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Nickel doping of boron–carbon alloy films and corresponding Fermi
level shifts
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University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0111

D. N. McIlroya)
Department of Physics, University of Idaho, Moscow, Idaho 83844-0903

~Received 20 October 1996; accepted 3 March 1997!

We have grown nickel doped boron–carbon alloy films by the technique of plasma enhanced
chemical vapor deposition. The source gas closo-1,2-dicarbadodecaborane~orthocarborane! was
used to grow the boron–carbon alloy, while nickelocene@Ni~C5H5!2# was used as the dopant source
for nickel. With sufficient levels of Ni doping, diodes with characteristic tunnel diode behavior can
be fabricated. The doping of nickel transformed a B5C p-type material, relative to lightly doped
n-type silicon, to a stronglyn-type material. In order to gain insight into the shift of the Fermi level
of the Ni-doped material, we have examined the changes in the electronic structure of sodium doped
films of the precursor molecule orthocarborane which has an icosahedral structure similar to that of
boron–carbon materials. The establishment of unoccupied states at the Fermi level with Na doping
of the orthocarborane films is consistent with the transformation of thep-type B5C to ann-type
material with Ni doping. ©1997 American Vacuum Society.@S0734-2101~97!08003-2#

I. INTRODUCTION

The need for semiconductor devices which can operate at
high temperatures and in harsh environments has been a goal
for many decades. Boron-rich solids are refractory materials
with melting temperatures of 2400 °C and therefore are ex-
cellent candidates for device applications which require elec-
tronic and structural stability at elevated temperatures
~.300 °C!. In addition, they are highly corrosion resistant
making them an ideal material for applications in corrosive
environments. The development of thin film deposition tech-
niques for boron-rich boron carbide, and boron–carbon al-
loys would greatly accelerate the realization of boron based
high temperature devices.

Through the decomposition of cluster borane molecules
by plasma-enhanced1–6 and synchrotron radiation-induced1,7

chemical vapor deposition, heterojunction devices of boron
and boron–carbon alloy films have been successfully fabri-
cated. These techniques have not only been used to construct
simple diodes, but have also successfully yielded field effect
transistors.2 These devices were constructed with undoped
boron–carbon alloy thin films. In order to construct true ho-
mojunction devices, ann-type boron–carbon alloy is neces-
sary. This is only possible through doping.

The introduction of metal dopants into boron–carbon al-
loy films is not a trivial process. The traditional silicon
dopants—boron and phosphorus—substitutionally alloy in
this material and change the band gap without necessarily
changing the conduction properties.4 Initial attempts to dope
molecular films of the precursor cluster molecule closo-1,2-
dicarbadodecaborane (C2B10H12), otherwise known as ortho-
carborane, with the common dopant mercury were

unsuccessful.8 Mercury segregates to the molecular film-
substrate interface and is indicative of the weak interaction
between Hg and orthocarborane. The possibility of doping
boron–carbon alloy films with Hg cannot be excluded based
on these results. While initially disappointing, subsequent
attempts to dope molecular films of orthocarborane with so-
dium did prove to be successful.8–10This work, nonetheless,
did suggest that doping of this material may be a complex
process. This is particularly true since the suitability of or-
thocarborane (C2B10H12! for the chemical vapor deposition
of a B5C films has been established1–3,7 and because this
molecule is very similar to the ‘‘building block’’ of boron
carbide, which consists of a network of icosahedra.

Nickel, however, is a very promising dopant for the
boron-rich solids. Nickel is a common component in the bo-
ron carbide superconductors11–15 and the reactions of nickel
with boron phosphide have been investigated.16,17The inclu-
sion of nickel in other boron-rich solids is also well estab-
lished. A molecular nickel carborane complex~nickelocene!
has been synthesized by inorganic chemists.18–21 Nickel-
ocene, Ni~C5H5!2, has been shown to be an excellent source
compound for the deposition of nickel containing thin
films.22–24 It is volatile and far less toxic than nickel–
tetracarbonyl, though a number of other nickel containing
organometallic compounds may be suitable.25,26 Since both
orthocarborane and nickelocene are easily sublimed from the
solid, the introduction of suitable mixtures into the plasma
reactor can be readily accomplished. The doping of nickel is
seen to transform the plasma enhanced chemical vapor depo-
sition ~PECVD! B5C material to an-type material.3 Both
n–n heterojunction diodes andn–p heterojunction diodes
have been constructed usingn- and p-type Si~111! sub-
strates, respectively, and, with sufficient doping, diodes with

a!Author to whom all correspondence should be addressed; Electronic mail:
dmcilroy@uidaho.edu

