1-10-2000

Observation of Diffractive b-Quark Production at the Fermilab Tevatron

T. Affolder
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California

Kenneth A. Bloom
University of Nebraska - Lincoln, kbloom2@unl.edu

Collider Detector at Fermilab Collaboration

Follow this and additional works at: http://digitalcommons.unl.edu/physicsbloom

Part of the Physics Commons

http://digitalcommons.unl.edu/physicsbloom/119

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Kenneth Bloom Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Observation of Diffractive b-Quark Production at the Fermilab Tevatron

We report a measurement of the fraction of b quarks produced diffractively in $\bar{p}p$ collisions at $\sqrt{s} = 1.8$ TeV. Diffraction is identified by the absence of particles in a forward pseudorapidity region. From events with an electron of transverse momentum $p_T > 9.5$, within the pseudorapidity region $|\eta| < 1.1$, the ratio of diffractive to total b-quark production rates is found to be $R_{\bar{b}b}/R_W = (0.62 \pm 0.19(\text{stat}) \pm 0.16(\text{syst}))\%$. This result is comparable in magnitude to corresponding ratios for W and dijet production but significantly lower than expectations based on factorization.

PACS numbers: 12.40.Nn, 13.85.Qk
We report the first observation of diffractive b-quark production. In two previous Letters we reported results on diffractive W-boson [1] and dijet [2] production in $\bar{p}p$ collisions at $\sqrt{s} = 1800$ GeV at the Fermilab Tevatron. From the ratio of the W to dijet production rates, the gluon fraction of the Pomeron, which is presumed to be exchanged in diffractive processes, was measured [2] to be $f_g = (0.7 \pm 0.2)$. This result agrees with the values of f_g obtained at the DESY ep collider HERA by the ZEUS [3] and H1 [4] Collaborations. However, the production rates at the Tevatron are 5–10 times lower than predictions [5,6] based on the “diffractive structure function” of the proton measured at HERA. This breakdown of factorization brings into question the proposed [7] picture of the proton measured at HERA. This breakdown of factorization brings into question the proposed [7] picture of the proton measured at HERA.

To further probe the gluon component of the Pomeron, we extended our studies to diffractive bb production. The UA1 Collaboration set an upper limit of 1.2 μb (0.6 μb) at 95% C.L. on the total diffractive b-quark production cross section in $\bar{p}p$ collisions at $\sqrt{s} = 630$ GeV, assuming a soft (hard) gluonic Pomeron structure in evaluating the detector acceptance [8]. The corresponding upper limit on the ratio of the diffractive to total [9] cross sections is $R_{bb} = 6.2(3.1)\%$. In this Letter, we report a measurement of R_{bb} in $\bar{p}p$ collisions at $\sqrt{s} = 1800$ GeV using the Collider Detector at Fermilab (CDF). Our measurement is based on identifying a high transverse momentum electron from b-quark decay, within the pseudorapidity [10] region $|\eta| < 1.1$, produced in single diffraction dissociation, $p + \bar{p} \rightarrow p/\bar{p} + b(\rightarrow e + X') + X$. Diffractive production is tagged by the requirement of a “rapidity gap,” defined as the absence of particles in a forward pseudorapidity region.

The detector is described in detail elsewhere [11,12]. In the rapidity gap analysis we use the beam-beam counters (BBC) and the forward calorimeters. The BBC consist of two arrays of eight vertical and eight horizontal scintillation counters perpendicular to the beam line at $z = \pm 5.8$ m and cover approximately the region $3.2 < |\eta| < 5.9$. The fiducial region of the forward calorimeters covers the range $2.4 < |\eta| < 4.2$ with projective towers of size $\Delta \eta \times \Delta \phi = 0.1 \times 5^\circ$. The detector components relevant to electron detection and b-quark identification in the region of $|\eta| < 1.1$ are the microstrip silicon vertex detector (SVX), the central tracking chamber (CTC), and the central electromagnetic (CEM) and hadronic calorimeters surrounding the CTC. Proportional strip chambers at the CEM shower maximum position provide shower profile measurements, and a preshower detector, consisting of multiwire proportional chambers placed in front of the CEM, is used to help separate electrons from hadrons by sampling the showers initiated in the 1.075 radiation-length solenoid magnet coil. The transverse profile of the interacting beams at $z = 0$ is circular with rms radius of 25 μm. The SVX provides an accurate measurement of the impact parameter of tracks in the r-ϕ plane [12], and the CTC provides momentum analysis for charged particles with a resolution of $\sigma_{p_T} = 0.002$ (GeV/c)$^{-1}p_T$.

