Determining Gene Specific Chromatin Differences in *Sulfolobus solfataricus*: Expression of MerR Protein for Targeted-ChIP Antibody Production

Erica M. North
University of Nebraska - Lincoln, erica.m.north.94@gmail.com

Sophie Payne
University of Nebraska - Lincoln

Sam McCarthy
University of Nebraska - Lincoln

Tyler Johnson
University of Nebraska - Lincoln, tyler.b.johnson@huskers.unl.edu

Paul Helmuth Blum
University of Nebraska - Lincoln, pblum1@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/ucareresearch
Part of the [Biochemistry, Biophysics, and Structural Biology Commons](http://digitalcommons.unl.edu/biochemistrybiophysicsandstructuralbiology), and the [Biotechnology Commons](http://digitalcommons.unl.edu/biotechnology)

North, Erica M.; Payne, Sophie; McCarthy, Sam; Johnson, Tyler; and Blum, Paul Helmuth, 'Determining Gene Specific Chromatin Differences in *Sulfolobus solfataricus*: Expression of MerR Protein for Targeted-ChIP Antibody Production' (2016). UCARE Research Products. Paper 117.
http://digitalcommons.unl.edu/ucareresearch/117

This Poster is brought to you for free and open access by the UCARE: Undergraduate Creative Activities & Research Experiences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in UCARE Research Products by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Determining Gene Specific Chromatin Differences in Sulfolobus solfataricus:
Expression of MerR Protein for Targeted-ChIP Antibody Production

Erica North, Sophie Payne, Sam McCarthy, Tyler Johnson, Paul Blum

Abstract

In this project the repressor protein MerR from the Sulfolobus solfataricus mercury resistance operon was cloned into pET28b and transformed into Rosetta 2 E. coli strains for overexpression and purification. Large quantities of recombinant MerR will be used for subsequent injection into a mammalian host for antibody production. These antibodies will be used in targeted-ChIP studies in which gene specific chromatin modification states will be analyzed. The overproduction of MerR is part of a larger project where future research could produce data on whether gene expression levels and chromatin modification states could be correlated at an individual gene level, possibly suggesting a novel epigenetic mechanism in Archaea.

Background

Sulfolobus solfataricus is a thermoacidophile crenarchaeon with an optimum temperature of 80°C and pH of 3.0. Three separate lineages of super acid resistant strains of the crenarchaeon (SARC) Sulfolobus solfataricus have been previously derived through adaptive laboratory evolution by serial passaging in increasing acid. This resulted in mutant strains which are capable of growth at pH 1, which greatly exceeds the capacity of the parental. These SARC strains have inheritable phenotypes and transcriptomics, however genomics analysis of 3 independently evolved SARC strains showed no conserved mutations. This suggests that the novel phenotype isn’t due to changes in the genomic sequence.

Many abundant chromatin proteins are known to exist in Sulfolobus solfataricus. While there are no conserved genetic mutations in the SARC genome that accounts for the change in phenotype observed, it has been found that the abundant chromatin proteins Cren7 and Sso76 are hypomethylated in the SARC strains as compared to the parental. The conservation of phenotype, transcriptomics and chromatin modification state and lack of conservation in mutations, suggest a potential relationship between the modification states of chromatin and the inheritable phenotype of SARC. The mercury resistance operon in Sulfolobus solfataricus transcribes genes that are responsible for detoxifying high levels of mercury in the cell. The operon is induced as a stress response in the SARC strains, however it is not part of the conserved transcriptome of the SARC strains as it reverts back to normal levels of expression when the SARC strains are grown at pH 3. The operon has a repressor (MerR) which has been shown to very tightly bind its operator (merO), a characteristic which will be utilized in future experiments.

Methods

MerR was cloned into pET28b vector and transformed into Rosetta 2 E. coli strains. The E. Coli was then grown in liquid LB media with 100 μg/ml kanamycin and 25 μg/mL chloramphenicol and induced with IPTG to produce MerR. 50 mL of the induced media was then pelleted and resuspended in lys buffer (20 mM NaPO₄, 0.5 M NaCl, 20 mM imidazole and 1 mM mercaptoethanol) at pH 7.4. The solution was centrifuged at 8000 G for 30 minutes at 4°C to precipitate insoluble materials and the supernatant was transferred to a new tube. Since MerR is a thermostable protein, represented in the mesophile E.coli, the difference in temperature stability can be used as a purification step. The supernatant was subjected to heat fractionation by incubation in tubes at 90°C for one hour, which denatured the majority of E.coli proteins. The samples were then centrifuged one final time at 8000 G for 30 minutes at 4°C and the supernatant was transferred to a new tube. Purified extract was run on a 10% SDS-PAGE gel and bands were visualized using Coomassie Blue.

Results

Fig. 4 MerR was successfully cloned into pET28b as proven by the dropout on the DNA gel seen at 350 bp. It was successfully recovered in both the crude and heat fractionated samples, and purified in the heat fractionated sample.

Discussion and Future Goals

Recombinant MerR protein was successfully overproduced and purified. Scaled up cultures will produce enough MerR for use as an antigen for antibody production in a mammalian host. These antibodies will be used in a method called targeted ChIP, which will allow us to isolate specific genes and their associated chromatin. This chromatin can then be analyzed to determine how chromatin identity and modification state correlate with heritable transcriptomic patterns. Genes in the SARC transcriptome that were highly upregulated, downregulated and unaltered will be tested. We will then use targeted ChIP on these genes. This is based on the idea that we can already evolve merO next to genes of interest, and using the high binding affinity between merO and MerR we will be able to immunoprecipitate out regions of DNA that contain merO. Once these regions are successfully isolated, the chromatin proteins will be removed and run through both intact mass and fragmented peptide mass spectrometry to determine the quantities of the proteins, the identities of the proteins and their modification states.

We hope to use this data to establish a correlation between the expression level and chromatin modification states of individual genes. This could provide solid evidence for a novel mechanism of epigenetics in Archaea.

References