REACTION PATHWAY INSIGHTS INTO THE SOLVOTHERMAL PREPARATION OF Culn$_{1-x}$Ga$_x$Se$_2$ NANOCRYSTALLINE MATERIALS

Christopher L. Exstrom
University of Nebraska at Kearney

Scott A. Darveau
University of Nebraska at Kearney

Andrea L. Martinez-Skinner
University of Nebraska at Kearney

Matt Ingersoll
University of Nebraska at Kearney

Jiri Olejnicek
University of Nebraska at Kearney

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/electricalengineeringfacpub

Part of the [Electrical and Computer Engineering Commons](http://digitalcommons.unl.edu/electricalengineeringfacpub)

Exstrom, Christopher L.; Darveau, Scott A.; Martinez-Skinner, Andrea L.; Ingersoll, Matt; Olejnicek, Jiri; Mirasano, Anatole; Haussler, Adam T.; Huguenin-Love, James; Kamler, Chad; Diaz, Martin; Ianno, Natale J.; and Soukup, Rodney J., "REACTION PATHWAY INSIGHTS INTO THE SOLVOTHERMAL PREPARATION OF Culn$_{1-x}$Ga$_x$Se$_2$ NANOCRYSTALLINE MATERIALS" (2008). Faculty Publications from the Department of Electrical and Computer Engineering. 122.

http://digitalcommons.unl.edu/electricalengineeringfacpub/122
Authors
Christopher L. Exstrom, Scott A. Darveau, Andrea L. Martinez-Skinner, Matt Ingersoll, Jiri Olejnicker, Anatole Mirasano, Adam T. Haussler, James Huguenin-Love, Chad Kamler, Martin Diaz, Natale J. Ianno, and Rodney J. Soukup
REACTION PATHWAY INSIGHTS INTO THE SOLVOTHERMAL PREPARATION OF Culn$_{1-x}$Ga$_x$Se$_2$ NANOCRYSTALLINE MATERIALS

Christopher L. Exstrom, Scott A. Darveau, Andrea L. Martinez-Skinner, Matt Ingersoll, Jiri Olejniecek, Anatole Mirasano, and Adam T. Haussler
Department of Chemistry, University of Nebraska at Kearney, Kearney, NE 68849-1150
James Huguenin-Love, Chad Kamler, Martin Diaz, N. J. Ianno, and R. J. Soukup
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511

ABSTRACT
Reaction pathway investigations of the solvothermal preparation of nanocrystalline Culn$_{1-x}$Ga$_x$Se$_2$ in triethylenetetramine reveal the early formation of a previously unreported CU$_{2-x}$Se(S) intermediate. Over 24 hours, this reacts with In and Se species to form CulnSe$_2$(s). If Ga is present, the reaction proceeds over an additional 48 hours to form Culn$_{1-x}$Ga$_x$Se$_2$. Adding ammonium halide salts reduces the CulnSe$_2$ formation time to as little as 30 minutes. It is proposed that in these cases, CU$_{2-x}$Se particle growth is limited via a competitive Cu-halide complex formation. The smaller CU$_{2-x}$Se particles may react and form CulnSe$_2$ more rapidly. A reaction pathway scheme consistent with experimental results and previous literature reports is proposed.

INTRODUCTION
For some time, the chalcopyrite semiconductors CulnSe$_2$ (CIS) and Culn$_{1-x}$Ga$_x$Se$_2$ (CIGS) have been leading thin-film material candidates for incorporation in high-efficiency photovoltaic devices [1-4]. Interest in the development of more cost-effective, non-vacuum film production techniques has stimulated research in the solution-based preparation of nanocrystalline CIS and CIGS. Reported nanocrystal preparations involve solvothermal processes in which constituent elements or their salts are heated in a solvent. While a variety of reaction conditions have successfully yielded nanocrystalline CIS [5-10], and to a lesser extent CIGS [11, 12], no systematic study of the solvothermal reaction mechanism(s) or structure-activity relationships has been conducted. A better mechanistic understanding of this solvothermal preparation may lend insight into the synthesis of new Culn$_{1-x}$M$_x$Se$_2$ (M = Ga, Al, B) chalcopyrite materials.