The data used in this analysis are from the 1994–1995 run (80 pb$^{-1}$), collected with a trigger requiring an electron candidate of $E_T > 7.5$ GeV within $|\eta| < 1.1$. To avoid trigger threshold effects, only events with $E_T > 9.5$ GeV are retained. To help identify electrons and reject hadronic background [13], we consider the longitudinal and lateral shower profiles, requiring matching in energy and lateral position between the shower and the electron candidate track, and demand that the preshower signal be consistent with that expected for an electron. Events with electrons from W and Z bosons are rejected by requiring $E_T < 20$ GeV and missing transverse energy $E_T < 20$ GeV. The background of electrons from photon conversions in detector material between the beam line and the CTC, as well as from Dalitz pairs, is removed by rejecting events with an oppositely charged track within a small opening angle from the electron candidate. The rejection efficiency of conversion electrons is $\sim 80\%$. In addition to the electron candidate, each event is required to have a jet consisting of at least two CTC tracks. Jets are selected by a clustering algorithm using $p_T > 1$ GeV/c for the seed track and $p_T > 0.4$ GeV/c for additional tracks within a cone of radius $(\Delta \eta^2 + \Delta \phi^2)^{1/2} < 0.4$. If more than one jet is found, the one closest to the electron candidate is used. From the jet tracks we construct a jet axis which is used in the separation between beauty and charm quark decays. The above requirements are satisfied by 161 775 events. Our analysis strategy consists of first extracting a diffractive signal from this event sample and then evaluating the b-quark fraction separately in the diffractive and total event samples.

As in our previous studies [1,2], the diffractive signal is evaluated by counting BBC hits, N_{BBC}, and adjacent forward calorimeter towers, N_{CAL}, with $E > 1.5$ GeV. Figure 1a shows the correlation between N_{BBC} and N_{CAL}. There are two entries per event in this figure, one for the positive and the other for the negative η side of the detector. The $(0, 0)$ bin, $N_{BBC} = N_{CAL} = 0$, contains 100 events. The excess of events in this bin above a smooth extrapolation from nearby bins is attributed to diffractive production. The nondiffractive content of the $(0, 0)$ bin is evaluated from the distribution of events along the diagonal of Fig. 1a with $N_{BBC} = N_{CAL}$, shown in Fig. 1b. An extrapolation to bin $(0, 0)$ of a fit to the data of bins $(2, 2)$ to $(9, 9)$ yields 24.4 ± 5.5 nondiffractive background events. In the following, the subsample of events in the $(0, 0)$ bin will be referred to as “diffractive.”

Figures 1c and 1d show the electron E_T and η distribution, respectively, for the diffractive and total event samples. In Fig. 1d, the sign of the electron pseudorapidity for events with a gap at positive η was changed. We observe that while the E_T spectra show no significant difference, the diffractive η distribution is shifted away from
Our estimate of the residual photon conversion background is the sum of four templates: fake electrons from hadrons, electrons from residual photon conversions, charm, and beauty. Using the distribution of the charge deposited in the preshower detector, the hadron background in the total event sample is estimated to be $(25.8 \pm 0.7)\% \ [(30.5 \pm 5.1)\%]$. Our estimate of the residual photon conversion background is $(3.0 \pm 0.1)\% \ [(2.1 \pm 0.7)\%]$. The beauty and charm fractions in the data are evaluated separately for the diffractive and total event samples. We use two methods to discriminate between beauty and charm decays. In the first method, we fit the electron momentum component perpendicular to the jet axis, $p_{T}^{e,\text{jet}}$, which depends on the mass of the parent quark, with the sum of four templates: fake electrons from hadrons, photon conversions, charm, and beauty. The amounts of fake electrons and photon conversions, for which the templates were obtained from data, are constrained by the estimates given above. The charm and beauty templates were obtained from simulations using the PYTHIA Monte Carlo generator [14], followed by a detector simulation. This four-component fit yields a beauty fraction of $(42.9 \pm 0.4)\% \ [(38 \pm 14)\%]$ for the total event sample. The second method uses the impact parameter of the electron track, which depends on both the mass and the lifetime of the parent quark. The impact parameter is defined as the minimum distance between the primary vertex and the electron track in the r-ϕ plane. A fit to the impact parameter distribution using four templates, as above, yields $(47.7 \pm 0.4)\% \ [(38 \pm 14)\%]$ for our two data samples.

