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Department of Electrical Engineering
University of Nebraska-Lincoln, Lincoln, NE 68588

Email: dqiao726@huskers.unl.edu, gursoy@engr.unl.edu, velipasa@engr.unl.edu

Abstract—1 Energy efficiency of fixed-rate transmissions is
studied in the presence of queueing constraints and channel
uncertainty. It is assumed that neither the transmitter nor the
receiver has channel side information prior to transmission. The
channel coefficients are estimated at the receiver via minimum
mean-square-error (MMSE) estimation with the aid of training
symbols. It is further assumed that the system operates under
statistical queueing constraints in the form of limitations on
buffer violation probabilities. The optimal fraction of power
allocated to training is identified. Spectral efficiency–bit energy
tradeoff is analyzed in the low-power and wideband regimes by
employing the effective capacity formulation. In particular, it is
shown that the bit energy increases without bound in the low-
power regime as the average power vanishes. On the other hand,
it is proven that if sparse multipath fading with bounded number
of independent resolvable paths is experienced, the bit energy
diminishes to its minimum value in the wideband regime as the
available bandwidth increases. For this case, expressions for the
minimum bit energy and wideband slope are derived. Overall,
energy costs of channel uncertainty and queueing constraints are
identified.

I. INTRODUCTION

The two key characteristics of wireless communications that
most greatly impact system design and performance are 1) the
randomly-varying channel conditions and 2) limited energy
resources. In wireless systems, the power of the received signal
fluctuates randomly over time due to mobility, changing envi-
ronment, and multipath fading. These random changes in the
received signal strength lead to variations in the instantaneous
data rates that can be supported by the channel [1]. In addition,
mobile wireless systems can only be equipped with limited
energy resources, and hence energy efficient operation is a
crucial requirement in most cases.

To measure and compare the energy efficiencies of different
systems and transmission schemes, one can choose as a metric
the energy required to reliably send one bit of information.
Information-theoretic studies show that energy-per-bit require-
ment is generally minimized, and hence the energy efficiency
is maximized, if the system operates at low signal-to-noise
ratio (SNR) levels and hence in the low-power or wideband
regimes. Recently, Verdú in [2] has determined the minimum
bit energy required for reliable communication over a general
class of channels, and studied of the spectral efficiency–bit

1This work was supported by the National Science Foundation under Grants
CCF - 0546384 (CAREER) and CNS - 0834753.

energy tradeoff in the wideband regime while also providing
novel tools that are useful for analysis at low SNRs.

In many wireless communication systems, in addition to
energy-efficient operation, satisfying certain quality of service
(QoS) requirements is of paramount importance in providing
acceptable performance and quality. For instance, in voice
over IP (VoIP), interactive-video (e.g,. videoconferencing), and
streaming-video applications in wireless systems, latency is
a key QoS metric and should not exceed certain levels [3].
On the other hand, wireless channels, as described above, are
characterized by random changes in the channel, and such
volatile conditions present significant challenges in providing
QoS guarantees. In most cases, statistical, rather than deter-
ministic, QoS assurances can be given.

In summary, it is vital for an important class of wire-
less systems to operate efficiently while also satisfying QoS
requirements (e.g., latency, buffer violation probability). In-
formation theory provides the ultimate performance limits
and identifies the most efficient use of resources. However,
information-theoretic studies and Shannon capacity formula-
tion generally do not address delay and quality of service
(QoS) constraints [4]. Recently, Wu and Negi in [5] defined
the effective capacity as the maximum constant arrival rate
that a given time-varying service process can support while
providing statistical QoS guarantees. Effective capacity for-
mulation uses the large deviations theory and incorporates the
statistical queueing constraints by capturing the rate of decay
of the buffer occupancy probability for large queue lengths.
The analysis and application of effective capacity in various
settings have attracted much interest recently (see e.g., [5]–[9]
and references therein).

