
of GFP or p53 mRNAs in the recipient cells (Fig. 2d, e).
Importantly, flow cytometry analysis confirmed that GFP mRNAs
in the recipient cells were translated into GFP proteins and this
translation was nearly abolished in the presence of translation
inhibitor cycloheximide (CHX) (Fig. 2f). Incubation of ARMMs
containing TAR-p53 increased transcription of Mdm2 and p21 in
the recipient cells (Fig. 2g), indicating that TAR-p53 mRNAs

delivered via ARMMs were translated into functional p53
proteins.

Packaging and delivery of CRISPR-Cas9 via ARMMs. Having
shown that ARMMs can package and deliver both proteins and
RNAs, we next tested the utility of ARMMs in delivering more
complex macromolecules, such as an RNA/protein complex. The
CRISPR-Cas9 system uses an RNA-guided DNA nuclease (Cas9)
to directly edit genes in the genome19, 20. Because of its high
efficiency, specificity, and ease of use, CRISPR-Cas9 has been
widely used in biomedical research for gene editing and genome
engineering. However, the enormous therapeutic potential of
CRISPR-Cas9 is limited by the paucity of suitable delivery
methods21, 22. Therefore, we explored the use of ARMMs in
delivering Cas9 and its associated single-guide RNA (sgRNA) into
cultured cells. Because the Cas9 protein is relatively large
(molecular weight around 160 kDa), we decided not to use direct
fusion to ARRDC1. Instead, we took advantage of the interaction
of ARRDC1 with WW-domain-containing proteins. Through its
PPXY motifs, ARRDC1 specifically interacts with the WW
domains (~40 amino acids each) of NEDD4 family proteins9, 23,
allowing the recruitment of proteins into ARMMs9. We made a
fusion construct in which Cas9 is linked to either two or four
WW domains of the ITCH protein (Fig. 3a). WW-Cas9 fusion
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proteins showed similar gene editing activity to that of unmodi-
fied Cas9 (Supplementary Fig. 6), indicating that WW fusion did
not affect the activity of CRISPR-mediated gene editing. WW-
Cas9 incorporation into ARMMs was determined by Western
blotting. As shown in Fig. 3b, in the absence of ARRDC1, there
was very little release of Cas9 or WW-Cas9 in EVs. However,
when co-expressed with ARRDC1, WW-domain fusion to Cas9
was robustly detected in ARMMs, while little unmodified Cas9
was found in ARMMs. To further demonstrate the incorporation
of WW-Cas9 into ARMMs, we fractionated WW-Cas9 EV pellet
using a sucrose gradient that has previously shown to be able to
fractionate and isolate ARMMs10. As shown in Supplementary
Fig. 7, WW-Cas9 co-segregates with ARRDC1, indicating that
WW-Cas9 fusion protein is likely incorporated into ARMMs. In
addition to WW-Cas9 fusion proteins, sgRNA was also robustly
detected into ARMMs (Fig. 3c). These results indicate that WW-
Cas9 along with its associated sgRNA was incorporated into
ARMMs.

We next determined whether the Cas9/sgRNA packaged into
ARMMs can be delivered to recipient cells. We incubated the
purified ARMMs with cells containing a single copy of the GFP
gene24. Both Western blotting (Fig. 3d) and confocal imaging
(Supplementary Fig. 8a) showed the presence of WW-Cas9
proteins in recipient cells. In addition, the sgRNA that targets the
GFP gene was also robustly detected in the recipient cells
(Fig. 3e). These results indicate the delivery of Cas9/sgRNA from
ARMMs into the target cells. We then measured gene editing in
the cells. Incubation of ARMMs containing WW-Cas9 and anti-
GFP sgRNA led to a significant increase of GFP-negative cells
(Fig. 3f, g) and disappearance of GFP signal in some cells
(Supplementary Fig. 8b), suggesting inactivation of the GFP gene

by Cas9/anti-GFP-sgRNA. T7E1 assay and direct DNA sequen-
cing both confirmed gene editing in the target GFP gene
(Supplementary Fig. 8c, d).