854 854J. Vac. Sci. Technol. A 15(3), May/Jun 1997 0734-2101/97/15(3)/854/6/$10.00 ©1997 American Vacuum Society



the characteristics of a tunnel diode have been fabricated.3

In this article we compare the electronic structure of Ni-
doped boron–carbon alloy films grown by PECVD with Na-
doped films of the icosahedral molecular precursor orthocar-
borane used in the PECVD process for growing boron–

carbon alloys. In spite of the large differences between these
two systems, similarities do exist. Molecular models of semi-
conductor materials may be useful towards finding new
routes for the fabrication and development of boron–carbon
materials.

FIG. 1. TheI –V characteristics and the corresponding schematic diagrams of the diodes~a! B5C/n-Si~111!, ~b! lightly Ni-doped B5C onn-Si~111!, and~c!
heavily Ni-doped B5C onn-Si~111!. The shift in polarity of the diode demonstrates the relativen-type behavior following nickel doping and the characteristic
behavior with sufficiently high levels of nickel doping.I F and I R are used to designate forward and reverse direction of current, respectively.
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II. GROWTH AND EXPERIMENTAL PROCEDURE

A. Doped and undoped boron–carbon alloy
thin films

The p-n andn-p heterojunctions were formed by depos-
iting boron–carbon alloy thin films onn-type Si~111!
substrates following procedures described in detail else-
where.1,4–6 Deposition of the films was performed in a cus-
tom designed parallel plate 13.56 MHz rf PECVD reactor
used in previous studies.4–6 The silicon substrates were
doped to 731014/cm3. The source molecule closo-1,2-
dicarbadodecarborane~orthocarborane! was used as the
source compound for growing the boron–carbon alloy films,
while nickelocene@Ni~C5H5!2# was used as the nickel source
for doping. Nickelocene was simultaneously introduced into
the plasma reactor with orthocarborane~closo-1,2-
dicarbadodecaborane@C2B10H12!#. The boron–carbon alloy
films grown by this method have small crystal grains with
icosahedral structure,1 similar to the boron-rich and boron
carbides.

The contacts used to measure the diode characteristics of
the devices were made by sputtering gold pads onto the
boron–carbon films and the backside of the Si substrates.
Wire contacts were attached to the gold pads with silver
paste. This resulted in good ohmic contacts and therefore
eliminated possible contributions from the contacts to the
I –V curves.

B. Na-doped orthocarborane matrix films

Orthocarborane adsorbs associatively on Cu~100! at low
temperatures~;180 K! and molecularly desorbs at approxi-
mately 450 K.27 As with other carborane cage molecules,27

orthocarborane bonds to the Cu~100! surface with the carbon
atoms in the cage, but lacks any apparent preferential orien-
tation for coverages exceeding the first monolayer.27While a
Cu substrate was used in this study, we have found that any
number of substrates, for instance Si, are equally suitable and
therefore the choice of Cu was strictly one of convenience.

Sample preparation and spectroscopic studies of the
doped molecular films of orthocarborane were performed in
two ultrahigh vacuum~UHV! chambers, both with base pres-
sures of 8310211 Torr. Film growth and substrate prepara-
tion have been described in detail elsewhere.8,9 A SAES Na
getter was used to dope the orthocarborane films. For the
inverse photoemission studies, a Geiger–Mu¨ller detector
with a SrF2 window with a pass energy of 9.5 eV was used in
conjunction with an Erdman–Zipf electron gun. All the in-
verse photoemission spectra were collected with the electron
gun at normal incidence and the detector positioned at 35°
off the surface normal. The acquisition of the photoemission
spectra was undertaken with a large hemispherical electron
energy analyzer and a helium lamp using the HeI emission
line.10 The Fermi level was established from the clean, well
ordered, Cu~100! substrate.