In this paper, we study the energy efficiency in the presence
of queueing constraints and channel uncertainty. We assume
that the channel is not known by the transmitter and re-
ceiver prior to transmission, and is estimated imperfectly by
the receiver through training. In our model, we incorporate
statistical queueing constraints by employing the effective
capacity formulation which provides the maximum throughput
under limitations on buffer violation probabilities for large
buffer sizes. Since the transmitter is assumed to not know the
channel, fixed-rate transmission is considered.
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II. SYSTEM MODEL

We consider a point-to-point wireless link. It is assumed that
the source generates data sequences which are divided into
frames of duration T . These data frames are initially stored
in the buffer before they are transmitted over the wireless
channel. The discrete-time channel input-output relation in the
ith symbol duration is given by

y[i] = h[i]x[i] + n[i] i = 1, 2, . . . . (1)

where x[i] and y[i] denote the complex-valued channel input
and output, respectively. We assume that the bandwidth avail-
able in the system is B and the channel input is subject to
the following average energy constraint: E{|x[i]|2} ≤ P̄ /B
for all i. Since the bandwidth is B, symbol rate is assumed to
be B complex symbols per second, indicating that the average
power of the system is constrained by P̄ . Above in (1), n[i] is
a zero-mean, circularly symmetric, complex Gaussian random
variable with variance E{|n[i]|2} = N0. The additive Gaussian
noise samples {n[i]} are assumed to form an independent and
identically distributed (i.i.d.) sequence. Finally, h[i], which
denotes the channel fading coefficient, is assumed to be a zero-
mean Gaussian random variable with variance E{|h|2} = γ.
We further assume that the fading coefficients stay constant
during the frame duration of T seconds and have independent
realizations for each frame. Hence, we basically consider a
block-fading channel model.

The system operates in two phases: training phase and data
transmission phase. In the training phase, known pilot symbols
are transmitted to enable the receiver to estimate the channel
conditions, albeit imperfectly. We assume that minimum mean-
square-error (MMSE) estimation is employed at the receiver to
estimate the channel coefficient h[i]. Since the MMSE estimate
depends only on the training energy and not on the training
duration [12], it can be easily seen that transmission of a
single pilot at every T seconds is optimal. Note that in every
frame duration of T seconds, we have TB symbols and the
overall available energy is P̄ T . We now assume that each
frame consists of a pilot symbol and TB − 1 data symbols.
The energies of the pilot and data symbols are

Et = ρP̄T, and Es =
(1 − ρ)P̄ T
TB − 1

, (2)

respectively, where ρ is the fraction of total energy allocated
to training. Note that the data symbol energy Es is obtained
by uniformly allocating the remaining energy among the data
symbols.

In the training phase, the receiver obtains the MMSE
estimate ĥ which is a circularly symmetric, complex, Gaussian
random variable with mean zero and variance σ2

ĥ
= E{|ĥ|2} =

γ2Et

γEt+N0
, i.e., ĥ ∼ CN

(
0, γ2Et

γEt+N0

)
[13]. Now, the channel

fading coefficient h can be expressed as h = ĥ+ h̃ where h̃ is
the estimate error and h̃ ∼ CN (0, γN0

γEt+N0
). Consequently, in

the data transmission phase, the channel input-output relation
becomes

y[i] = ĥ[i]x[i] + h̃[i]x[i] + n[i] i = 1, 2, . . . . (3)

Since finding the capacity of the channel in (3) is a difficult
task2, a capacity lower bound is generally obtained by con-
sidering the estimate error h̃ as another source of Gaussian
noise and treating h̃[i]x[i]+n[i] as Gaussian distributed noise
uncorrelated from the input. Now, the new noise variance is
E{|h̃[i]x[i] + n[i]|2} = σ2

h̃
Es + N0 where σ2

h̃
= E{|h̃|2} =

γN0
γEt+N0

is the variance of the estimate error. Under these
assumptions, a lower bound on the instantaneous capacity is
given by [12], [13]

CL =
TB − 1
T

log2

(
1 +

Es
σ2
h̃
Es +N0

|ĥ|2
)

(4)

=
TB − 1
T

log2

(
1 + SNReff|w|2

)
bits/s (5)

where effective SNR is

SNReff =
Esσ2

ĥ

σ2
h̃
Es +N0

, (6)

Note that the expression in (5) is obtained by defining ĥ =
σĥw where w is a standard complex Gaussian random variable
with zero mean and unit variance, i.e., w ∼ CN (0, 1).