Discussion
In summary, we have shown that ARMMs can be used to effi-
ciently package and deliver diverse classes of cargo macro-
molecules. Several strategies were employed to package these
different cargos: Direct fusion to ARRDC1 to recruit p53 pro-
teins, fusion to WW domains for the large macromolecular
CRISPR complex, and a peptide-RNA interaction for mRNA
molecules. In all cases, we showed selective packaging of the
respective cargos into ARMMs. Importantly, we demonstrate that
the cargo molecules packaged in ARMMs, when transferred to
cultured recipient cells, carry out the expected biological function
within recipient cells. For example, we demonstrate that p53
delivered via ARMMs induce robust DNA damage-dependent
apoptosis in multiple tissues in p53-null mice. Together, these
studies provide the proof-of-principle demonstration for the
utility of ARMMs as a versatile platform for packaging and
in vivo delivery of macromolecules.

ARMMs offer several advantages over existing delivery meth-
ods. For example, the use of transducing peptides25, chemical
induction26, and a variety of nano-carriers for delivery27, 28 have
had marginal success in vitro and even ex vivo29, yet, these
approaches suffer from myriad problems in vivo, including low
specificity, instability, and high immunogenicity30, 31. ARMMs
are produced endogenously and thus are likely less immunogenic
and less toxic. ARMMs are generally stable at physiological
conditions with cargo molecules protected from degradation. In
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Fig. 3 Packaging and delivery of CRISPR-Cas9 via ARMMs. a Cas9 packaging strategy. Cas9 is fused to WW domains, which interacts with PPXY motifs of
ARRDC1, allowing the recruitment of Cas9 into ARMMs. b Western blotting showing WW-linked Cas9 in EVs. HEK293T cells were transfected with Cas9,
2WW-Cas9, or 4WW-Cas9 together with pCDNA3.1 or ARRDC1-HA. Extracellular vesicles were pelleted by ultracentrifugation. Both cell lysates and
extracellular vesicle (EV) pellets were subjected for anti-Flag, anti-HA, anti GAPDH, and anti-flotillin Western blotting. RNAs were also extracted from EV
fractions for qRT-PCR quantification of guide RNA (c). d Transfer of WW-domain linked Cas9 proteins in ARMMs to recipient cells. HEK293T cells were
incubated with different ARMMs overnight, washed with PBS extensively, and subjected to Western blotting. RNAs were also extracted from the recipient
cells for qRT-PCR quantification of guide RNA (e). f Flow cytometry data showing the WW-domain linked Cas9 functioned in the recipient cells, which
were U2OS cell with stable expression of GFP protein. g Quantifications of flow cytometry data (f) from three independent replicates. Data were presented
as the mean ± SD in the bar graphs. *p < 0.05
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addition, ARMMs may be engineered to present “homing”
molecules (e.g., peptides and antibodies) on the surface to allow
for tissue/cell-specific delivery. Moreover, because of the simi-
larity of biogenesis between ARMMs and fusogenic viruses32, 33,
there is a possibility that ARMMs may be taken up by cells via
membrane fusion, which would allow ARMMs and the packaged
cargos to avoid the lysosomal degradation machinery. Future
studies exploring these properties of ARMMs will further develop
these unique EVs into a versatile and potentially superior plat-
form for intracellular delivery of bio-therapeutics.

Methods
Plasmids. ARRDC1-GFP expression construct was made previously9. pcDNA3-
p53 expression construct was made by cloning full-length DNA fragment of wild-
type p53 into the pcDNA3.1(+) vector (between the EcoRI and XhoI sites).
ARRDC1-p53 fusion construct was made by cloning the full-length ARRDC1 DNA
into pcDNA3-p53 (between the NheI and EcoRI sites) upstream of the p53 gene.
New constructs were confirmed by direct DNA sequencing. To generate ARRDC1-
TAT construct, the DNA sequence of ARRDC1 was PCR amplified followed by
insertion into pcDNA3 vector to obtain pcDNA3-ARRDC1 construct. The DNA
sequence of TAT (48–65 aa) was synthesized, annealed, and inserted at the C-
terminus of ARRDC1. The DNA sequence of TAR (1–63 base pairs) was synthe-
sized, annealed, and inserted at the 5′ end of EGFP in the pEGFP-N1 vector
(Addgene) to obtain the TAR-EGFP construct. Alternatively, the TAR region was
inserted at the 5′ end of p53 in the pcDNA3-p53 construct to obtain the TAR-p53
construct. 2WW-Cas9-anti-GFP and 4WW-Cas9-anti-GFP were constructed by
cloning either two or four WW domains from ITCH into the AgeI site of the px-
330 vector (Addgene).