Most early reported procedures for solvothermal CIS and CIGS formation involved superheating a sealed container of Cu, In, Ga, and Se sources in ethylenediamine (en) solvent at 140-280 °C for 15-36 hours [5-8]. The reaction directly yields nanocrystals. Proposed mechanisms for these solvothermal processes involve the formation of separate indium and gallium selenide species that react with a solvated Cu$^+$ complex to form CIS or CIGS. Following initial Cu$^{2+}$ and Se reduction, CIS formation is proposed to occur as follows [9, 12]:

\[
2 \text{InCl}_3 + 3 \text{Se}^{2-} \rightarrow \text{In}_2\text{Se}_3 + 6 \text{Cl}^- \tag{1}
\]

\[
\text{In}_2\text{Se}_3 + \text{Se}^{2-} \rightarrow 2 \text{In} \text{Se}^2^- \tag{2}
\]

\[
\text{InSe}^2^- + [\text{Cu}(\text{en})_2]^+ \rightarrow \text{CulnSe}_2 + 2 \text{en} \tag{3}
\]

In the formation of CIGS isometric nanoparticles, it has been proposed that [Cu(en)$_2$]$^+$ reacts with separately-formed In$_2$Se$_3$ and Ga$_2$Se$_3$ phases [12]. While reported mechanism proposals are consistent with the CIS and CIGS solvothermal preparations, there has been no experimental evidence of any of the proposed intermediates.

Solvent selection is proving to be important in the engineering of CIS and CIGS nanocrystal size and morphology. Early attention focused on en because of possibilities that the square-planar geometry of the [Cu(en)$_2$]$^+$ intermediate complex would promote one-dimensional nanorod growth [9]. More recent reports [10, 13] describe the use of surfactant-based phosphine and amine solvents such as trietylphosphine (TOP), tributylphosphine (TBP), octadecylamine, and oleylamine in order to control the growth rate of newly formed nanocrystals. Generally, the bulk of the solvent molecules and the size of stabilized nanoparticles are inversely related [14]. Stabilization of small nanoparticles seems to be related to formation reaction rate. Using these surfactant-based solvents, CIS and CIGS formation reaction times of 30-60 minutes have been reported [13].

An advantage of using en and chemically similar solvents that coordinate strongly to transition metals in molecular complexes is that reaction intermediates may be better shielded from oxidation in open-air syntheses. We have recently demonstrated the first open-air solvothermal preparation of nanocrystalline Culn$_{1-x}$Ga$_x$Se$_2$ of wide-ranging Ga/In ratios ($x = 0, 0.21, 0.35, 0.79, 1$) [15]. At all compositions, morphologies consist of a mixture of isometric nanocrystalline growths (10-40 nm diameters), larger plates (50-100 nm diameters) and nanorods (see Fig. 1).
In this paper, we report studies of the solvothermal reaction pathway in triethylenetetramine (trien). This solvent is chemically similar to en (see Fig. 2) but has a higher boiling point (267 °C) that appears to be necessary to incorporate Ga in the chalcopyrite crystalline lattice and form CIGS [12]. In the CIS preparation, the initial formation of a previously unreported Cu2-xSe solid-state intermediate is observed. Over time, this compound reacts with Se and one or more In species to form CIS. If Ga is present, conversion to CIGS proceeds. The reaction rate is accelerated by the presence of soluble ammonium and halide salts in the reaction mixture. A reaction pathway scheme that is consistent with our results and previous literature is proposed.

EXPERIMENTAL

Desired stoichiometric quantities of CuCl2, InCl3, GaCl3, and Se were combined in triethylenetetramine (trien) solvent and refluxed with stirring for times ranging from five minutes to 48 hours. The reaction mixture was cooled to room temperature and centrifuged. Following the decanting of the solvent, the remaining black solid was washed with methanol and deposited onto a glass or Mo-glass substrate via spin coating from a methanol/CH2Cl2 suspension. Products were characterized by micro-

RESULTS AND DISCUSSION

Solvothermal Reaction Pathway for CIS and CIGS Formation

We have gained information about the CIS preparation reaction pathway in trien solvent from the analysis of stable solid-state intermediates. Upon combining stoichiometric quantities of CuCl2, InCl3, and Se in trien, Raman peak(s) for Cu2-xSe (~ 255 cm⁻¹) [16] are observable within five minutes. At this point, Se (~ 235 cm⁻¹) [17] and Cu2-xSe solids are observable by Raman spectroscopy (Fig. 3a). From XRD spectroscopy, this Cu2-xSe phase is identified as berzelianite (Cu1.8Se), the same composition that was use to model copper-deficient Cu2Se XRD signal phase fitting in in-situ XRD studies of solid-state CIGS formation reactions [18].