Since Gaussian is the worst uncorrelated noise [12], the
above-mentioned assumptions lead to a pessimistic model and
the rate expression in (5) is a lower bound to the capacity
of the true channel (3). On the other hand, CL is a good
measure of the rates achieved in communication systems that
operate as if the channel estimate were perfect (i.e., in systems
where Gaussian codebooks designed for known channels are
used, and scaled nearest neighbor decoding is employed at the
receiver) [11].

Henceforth, we base our analysis on CL to understand the
impact of the imperfect channel estimate. Since the transmitter
is unaware of the channel conditions, it is assumed that
information is transmitted at a fixed rate of r bits/s. When
r < CL, the channel is considered to be in the ON state
and reliable communication is achieved at this rate. If, on the
other hand, r ≥ CL, we assume that outage occurs. In this
case, channel is in the OFF state and reliable communication
at the rate of r bits/s cannot be attained. Hence, the effective
data rate is zero and information has to be resent. Fig. 1
depicts the two-state transmission model together with the
transition probabilities. Under the assumption of independent
realizations of blocks, it can be easily seen that the transition
probabilities are given by

p11 = p21 = P{r ≥ CL} = P{|w|2 ≤ α} (7)

p22 = p12 = P{r < CL} = P{|w|2 > α} (8)

where

α =
2

rT
T B−1 − 1

SNReff
, (9)

and |w|2 is an exponential random variable with mean 1, and
hence, P{|w|2 > α} = e−α.

2In [13], the capacity of training-based transmissions under input peak
power constraints is shown to be achieved by an SNR-dependent, discrete
distribution with a finite number of mass points. In such cases, no closed-form
expression for the capacity exists, and capacity values need to be obtained
through numerical computations.
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Fig. 1. ON-OFF state transition model.

III. EFFECTIVE CAPACITY AND SPECTRAL

EFFICIENCY–BIT ENERGY TRADEOFF

In [5], Wu and Negi defined the effective capacity as the
maximum constant arrival rate that a given service process can
support in order to guarantee a statistical QoS requirement
specified by the QoS exponent θ 3. If we define Q as the
stationary queue length, then θ is the decay rate of the tail
distribution of the queue length Q:

lim
q→∞

logP (Q ≥ q)
q

= −θ. (10)

Therefore, for large qmax, we have the following approxima-
tion for the buffer violation probability: P (Q ≥ qmax) ≈
e−θqmax . Hence, while larger θ corresponds to more strict
QoS constraints, smaller θ implies looser QoS guarantees.
Similarly, if D denotes the steady-state delay experienced in
the buffer, then P (D ≥ dmax) ≈ e−θδdmax for large dmax,
where δ is determined by the arrival and service processes
[7].

The effective capacity is given by

−Λ(−θ)
θ

= − lim
t→∞

1
θt

loge E{e−θS[t]} (11)

where S[t] =
∑t
i=1R[i] is the time-accumulated service

process and {R[i], i = 1, 2, . . .} denote the discrete-time
stationary and ergodic stochastic service process. Note that
in the model we consider, R[i] = rT or 0 depending on the
channel state being ON or OFF. In [10], it is shown that for
such an ON-OFF model, we have

Λ(θ)
θ

=
1
θ

loge
(1

2

(
p11 + p22e

θTr

+
√

(p11 + p22eθTr)2 + 4(p11 + p22 − 1)eθTr
))

(12)

Note that p11 + p22 = 1 in our model. Then, for a given QoS
delay constraint θ, the effective capacity normalized by the
frame duration T and bandwidth B, or equivalently spectral
efficiency in bits/s/Hz, becomes

RE(SNR, θ) = max
r≥0

0≤ρ≤1

− 1
TB

Λ(−θ)
θ

bits/s/Hz (13)

= max
r≥0

0≤ρ≤1

− 1
θTB

loge
(
p11 + p22e

−θTr) (14)

= max
r≥0

0≤ρ≤1

− 1
θTB

loge
(
1 − P (|w|2 > α)(1 − e−θTr)

)
(15)

3For time-varying arrival rates, effective capacity specifies the effective
bandwidth of the arrival process that can be supported by the channel.