III. RESULTS AND DISCUSSION

A. Ni-doped boron–carbon alloys

The inclusion of Ni into the boron–carbon alloy films
with the introduction of nickelocene into the plasma reactor
has been verified with Auger electron spectroscopy~AES!.
The signature of Ni in the Auger spectra suggests that the Ni
uptake is large and that these films are highly doped (@1
31021). The I –V curves of two diodes constructed with a
Ni-doped boron–carbon alloy film grown onn-type Si~111!
are displayed in panels~b! and~c! in Fig. 1. The diode con-
structed with a ‘‘low’’ level of Ni doping corresponded to a
nickelocene to orthocarborane partial pressure,0.1 during
deposition. The ‘‘high’’ doping corresponded to a relative
partial pressure ratio'9, respectively.

With the inclusion of Ni, the boron–carbon alloy films,
which are normallyp-type relative ton-type silicon, evolve
into n-type materials. This is evident from the device char-
acteristics of the diode shown in Fig. 1~b!, as compared to
the diode constructed with undoped boron–carbon alloy
films @Fig. 1~a!#. This results in the formation of a rectifying
diode with reverse bias. Thus, the nickel doped boron–
carbon alloy films appearn-type relative to the lightly doped
n-type silicon substrate. This is consistent with the fabrica-
tion of n–p heterojunction diodes onp-type silicon with
Ni-doped boron–carbon alloy films.

At high doping levels of iron, the normalp-type behavior
of b-rhombohedral boron is also seen to change to
n-type.28,29This change is postulated to occur when six elec-
trons per unit cell are donated from interstitial iron atoms to
the boron icosahedral network.30 This behavior is similar to
what is observed in this work for nickel doping. Not all types
of dopants lead to this shift fromp-type ton-type. Unlike Ni
and Fe doping, Mn doping leavesb-rhombohedral boron
p-type.28

With the higher nickel doping, a negative differential re-
sistance, or a valley in the current, occurs in the effective
forward bias direction for diodes formed onn-type silicon
andp-type Si, as seen in Fig. 1~c!. This behavior is charac-
teristic of a tunnel diode31–39 and is consistent with degen-
erative doping and the introduction of donor states below the
conduction band minimum. A schematic of the energy band
representation is displayed in Fig. 2~a!. Certainly at the
higher doping levels, sufficient quantities of nickel are incor-

FIG. 2. Schematic energy band representations of~a! donor states in the
band gap of a semiconductor,~b! the occupied and unoccupied Na-induced
states in the HOMO-LUMO gap of the Na-doped orthocarborane molecular
matrix film, ~c! the theoretically predicted electronic structure of
b-rhombohedral boron~see Ref. 43!. Ei represents the position of the
chemical potential in the gap for the intrinsic semiconductor materials.
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porated into the boron–carbon alloy during film growth to
achieve a degenerative level of doping.

B. Na-doped molecular matrix films of orthocarborane

In Fig. 3 we present a series of inverse photoemission
electron spectroscopy~IPES! and photoemission electron
spectroscopy~PES! spectra of orthocarborane films on
Cu~100! as a function of sodium doping. For the undoped
icosahedral film, the lowest unoccupied molecular orbital
~LUMO! is at an energy approximately 4.25 eV above the
Fermi level. The highest occupied molecular orbital
~HOMO! is readily apparent in the photoemission spectra at
a binding energy of 5.260.2 eV below the Fermi level.10

At a Na concentration of approximatelyx52
@Nax(C2B10H12)#, new unoccupied states appear in the gap
at 3.5 eV above the Fermi level. As the Na doping is in-
creased, the binding energy of this new density of states
decreases, i.e., shifts towards the Fermi level, and the inten-
sity increases. At a Na concentration ofx52.5, the binding
energy of these states decreases to a value of 3.10 eV above
EF .

10 As the Na doping level is increased beyondx53.5, the
states continue to broaden and to shift to lower energies. At
approximatelyx55, a well defined density of states is estab-
lished at the Fermi level. We postulate that with sufficient
doping the Na-orthocarborane film goes through a nonmetal
to metal phase transition.