No Se XRD signals appear, indicating that at this point, the Se in the sample is amorphous. As the reaction
progresses, a CIS Raman peak (~170 cm⁻¹) [19] starts to grow in after 1 hour (Fig. 3b). As CIS forms, the Cu₁₆Se peak disappears within six hours (Fig. 3c). After 24 hours, all Se has been reacted (Fig. 3d), and the XRD spectrum shows only CIS (Fig. 3e).

Neither Raman spectroscopy nor XRD indicate the presence of any solid-state In species. This lends support to the formation of InSe₂ - as in (2) or a solvated complex such as [In(trien)]⁺, as amines are known to coordinate to In³⁺ as labile ligands [20]. Nuclear magnetic resonance (NMR), electrochemical, and spectroscopic studies of soluble reaction species are in progress.

Studies of CIGS solvothermal formation indicate that the reaction initially proceeds to CIS as described above (Figs. 3a-d) followed by a slow reaction with one or more soluble Ga species to form CIGS. This is consistent with reported [Ga(amine)]⁺ formation constants that are two orders of magnitude larger than those for analogous [In(amine)]⁺ complexes [20]. In reported solid-state mechanisms, separately-crystallized CIS and CGS interdiffuse to form CIGS [21]. From solvothermal reaction products, we have seen no evidence of simultaneously present CIS and CGS Raman and XRD signals.

The formation of Cu₂₋₅Se(s) is absent from previously proposed solvothermal mechanisms and raises questions about the stability of [Cu(amine)]⁺ complexes in this reaction pathway. While metal-solvent complexes may be important intermediates in the reduction of Cu and the fast formation of Cu₂₋₅Se(s), it is more likely that this solid-state species is the immediate precursor to CIS.

Reaction Acceleration Effects of Added Ionic Salts

The role of specific starting material counterions or solution ionic strength in solvothermal CIS preparations has not been investigated. Given that solution-phase charged complexes may be important in solvothermal preparation mechanisms, it is feasible that solution ionic strength or counterion presence could affect the stability of these complexes during the reaction. The reported process for electrodeless deposition of CIGS from aqueous solution employs a 10-fold excess of LiCl as a “background electrolyte” [22]. Most likely, this facilitates the various redox reaction steps involved in the CIGS deposition.

CuCl₂, InCl₃, and Se were reacted in refluxing trien solvent that contained a 2- to 18-times mole excess (relative to Cu) of an ammonium or halide salt. Reaction rates are greatly accelerated. Pure CIS (as determined by Raman and XRD spectroscopy) can be prepared in as little as 30 minutes when an 18-fold NH₄Cl excess is present. This compares to 24 hours without any NH₄Cl in the reaction mixture. Tables 1 and 2 summarize the CIS reaction completion times when various salts are present in the reaction mixture.

Table 1. Solvothermal CIS Formation Times, in Hours, with added Ammonium Salts

<table>
<thead>
<tr>
<th>equiv present</th>
<th>NH₄Cl</th>
<th>NH₄Br</th>
<th>NH₄I</th>
<th>NH₄PF₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>18</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>24</td>
</tr>
</tbody>
</table>

*a molar equivalents relative to Cu

Table 2. Solvothermal CIS Formation Times, in Hours, with added Chloride Salts

<table>
<thead>
<tr>
<th>equiv present</th>
<th>NH₄Cl</th>
<th>(CH₃)₄NCI</th>
<th>CaCl₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24</td>
<td>24</td>
<td>n.d.</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>14</td>
<td>n.d.</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>n.d.</td>
</tr>
<tr>
<td>18</td>
<td>0.5</td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>

*b not determined

CIS formation times also vary with the nature of the cation in the added salt. Effects of NH₄⁺ and (CH₃)₄N⁺ may be directly compared. It is unlikely that the greater rate acceleration effect of NH₄⁺ is due to proton transfer to trien followed by NH₃ complexation to Cu or In, as NH₃ is less basic (pKa = 4.75) [23] than trien (pKa = 3.21) [24]. It is possible that with its larger charge density (smaller ion size), NH₄⁺ may better stabilize a negatively-charged Cu- and/or In-halide complex in the reaction pathway. This would imply that the presence of smaller inorganic cations may accelerate the reaction to a greater extent. Unfortunately, CaCl₂ was only slightly soluble in the reaction mixture, while MgCl₂, NaCl and KCl were insoluble.