= − 1
θTB

loge
(
1 − P (|w|2 > αopt)(1 − e−θTropt)

)
. (16)

Note that RE is obtained by optimizing both the fixed trans-
mission rate r and the fraction of power allocated to training,
ρ. In the optimization result (16), ropt and αopt are the optimal
values of r and α, respectively. The optimized ropt can be
found by solving

2
T r

T B−1T loge 2
(TB − 1)SNReff

(1 − e−θTr) − θTe−θTr = 0 (17)

which is obtained from the first derivative of (15) with respect
to r.

It can easily be seen that

RE(SNR, 0) = lim
θ→0

RE(SNR, θ) (18)

= max
r≥0

r

B
P

{
|w|2 > 2

rT
T B−1 − 1

SNReff

}
. (19)

Hence, as the QoS requirements relax, the maximum constant
arrival rate approaches the average transmission rate. On the
other hand, for θ > 0, RE < 1

B maxr≥0 rP (|w|2 > α) in
order to avoid violations of buffer constraints.

In this paper, we focus on the energy efficiency of wireless
transmissions under the aforementioned statistical queueing
constraints. Since energy efficient operation generally requires
operation at low-SNR levels, our analysis throughout the paper
is carried out in the low-SNR regime. In this regime, the trade-
off between the normalized effective capacity (i.e, spectral
efficiency) RE and bit energy Eb

N0
= SNR

RE(SNR)
is a key tradeoff

in understanding the energy efficiency, and is characterized by
the bit energy at zero spectral efficiency and wideband slope
provided, respectively, by

Eb
N0

∣∣∣∣
R=0

=
1

ṘE(0)
and S0 = −2(ṘE(0))2

R̈E(0)
loge 2 (20)

where ṘE(0) and R̈E(0) are the first and second derivatives
with respect to SNR, respectively, of the function RE(SNR) at
zero SNR [2].

IV. OPTIMAL POWER ALLOCATION FOR TRAINING

In this section, we investigate the optimization problem in
(15). In particular, we identify the optimal fraction of power
that needs to be allocated to training while satisfying statistical
buffer constraints.

Theorem 1: At a given SNR level, the optimal fraction of
power ρopt that solves (15) does not depend on the QoS
exponent θ and the transmission rate r, and is given by

ρopt =
√
η(η + 1) − η (21)

where η = γTBSNR+TB−1
γTB(TB−2)SNR and SNR = P̄

N0B
.

Proof: From (15) and the definition of α in (9), we can easily
see that for fixed r, the only term in (15) that depends on ρ is
α. Moreover, α has this dependency through SNReff. Therefore,
ρopt that maximizes the objective function in (15) can be
found by minimizing α, or equivalently maximizing SNReff.
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Substituting the definitions in (2) and the expressions for σ2
ĥ

and σ2
h̃

into (6), we have

SNReff =
Esσ2

ĥ

σ2
h̃
Es +N0

(22)

=
ρ(1 − ρ)γ2T 2B2SNR2

ργTB(TB − 2)SNR + γTBSNR + TB − 1
(23)

where SNR = P̄
N0B

. Evaluating the derivative of SNReff with
respect to ρ and making it equal to zero leads to the expression
in (21). Clearly, ρopt is independent of θ and r.

Above, we have implicitly assumed that the maximization
is performed with respect to first ρ and then r. However, the
result will not be altered if the order of the maximization is
changed. Note that the objective function in (15)

g(SNReff, r) = − 1
θTB

loge

(
1 − P

(
|w|2 > 2

rT
T B−1 − 1

SNReff

)

× (1 − e−θTr)
)

(24)

is a monotonically increasing function of SNReff for all r. It
can be easily verified that maximization does not affect the
monotonicity of g, and hence maxr≥0 g(SNReff, r) is still a
monotonically increasing function of SNReff. Therefore, in the
outer maximization with respect to ρ, the choice of ρ that
maximizes SNReff will also maximize maxr≥0 g(SNReff, r), and
the optimal value of ρ is again given by (21). �

V. ENERGY EFFICIENCY IN THE LOW-POWER REGIME

In this section, we investigate the spectral efficiency–bit
energy tradeoff as the average power P̄ diminishes. We assume
that the bandwidth allocated to the channel is fixed. With the
optimal value of ρ given in Theorem 1, we can now express
the normalized effective capacity as