Mammalian cell culture and transfections. HEK293T, A549, and H1299 cells
were obtained from ATCC. HEK293T and A549 cells were cultured in DMEM
(high glucose) (Gibco), supplemented with 10% fetal bovine serum (FBS) (Gibco),
and 100 μg/ml PenStrep (Gibco). H1299 cells were cultured in RPMI medium
(Gibco), supplemented with 10% FBS and 100 μg/ml PenStrep. Cells were grown at
37 °C in 5% CO2. All cell cultures were regularly checked for mycoplasma con-
tamination. Transfections in HEK293T and H1299 cells were performed using
Fugene 6 (Promega) and TurboFect (Thermo Fisher Scientific), respectively,
according to the manufacturers’ instructions. For the CHX treatment, A549 cells
were incubated with ARMMs for 3 h, and 2 µg/ml CHX were added to incubate for
additional 24 h, followed by the flow cytometry analysis.

Nanoparticle tracking analysis (NTA). EVs or ARMMs were analyzed and
quantitated by the NanoSight LM10 instrument with the NTA software (Malvern).
Samples containing vesicles were diluted with phosphate-buffered saline (PBS) and
recorded for 60 s with five repeats. Videos were analyzed by the NTA software to
obtain an average of the five repeats for each sample.

ARMMs purification and incubation. Briefly, HEK293T cells were transfected
with different constructs as indicated. Six hours later, the medium was replaced
with fresh DMEM supplemented with 10% pre-cleared FBS, which was subjected to
ultracentrifugation at 260,800 × g for 4 h to remove any bovine vesicles. Seventy-
two hours after transfection, the cell culture supernatant was collected and sub-
jected to two consecutive rounds of centrifugation (500 × g and 2000 × g). The
medium was then passed through a 200 nm filter (Acrodisc) and subjected to
ultracentrifugation using the SW41Ti rotor in a L8-M or XE90 centrifuge (Beck-
man) at 166, 900 × g for 2 h. the medium was then aspirated, and the pellets
enriched with ARMMs were washed twice with ice-old PBS. The vesicles were then
resuspended in RPMI medium supplemented with 10% pre-cleared FBS for
incubation with recipient cells. Alternatively, the vesicles were resuspended in PBS
for animal injection. The purity and yield of vesicles were measured using
NanoSight NS300 instrument (Malvern).

Sucrose gradient fractionation of ARMMs. ARMMs/EV pellets were further
fractionated by the sucrose gradient method as described10. Briefly, EV pellets were
washed twice, resuspended in PBS and reloaded onto a sucrose gradient of ten
different sucrose concentrations from top to bottom (0.2–2M) and centrifuged at
180,000 × g for 18 h. Fractions were then carefully collected at 1 ml each from the
bottom of the tube. All fractionated samples were diluted with PBS and subjected to
centrifugation at 180,000 × g for 90 min to pellet the vesicles.

Negative staining TEM. EVs isolated by the sucrose gradient purification pro-
cedure were suspended in 20 μl of PBS, vortexed briefly, and adsorbed for 1 min to
a carbon coated grid that had been made of hydrophilic by a 30 s exposure to a
glow discharge. Excess liquid was removed with filter paper and the samples were
stained with 0.75% uranyl formate for 30 s. After removing the excess uranyl

formate the grids were examined in a JEOL 1200EX TEM and images were
recorded with an AMT 2k CCD camera.

ARMMs transfer in transwell assay. Transfected cells were washed thoroughly
and seeded atop a 0.4-μm transwell membrane (Costar) for 24 h. The transwells
were then transferred to a plate containing untransfected HEK293T cells. ARMMs
transfer was allowed to proceed for 30 h before harvesting. Alternatively, purified
ARMMs resuspended in PBS were added to culture medium containing untrans-
fected HEK293T cells and were incubated for 24–30 h before harvesting.