Proposed Reaction Pathway Scheme

A modified CIS/CIGS solvothermal preparation reaction pathway scheme based on our experimental results and previously reported literature is proposed in Figure 4.
Step (a) – Solubilization of source elements. Upon combining CuCl₂, InCl₃, GaCl₃, and Se in trien, the solution immediately turns deep blue, indicative of [Cu(trien)]⁺ formation. Se appears to slowly dissolve at room temperature. Amine solvents are known to activate and solubilize Se as Se(amine)ₓ complexes [28]. Upon heating, InCl₃ and GaCl₃ dissolve, presumably as amine complexes, such as [In(trien)]³⁺ and [Ga(trien)]³⁺, and/or as selenide ions such as the previously proposed InSe⁵⁻ [9, 12]. No In or Ga species were observed in solid-state intermediates by Raman, XRD, or AES. This indicates that such intermediates remain in solution until the CIS formation step.

Step (b) – Cu₂₋ₓSe particle nucleation. Molecular clusters of Cu₂₋ₓSe form upon reaction of solvated Cu and Se species. The first black Cu₂₋ₓSe precipitate is observed with the reaction mixture reaches the trien boiling point (267 °C).

Step (c) – Cu₂₋ₓSe particle growth. In trien solvent under reflux conditions, this growth is expected to proceed rapidly. Without long carbon chains in their molecular structures, the trien molecules cannot stabilize [14] newly formed Cu₂₋ₓSe particles and prevent growth through addition of Cu₂₋ₓSe molecular clusters.

Steps (d) and (e) – CIS and CIGS formation. Over a period of 24 hours at reflux temperature, the solid Cu₂₋ₓSe reacts with solution-phase In to form CIS nanocrystals. If Ga is present, it will react with CIS over an additional 48 hours at reflux temperature to form CIGS.

Connection between Reaction Rates and Intermediate Cu₂₋ₓSe(s) Particles. Surfactant-based solvents have recently been reported to accelerate CIS and CIGS nanoparticle formation [13]. Although no explanation for this has been proposed, it is reasonable that through increased accessible surface area, smaller Cu₂₋ₓSe particles would react with dissolved In faster than larger Cu₂₋ₓSe particles would react. Because surfactant-based solvents can stabilize nanoparticles at earlier stages in their growth, nanoparticle intermediates in CIS/CIGS solvothermal preparation reactions would react faster in surfactant-based solvents than in non-surfactants like en and trien.

Reaction Acceleration Effects of Added Salts. If the accelerated CIS formation reaction times in Tables 1 and 2 stem from the stabilization and subsequent reaction of smaller Cu₂₋ₓSe intermediate particles, the addition of ammonium halide salts would appear to have a “surfactant” effect on the reaction. Because the halide ions are negatively charged, it is not reasonable to propose that they stabilize newly-formed Cu₂₋ₓSe nanoparticles through a capping phenomenon. Considering our evidence of Cu-halide complex formation, the growth of Cu₂₋ₓSe particles may be inhibited by a competitive Cu-halide complex formation mechanism (steps (a’) and (b’) in Figure 4). This would result in an accelerated reaction (step (c’) in Figure 4) of smaller intermediate Cu₂₋ₓSe particles with In.

CONCLUSION

Reaction pathway studies of the solvothermal preparation of nanocrystalline CuIn₁₋ₓGaₓSe₂ in triethylenetetramine have resulted in experimental evidence of a solid-state Cu₂₋ₓSe intermediate and reaction rate acceleration by added ammonium halide salts. The proposed reaction pathway scheme features solubilization of Cu, In, Ga, and Se starting materials,
rapid nucleation and growth of Cu$_{2-x}$Se(s) particles, and subsequent reactions of these with a soluble In species, forming CIS, followed by reaction with a soluble Ga species, forming CIGS. Halide anions from added ammonium salts are believed to accelerate the reaction by limiting Cu$_{2-x}$Se particle growth through a competitive Cu-halide complex formation step. The smaller Cu$_{2-x}$Se particles may react faster with In to form CIS. Further experimental work, including microscopy of Cu$_{2-x}$Se(S) intermediates formed under different experimental conditions, investigation of surfactant-based solvent effects on reaction rate, and identification of soluble In and Ga intermediate species, to test the validity of this reaction scheme is underway.

ACKNOWLEDGMENT

Financial support was provided by the U.S. Department of Energy Office of Science (Grant No. DE-FG02-06ER64235) and the Nebraska Research Initiative Program.

REFERENCES