RE(SNR, θ) = max
r≥0

− 1
θTB

loge

(
1 − P

(
|w|2 > 2

rT
T B−1 − 1
SNReff,opt

)

× (1 − e−θTr)
)

(25)

where SNReff,opt = φ(SNR)SNR2

ψ(SNR)SNR+TB−1
, and φ(SNR) = ρopt(1 −

ρopt)γ2T 2B2, and ψ(SNR) = (1 + (TB − 2)ρopt)γTB.Note
that SNR = P̄ /(N0B) vanishes with decreasing P̄ . We obtain
the following result on the bit energy requirement in the low-
power regime as P̄ diminishes.

Theorem 2: In the low-power regime, the bit energy in-
creases without bound as the average power P̄ and hence SNR

vanishes, i.e.,

Eb
N0

∣∣∣∣
R=0

= lim
SNR→0

Eb
N0

= lim
SNR→0

SNR

RE(SNR)
=

1
ṘE(0)

= ∞.

(26)

Theorem 2 follows by noting that SNReff,opt scales as SNR2

as SNR diminishes to zero, and by showing that this implies
that RE scales as SNR2 as well. Therefore, the first derivative
of RE with respect to SNR is zero at SNR = 0, i.e., ṘE(0) = 0,
leading to the result that limSNR→0

Eb

N0
= ∞.
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Fig. 2. Spectral efficiency vs. Eb/N0 in the Rayleigh channel with
E{|h|2} = γ = 1. B = 105.

This result shows us that operation at very low power
levels is extremely energy inefficient and should be avoided
regardless of the value of θ. Note that the power allocated for
training, Et = ρP̄T , decreases with decreasing P̄ . Hence, our
ability to estimate the channel is hindered in the low-power
regime while, as mentioned before, the system operates as if
the channel estimate were perfect. This discrepancy leads to
the inefficiency seen as P̄ approaches zero.

Fig. 2 plots the spectral efficiency vs. bit energy for θ =
{1, 0.1, 0.01, 0.001, 0} when B = 105 Hz. As predicted by the
result of Theorem 2, the bit energy increases without bound
in all cases as the spectral efficiency RE → 0. Consequently,
the minimum bit energy is achieved at a nonzero spectral
efficiency below which one should avoid operating as it only
increases the energy requirements. Another observation is that
the minimum bit energy increases as θ increases and hence
as the statistical queueing constraints become more stringent.
At higher spectral efficiencies, we again note the increased
energy requirements with increasing θ.

VI. ENERGY EFFICIENCY IN THE WIDEBAND REGIME

In this section, we consider the wideband regime. We
assume that the average power is kept constant. Note that
as the bandwidth B increases, SNR approaches zero and we
again operate in the low-SNR regime. Note also that flat fading
assumption will not hold in the wideband regime as the band-
width B increases without bound. On the other hand, if we
decompose the wideband channel into N parallel subchannels,
and suppose that each subchannel has a bandwidth that is
equal to the coherence bandwidth Bc, then we can assume that
independent flat-fading is experienced in each subchannel. If
the fading coefficients in different subchannels are i.i.d. and
the data and training energies are uniformly allocated over the
subchannels, then the effective capacity of a wideband channel
has an expression similar to that in (15) (see the journal
version of this paper [14]). In [14], it is shown that if rich
multipath is experienced and hence the number of subchannels
N increases with increasing bandwidth B while Bc stays fixed,
the wideband regime analysis is the same as the low-power
regime analysis. Therefore, as B → ∞ in the rich multipath
fading scenario, we have Eb

N0

∣∣
RE=0

= ∞ for all θ ≥ 0.
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We now focus on the scenario of sparse multipath fading.
In particular, we consider the case in which the number of
subchannels N remains bounded as B increases. Under these
assumptions, we have the following formulation. We denote
ζ = 1/B. Note that as B → ∞, ζ → 0. With this notation,
we can express the normalized effective capacity as

RE(SNR) = − ζ

θT
loge

(
1 − P{|w|2 > αopt}

(
1 − e−θTropt

))
.