The origin of these Na-induced states may be due to hy-
bridization of the Na 3s valence electron with the unoccu-
pied s ~and p! orbitals protruding from the orthocarborane
cluster. Other possibilities include the substitution of ex-

opolyhedral hydrogen with sodium, or the formation of
bridge bonds between neighboring clusters by the sodium.
Regardless of its origin, this Na-induced density of states
resembles an upper Hubbard band.40–42The shift in the den-
sity of unoccupied states towards the Fermi level with in-
creased Na doping resembles the results for metal-insulator
transitions which are based on the infinite dimensional Hub-
bard model.41,42

Na doping also introduces new occupied states into the
gap above the HOMO, as seen in Fig. 3. The intensity of
these two Na-induced bands increases with increasing Na
concentrations until saturation at approximately 3.5 sodium
atoms per orthocarborane cluster. This result demonstrates
that metal doping of an icosahedral network introduces new
states below the conduction band minimum~CBM!.

A schematic of the energy bands of the Na-doped ortho-
carborane matrix is displayed in Fig. 2~b!. The position of
the Na-induced unoccupied states just above the Fermi level
in Fig. 2~b! defines the CBM of the matrix film. The prox-
imity of the CBM to the Fermi level defines the Na-doped
molecular matrix as ann-type material. The significance of
this with regards to the Ni-doped boron–carbon alloy films
will be discussed in the following section.

It is useful to compare the energy bands of the Na-doped
orthocarborane matrix with those of the theoretical energy
bands ofb-rhombohedral boron, which also has an icosahe-
dral network structure.43 A schematic of the energy bands of
b-rhombohedral boron is displayed in Fig. 2~c!. The valence
band of this material is split into two partially filled subbands
VB1 and VB2. The splitting is attributed to Jahn–Teller dis-
tortions of the boron icosahedra.44 The similarity between
the valence band structure ofb-rhombohedral with that of
the Na-doped orthocarborane matrix in Fig. 2~b! is quite re-
markable. Based on this comparison, we argue that the Na-
doped orthocarborane matrix emulates boron-rich and
boron–carbon materials with icosahedral structure. This fur-
ther validates the comparison of the electronic properties of
the Na-doped orthocarborane matrix films with the Ni-doped
boron–carbon alloy films in order to understand the role of
Ni doping.

C. Comparison of the electronic structure
of Na-doped molecular matrix films with
Ni-doped boron–carbon alloy films

Valuable comparisons can be made between the elec-
tronic properties of the Ni-doped boron–carbon alloy films
and the electronic structure of the Na-doped orthocarborane
molecular matrix films. Both of these systems are composed
of icosahedral boron cages, where the boron cages are co-
valently connected either directly or via intermediate isolated
atoms or small clusters of Ni or Na. Both of these materials
are transformed fromp-type materials ton-type with the
inclusion of metal dopants.

Using the proposed electronic structure of boron-rich and
boron carbide materials, we can describe the transformation
of thep-type B5C alloy to andn-type material with Ni dop-
ing by treating the Ni atoms as donors. First, the behavior of

FIG. 3. Normal emission photoemission and normal incidence inverse pho-
toemission spectra of orthocarborane on Cu~100! as a function of sodium
doping. The photoemission spectra were acquired with a photon energy of
21.2 eV.
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the undoped material is attributed to the effects of Jahn–
Teller distortions of theB icosahedra, which results in split-
ting of the uppermost valence band.28 Since the split-off
bands are not completely filled, they will act as acceptor
states. Therefore, in order to create ann-type material it is
necessary to overcompensate these split-off bands. The most
obvious way of achieving this is to introduce donor states
into the gap such that the Fermi level is shifted up towards
the conduction band minimum@see Fig. 2~a!#. This is con-
sistent with the rectifying behavior with reverse bias ob-
served in Figs. 1~b! and 1~c! for the diodes constructed with
the Ni-doped boron–carbon alloy films.

This description is supported by the spectroscopic data
obtained for Na doping of the orthocarborane molecular ma-
trix films. The interaction of the Na atoms with the molecular
icosahedra results in charge transfer to the icosahedra which
is manifested by the appearance of two new bands above the
HOMO in Fig. 3. Likeb-rhombohedral boron, the formation
of two bands rather than one band with Na doping may be a
consequence of Jahn–Teller distortions. This result is analo-
gous to charge transfer in the Ni-doped boron–carbon alloy
films. In addition, the large number of Na atoms per ortho-
carborane cluster~x53.5! is also consistent with the Ni dop-
ing of the alloy films.