Figures 2a and 2b show the fits to the $p_{T}^{e,\text{jet}}$ and impact parameter distributions of the total event sample. Averaging the results of the two methods yields $73.371 \pm 485(\text{stat}) \pm 7774(\text{syst})$ beauty events, where as systematic uncertainty we assigned the difference between the results of the two methods. Figures 2c and 2d show a simultaneous fit to the $p_{T}^{e,\text{jet}}$ and impact parameter distributions of the diffractive sample. This fit yields $44.4 \pm 10.2(\text{stat}) \pm 4.7(\text{syst})$ beauty events, where we assigned the same relative systematic uncertainty as that in the total event sample. After subtracting the 24% nondiffractive background estimated from the fit in Fig. 1b, there remain $33 \pm 10(\text{stat}) \pm 5(\text{syst})$ diffractive beauty events.

The diffractive event yield must be corrected for losses caused by additional pp interactions occurring in the same pp bunch crossing as a diffractive event, as well as for BBC and forward calorimeter occupancy due to noise or beam associated backgrounds. Such occurrences would spoil the rapidity gap. From the instantaneous luminosity during data collection and the known cross section for inelastic pp collisions, the fraction of events for which a rapidity gap is not spoiled by another interaction is found to be 0.26 ± 0.01. Using a sample of events with
no reconstructed primary vertex collected by triggering the detector on randomly selected beam crossings, the combined BBC and calorimeter occupancy was measured to be 0.23 ± 0.07. Correcting for these losses yields 165 ± 50 (stat) ± 29 (syst) diffractive beauty events.

The diffractive to total b-quark production ratio obtained from the above numbers is $R_{bb}^{exp} = [0.23 \pm 0.07$ (stat) ± 0.05 (syst)]%. This ratio is based on diffractive events satisfying our rapidity gap definition. To evaluate R_{bb} for the total diffractive beauty production requires knowledge of the rapidity gap acceptance, defined as the ratio of the total diffractive beauty production to the acceptance from detector simulation, for diffractive p_T events with an electron of 9.5 GeV/c and $|\eta| < 1.1$. The acceptance was calculated for $\xi < 0.1$ and the same requirements for b-quark selection as for the data, using either a flat or a hard Pomeron structure with a gluon (quark) fraction ranging from 3.9% to 20.8% for the favored “high-glue” fits, depending on the type of fit used [17]. From POMPYT, using the standard Pomeron flux and a flat (hard) Pomeron structure consisting of purely gluons or quarks, we obtain 10.4% (11.6%) or 0.92% (1.02%), respectively. The ratio D of the measured R_{bb} fraction to that predicted by POMPYT depends on the gluon fraction f_g of the Pomeron.

The resulting curves are almost indistinguishable from those obtained with a flat Pomeron structure in POMPYT, we used a hard structure in the b case as well. The resulting curves are almost indistinguishable from those obtained with a flat Pomeron structure. The black cross and shaded ellipse represent the best fit and 1σ contour of a least-squares two-parameter fit to the three CDF results. This fit had $\chi^2 = 1.7$, and therefore the ellipse was calculated after multiplying the errors in the measured diffractive to total ratio by $\sqrt{1.7}$ [18]. The value of $D_{CDF} = 0.19 \pm 0.04$ and $f_g^{CDF} = 0.54 \pm 0.16$, in agreement with the results we obtained from the W and dijet rates, namely, $D = 0.18 \pm 0.04$ and $f_g = 0.7 \pm 0.2$ [2].

In conclusion, we have made the first observation of diffractive b-quark production in pp collisions at $\sqrt{s} = 1800$ GeV and measured the ratio of the diffractive to total production rates to be $R_{bb} = [0.62 \pm 0.19$ (stat) ± 0.16 (syst)]% ($\xi < 0.1$) for events with an electron from

F-structure	flat-g	flat-q	hard-g	hard-q
Acceptance	0.41 ± 0.02	0.27 ± 0.02	0.36 ± 0.03	0.22 ± 0.02

TABLE I. Rapidity gap acceptance.
The ratio, D, of measured to predicted diffractive rates as a function of the gluon content of the Pomeron. The predictions are from POMPYT using the standard Pomeron flux and a hard Pomeron structure. The CDF-W curves were calculated assuming a three-flavor quark structure for the Pomeron. The black cross and shaded ellipse are the best fit and 1σ contour of a least-squares two-parameter fit to the three CDF results.

$b \rightarrow e + X$ with $9.5 < p_T < 20$ GeV/c within $|\eta| < 1.1$. The value of R_{bb} is comparable in magnitude to the values of R_W and R_{JJ} obtained previously for W and dijet production, but significantly lower than expectations based on factorization.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Science and Culture of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the A.P. Sloan Foundation; and the Max Kade Foundation.

[10] We use rapidity and pseudorapidity, η, interchangeably; $\eta = -\ln \tan(\frac{\theta}{2})$, where θ is the polar angle of a particle with respect to the proton beam direction. The azimuthal angle is denoted by ϕ, and transverse energy is defined as $E_T = E \sin \theta$.