Theorem 3: For sparse multipath fading channel with
bounded number of subchannels, the minimum bit energy and
wideband slope in the wideband regime are given by

Eb
N0 min

=
−δ loge 2

loge ξ
and (27)

S0 =
ξ log2

e ξ loge 2

θTα∗
opt(1 − ξ)

(
1
T

(√
1 + γP̄T

N0
− 1
)

+ ϕα∗
opt

2

) , (28)

respectively, where δ = θT P̄
N0 loge 2 , ξ = 1−e−α∗

opt(1−e−
θT ϕα∗

opt
loge 2 ),

and ϕ = γP̄
N0

(√
1 + N0

γP̄T
−
√

N0
γP̄T

)2

. α∗
opt is defined as

α∗
opt = limζ→0 αopt and α∗

opt satisfies

α∗
opt =

loge 2
θTϕ

loge

(
1 +

θTϕ

loge 2

)
. (29)

Above, P̄ denotes the power allocated to each subchannel.
Proof: We first derive the following result for optimal fraction
of power on training expressed in (21)

ρopt = ρ∗opt + ˙ρopt(0)ζ + o(ζ) (30)

where ρ∗opt is a real value achieved as ζ → 0, and ˙ρopt(0) is
the first derivative of ρopt evaluated at ζ = 0. We have

ρ∗opt =

√
N0

γP̄T

(
1 +

N0

γP̄T

)
− N0

γP̄T
(31)

and

˙ρopt(0) =
1

2T

√
1 +

γP̄T

N0

(√
1 +

N0

γP̄T
−
√

N0

γP̄T

)2

.

(32)
Furthermore, SNReff,opt defined below equation (25) can be
simplified to

SNReff,opt = ϕζ + ωζ2 + o(ζ2) (33)

where

ϕ =
γP̄

N0

(√
1 +

N0

γP̄T
−
√

N0

γP̄T

)2

(34)

and

ω = − γP̄

N0T

(√
1 +

N0

γP̄T
−
√

N0

γP̄T

)2
⎛
⎝
√

1 +
γP̄T

N0
− 2

⎞
⎠ .

(35)

Assume that the Taylor series expansion of ropt with respect
to small ζ is

ropt = r∗opt + ṙopt(0)ζ + o(ζ) (36)
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Fig. 3. Spectral efficiency vs. Eb/N0 in the Rayleigh channel with
E{|h|2} = γ = 1. P̄ /N0 = 104.

where r∗opt = limζ→0 ropt and ṙopt(0) is the first derivative with
respect to ζ of ropt evaluated at ζ = 0. From (9), we can find
that

αopt =
2

roptζ

1−ζ/T − 1
SNReff,opt

(37)

=
r∗opt loge 2

ϕ
+
(
ṙopt(0) loge 2

ϕ
+
r∗opt loge 2

ϕ

(
1
T

− ω

ϕ

)

+
(r∗opt loge 2)2

2ϕ

)
ζ + o(ζ) (38)

from which we have as ζ → 0 that

α∗
opt =

r∗opt loge 2
ϕ

(39)

and that

α̇opt(0) =
ṙopt(0) loge 2

ϕ
+
r∗opt loge 2

ϕ

(
1
T

− ω

ϕ

)
+

(r∗opt loge 2)2

2ϕ
(40)

where α̇opt(0) is the first derivative with respect to ζ of αopt

evaluated at ζ = 0. According to (39), r∗opt =
ϕα∗

opt

loge 2 .
Combining with (33) and (39), we can obtain from (17) as

ζ → 0
loge 2
ϕ

(
1 − e−

θT ϕα∗
opt

loge 2

)
− θTe−θTr

∗
opt = 0 (41)

from which we get

α∗
opt =

loge 2
θTϕ

loge

(
1 +

θTϕ

loge 2

)
. (42)

We now have

Eb
N0 min

= lim
ζ→0

P̄
N0
ζ

RE(ζ)

=
− θT P̄

N0

loge
(
1 − P{|w|2 ≥ α∗

opt}(1 − e−θTr
∗
opt)
) (43)

=
−δ loge 2

loge ξ
=

P̄
N0

ṘE(0)
(44)

where ṘE(0) is the derivative of RE with respect to ζ at ζ = 0,

δ = θT P̄
N0 loge 2 , and ξ = 1 − P{|w|2 ≥ α∗

opt}(1 − e−
θT ϕα∗

opt
loge 2 ).