Ni has a valency of two. If we make the assumption that
approximately two valence electrons per Ni atom are do-
nated to the boron icosahedral network, this would argue that
we would need approximately two Na atoms to every Ni
atom to achieve an equivalent level of charge transfer to a
boron icosahedron. While this is speculative, it is consistent
with the spectroscopy data in Fig. 3 of the Na-doped ortho-
carborane matrix films.

Concomitant with the introduction of new occupied states
with Na doping is the introduction of new unoccupied states
below the LUMO~see Fig. 3!. This establishes the location
of the Fermi level just below the conduction band minimum
and thereby identifies the doped molecular matrix film as
n-type. Again, this is consistent with the Ni doping of the
boron–carbon alloy films.

Based on these comparisons of the Ni-doped boron–
carbon alloys films with the Na-doped orthocarborane mo-
lecular matrix films, we have concluded that the role of Ni
doping is to donate charge to the boron–carbon icosahedral
network and consequently introduce new states into the gap.
The introduction of these states into the gap is consistent
with the tunnel diode behavior in Fig. 1~c!.

The undoped molecular matrix films are also useful to-
wards understanding the development of the conduction and
valence band edges in the formation of the boron–carbon
alloy films. The decomposition of orthocarborane with expo-
sure to synchrotron radiation in Fig. 4 is accompanied by a
decrease in binding energy of the residual molecular orbital
features. This decrease in the binding energies of the photo-
emission features is a consequence of the gradual transition
towards the formation of the boron–carbon valence and con-
duction bands from the orthocarborane molecular orbitals.45

The heterogeneous intermediate phase, made of a variety of

orthocarborane fragments, has an electronic structure be-
tween that observed for molecularly condensed orthocarbo-
rane and the electronic structure anticipated for the rhombo-
hedral boron–carbon alloy~based on the B12 icosahedral
‘‘building block’’ !, as seen in Fig. 5. This is clearly seen in
the binding energy shift of the valence band edge established
from the HOMO of orthocarborane~or 6b2! with synchro-
tron radiation exposure, as seen in the inset to Fig. 4.

IV. SUMMARY

We have demonstrated that molecular matrix films of
cluster molecules are not only excellent source compounds
for the fabrication of boron-rich semiconductor materials,
but also furnish a simple electronic structure that can provide
insight into the electronic structure and chemistry of solid
semiconductor materials. The charge transfer between the Na
atoms and the orthocarborane molecular clusters is analo-
gous to the overcompensation necessary to transform the
p-type B5C alloy films ton-type with nickel doping. In ad-
dition, the Na-induced gap states provide an explanation for
the tunnel diode behavior observed for the B5C alloy films
with high Ni doping.

FIG. 4. Photoemission spectra of a molecular layer of orthocarborane on
Cu~100! at 180 K. The photon energy used was 25 eV. All photoelectrons
were collected normal to the surface. Note the binding energy shifts and the
broadening of the photoemission features with increased exposure to syn-
chrotron light. The inset shows the binding energy shift of the highest oc-
cupied molecular orbital of orthocarborane as the valence band edge is
established with the formation of boron–carbon.
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FIG. 5. A comparison of the molecular orbitals of orthocarborane as derived
from semiempirical MNDO calculations~see Refs. 27 and 46!, gas phase
photoemission~see Ref. 47!, from photoemission spectra of a molecular
layer of orthocarborane adsorbed on Cu~100! ~see Refs. 27 and 45!, and for
a B12 icosahedra~see Ref. 48!. The inset is a schematic representation of
closo-1,2-dicarbadodecaborane. The 1,2 atoms are carbon and the 3–12 at-
oms are boron, and the unnumbered sites are hydrogen atoms.

859 Hwang et al. : Nickel doping of boron–carbide alloy films 859

JVST A - Vacuum, Surfaces, and Films


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	5-1-1997

	Nickel doping of boron–carbon alloy films and corresponding Fermi level shifts
	Seong-Don Hwang
	N. Remmes
	Peter A. Dowben
	D.N. McIlroy

	I. INTRODUCTION
	II. GROWTH AND EXPERIMENTAL PROCEDURE
	III. RESULTS AND DISCUSSION
	IV. SUMMARY
	ACKNOWLEDGMENTS