Immunoblot analysis and antibodies. Cells were lysed in NP-40 lysis buffer (0.5%
NP-40, 50 mM Tris-HCl, and 150 mM NaCl) supplemented with a protease
inhibitor mixture (Roche). Lysates or vesicles resuspended in lithium dodecyl
sulfate sampling buffer (Novex) were resolved on a 4–12% NuPAGE gel (Novex)
and transferred onto a PVDF membrane (Bio-Rad). Blots were probed with pri-
mary antibodies in Tris-buffered saline containing 0.1% Tween 20 and 5% Nonfat
milk, followed by HRP-conjugated anti-rabbit antibody (Cell Signaling, 7074S, at
1:3000 dilution) or anti-mouse antibodies (Cell Signaling, 7076S, at 1:3000 dilu-
tion). Primary antibodies used include anti-ARRDC1 rabbit polyclonal antibody
(in house, ref. 9, 1:2000), anti-vinculin rabbit monoclonal antibody (Abcam,
AB129002, at 1:1000 dilution), anti-p53 mouse monoclonal antibody (Santa Cruz,
SC-126, 1:250), anti-GAPDH rabbit polyclonal antibody (Santa Cruz, SC-25778,
1:250), rabbit monoclonal GFP antibody (Cell Signaling, 2956S, 1:1000), mono-
clonal FLAG antibody (Sigma M2, F1804, 1:2000), rabbit monoclonal HA-Tag
antibody (Cell Signaling, 3724S, 12117S, 1:2000), and rabbit monoclonal Flotillin
antibody (Cell Signaling, 18634S, 1:2000). Uncropped scans of Western blots were
included in Supplementary Fig. 9.

Quantitative RT-PCR. Total RNAs were extracted from cells or ARMMs using
RNeasy mini kit (Qiagen) and subjected to the treatment of DNase I (Invitrogen).
First strand cDNA synthesis was done using SuperScript III for RT-PCR (Invi-
trogen) per the manufacturer’s instructions. A StepOnePlus real time PCR system
(Applied Biosystems) was used for quantitative PCR analysis of cDNAs.

Immunofluorescence staining and confocal imaging. Cells grown on glass
coverslips were washed with PBS thrice and then incubated in 4% paraformalde-
hyde (Sigma) for 20 min on ice. Cells were permeabilized using 0.1% Triton X-100
in PBS for 5 min on ice and then blocked in the blocking buffer (2% Bovine serum
albumin in PBS) for 1 h at room temperature. The cells were incubated with
primary antibody anti-p53 mouse monoclonal antibody (Santa Cruz, SC-126,
1:200), followed by secondary antibody anti-mouse-alexa fluor 647 (Invitrogen,
A21236, 1:500). The glass coverslips were mounted on glass slides using Prolong
Gold Antifade Mountant with DAPI (Thermo Fisher Scientific, P36941). Image
acquisition was carried out using a Leica TCN-NT laser-scanning confocal
microscope (Leica) equipped with air-cooled argon and krypton lasers. Images
were processed using ImageJ.

Flow cytometry. Cells were trypsined from the plate and washed with PBS, then
labeled with 7-aminoactinomycin D to gate away the dead cells. Flow cytometry
was done using BD FACSAria color sorter. Data were analyzed using FlowJo.

Mouse studies. TP53 KO mice (B6.129S2-Trp53tm1Tyj/J) were purchased from
the Jackson Laboratories. Healthy 2-month old mice without obvious signs of
tumor development were injected intravenously with ARMMs (6 × 1010 EVs/
mouse) in sterile PBS. Thirty-six hours later, mice were irradiated (4 Gy) using a
Cs-137 irradiator. Thymus and spleen were collected 3 h after irradiation and fixed
in 10% phosphate-buffered formalin. All mouse studies were carried out according
to guidelines approved by the Institutional Animal Care and Use Committee of the
University of Massachusetts Medical School.

TUNEL staining. Thymus and spleen fixed in 10% formalin were paraffin-
embedded. Five-micrometer sections were stained for TUNEL using an in situ cell
death detection kit (Roche) by the University of Massachusetts Medical School
Morphology Core facility. For each sample, 3–5 immunohistochemistry images
were obtained using an Axiovert 40 CFL microscope (Carl Zeiss) with a CCD
camera (QImaging QI Click), and QCapture Pro 7 software (QImaging). The
images were analyzed using ImageJ software. Each image was color channel-split
and then thresholded to calculate the percentage of TUNEL-positive area.

Statistics. Statistics were calculated using Excel. Comparisons of two groups were
analyzed using two-tailed t test as indicated. Data were presented as the mean ±
standard deviation (SD) or standard error of the mean (SEM). P values <0.05 were
considered significant, as indicated by *. P < 0.01 was indicated by **. All the cell
culture data shown in the manuscript are representative of experiments conducted
at least thrice.
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Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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