Obviously, (44) provides (27).
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Note that the second derivative R̈E(0), required in the
computation of the wideband slope S0, can be obtained from

R̈E(0) = lim
ζ→0

2
RE(ζ) − ṘE(0)ζ

ζ2

= lim
ζ→0

2
1
ζ

(
− 1
θT

loge
(
1 − P{|w|2 ≥ αopt}

(
1 − e−θTropt

))
+

1
θT

loge
(
1 − P{|w|2 ≥ α∗

opt}(1 − e−θTr
∗
opt)
))

= lim
ζ→0

− 2e−αopt

θT (1 − P{|w|2 ≥ αopt} (1 − e−θTropt))

× (α̇opt(ζ)(1 − e−θTropt) − θTe−θTropt ṙopt(ζ)
)

(45)

= − 2e−α
∗
opt

θT
(
1 − P{|w|2 ≥ α∗

opt}
(
1 − e−θTr

∗
opt
))

×
(
α̇opt(0)(1 − e−θTr

∗
opt) − θTe−θTr

∗
opt ṙopt(0)

)
(46)

where r∗opt =
P̄α∗

opt

N0 loge 2 . Above, (45) and (46) follow by using
L’Hospital’s Rule and applying Leibniz Integral Rule.

Meanwhile, substituting (41) and (40) into (46) gives us

R̈E(0) = − 2e−α
∗
opt

θT
(
1 − P{|w|2 ≥ α∗

opt}
(
1 − e−θTr

∗
opt
))

× α∗
opt(1 − e−θTr

∗
opt)
(

1
T

− ω

ϕ
+
ϕα∗

opt

2

)

= −2(1 − ξ)α∗
opt

θTξ

(
1
T

− ω

ϕ
+
ϕα∗

opt

2

)

= −2(1 − ξ)α∗
opt

θTξ

⎛
⎝ 1
T

⎛
⎝
√

1 +
γP̄T

N0
− 1

⎞
⎠+

ϕα∗
opt

2

⎞
⎠

(47)

Combining (47) and (44), we can prove (28). �
We note that the minimum bit energy in the sparse multipath

case with bounded number of subchannels is achieved as B →
∞ and hence as SNR → 0. This is in stark contrast to the results
in the low-power regime and rich multipath cases in which the
bit energy requirements grow without bound as SNR vanishes.
This is due to the fact that in sparse fading with bounded
number of independent resolvable paths, uncertainty does not
grow without bound because the number of subchannels N is
kept fixed as B → ∞.

Fig. 3 plots the spectral efficiency–bit energy curve in
the Rayleigh channel for different θ values. In the figure,
we assume that P̄ /N0 = 104. As predicted, the minimum
bit energies are obtained as SNR and hence the spectral
efficiency approach zero. Eb

N0 min
are computed to be equal

to {4.6776, 4.7029, 4.9177, 6.3828, 10.8333} dB for θ =
{0, 0.001, 0.01, 0.1, 1}, respectively. Moreover, the wideband
slopes are S0 = {0.4720, 0.4749, 0.4978, 0.6151, 0.6061} for
the same set of θ values. As can also be seen in the result of
Theorem 3, the minimum bit energy and wideband slope in
general depend on θ. In Fig. 3, we note that the bit energy
requirements (including the minimum bit energy) increase with
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Fig. 4. Comparison of spectral efficiency; P̄ /N0 = 104, θ = 0.01, and
E{|h|2} = γ = 1.

increasing θ, illustrating the energy costs of stringent queueing
constraints.

In this paper, we have considered fixed-rate/fixed-power
transmissions over imperfectly-known channels. In Fig. 4, we
compare the performance of this system with those in which
the channel is perfectly-known and fixed- or variable-rate
transmission is employed. The latter models have been studied
in [8] and [9]. This figure demonstrates the energy costs of not
knowing the channel and sending the information at fixed-rate.
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