NF539 Yield Suppressions of Glyphosate-Resistant (Roundup Ready) Soybeans

Roger Wesley Elmore
University of Nebraska-Lincoln, roger.elmore@unl.edu

Fred W. Roeth
University of Nebraska - Lincoln, fwroeth41@gmail.com

Charles A. Shapiro
University of Nebraska-Lincoln, cshapiro1@unl.edu

Lenis Alton Nelson
University of Nebraska-Lincoln, lnelson1@unl.edu

Alex Martin
University of Nebraska - Lincoln, amartin2@unl.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/extensionhist

Part of the Agriculture Commons, and the Curriculum and Instruction Commons

Elmore, Roger Wesley; Roeth, Fred W.; Shapiro, Charles A.; Nelson, Lenis Alton; Martin, Alex; Knezevic, Stevan Z.; and Klein, Robert N., "NF539 Yield Suppressions of Glyphosate-Resistant (Roundup Ready) Soybeans" (2002). Historical Materials from University of Nebraska-Lincoln Extension. 125.
https://digitalcommons.unl.edu/extensionhist/125

This Article is brought to you for free and open access by the Extension at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Historical Materials from University of Nebraska-Lincoln Extension by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Authors
Roger Wesley Elmore, Fred W. Roeth, Charles A. Shapiro, Lenis Alton Nelson, Alex Martin, Stevan Z. Knezevic, and Robert N. Klein
Yield Suppressions of Glyphosate-Resistant (Roundup Ready) Soybeans

By Roger W. Elmore, Extension Crops Specialist; Fred W. Roeth, Extension Weeds Specialist; Charles A. Shapiro, Extension Soils Specialist; Lenis A. Nelson, Extension Crop Variety and Seed Production Specialist; Alex Martin, Extension Weeds Specialist; Stevan Z. Knezevic, Extension Weeds Specialist; and Robert N. Klein, Extension Cropping Systems Specialist

Glyphosate is a popular postemergence herbicide. Glyphosate-resistant soybean technology is gaining acceptance in Nebraska and U.S. cropping systems. However, potential yield suppression from either genetic differences among varieties, the glyphosate-resistant gene/gene insertion process, or glyphosate itself is a concern. The first of these could contribute to a yield lag; the latter two could contribute to a yield drag.

Lag Versus Drag

Yield lag is the potential yield suppression due to the age of the variety in which the gene is inserted.

Yield drag is the potential yield suppression due to glyphosate or the insertion of the gene itself.

Yield suppression (if it exists) = Yield drag (due to herbicide or glyphosate-resistant gene) + Yield lag (due to the variety containing the glyphosate-resistant gene)

Data from University soybean variety performance trials in Nebraska and other states suggest a yield suppression may exist. Figure 1 shows data from the 1998 variety trials at Lancaster County. Conventional varieties (nonglyphosate-resistant) were included in either the early-maturing or late-maturing performance trials. All but the lowest yielding conventional varieties yielded more than the glyphosate-resistant varieties. No one else has reported the effects of glyphosate on a diverse group of commercially available glyphosate-resistant soybean varieties or whether the glyphosate-resistant gene/gene insertion process suppresses soybean yield.

Research Goals

We designed experiments to test for both elements of yield drag: the effect of glyphosate herbicide application and the effect of the glyphosate-resistant gene. Since we could not distinguish between yield drag associated with the glyphosate-resistant gene or effects of its insertion, reference to this gene in the following could mean either or both of these possibilities. Two experiments were conducted at each of four Nebraska locations for two years with the intent to:

Figure 1. ‘Early-maturing’ and ‘late-maturing’ performance trials compared conventional varieties in Lancaster County, Nebraska, in 1998. Data from university soybean variety performance trials in Nebraska and other states suggest a yield suppression may exist.
• investigate the glyphosate herbicide effect on 12-13 varieties; and
• look at the effect of the glyphosate-resistant (glyphosate-resistant) gene on five pairs of glyphosate-resistant, nonglyphosate-resistant sister cultivars (eight other cultivars were included as checks).

We used four locations:
• NU Northeast Research and Extension Center Haskell Agricultural Laboratory, Concord;
• NU Agronomy Farm, Lincoln;
• NU South Central Research and Extension Center, Clay Center; and
• NU West Central Research and Extension Center, North Platte.

Study One: Glyphosate Herbicide Effect

Thirteen glyphosate-resistant varieties (Table I) were grown to determine the effect of glyphosate, ammonium sulfate (AMS), and water application (herbicide effect). Direct comparisons were made within the same glyphosate-resistant variety planted in side-by-side plots with one plot sprayed with glyphosate with 2 percent AMS and the other plot sprayed only with 2 percent AMS in the first year. In the second year a water-only treatment also was included. All plots were maintained weed-free by using hand weeding and preemergence application of metolachlor and metribuzin. Crop growth and development were monitored. Both glyphosate applications were at standard rates (32 oz/acre of Roundup Ultra) and timing for soybean production (21 and 42 days after soybean emergence).

Table I. Glyphosate-resistant varieties included in the glyphosate herbicide effect study. These were all either Maturity Group II or III varieties adapted to the locations.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Npatibility</th>
<th>Adaptation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golden Harvest H1280RR</td>
<td>Northrup King S23F5</td>
<td></td>
</tr>
<tr>
<td>Golden Harvest H1357RR</td>
<td>NU Pride Excel 8355</td>
<td></td>
</tr>
<tr>
<td>Pioneer 92B25</td>
<td>Dyna Grow 187</td>
<td></td>
</tr>
<tr>
<td>Pioneer 92B51</td>
<td>Asgrow A3601STS/RR</td>
<td></td>
</tr>
<tr>
<td>Asgrow AG2702</td>
<td>NC+ 32RR</td>
<td></td>
</tr>
<tr>
<td>Asgrow AG3002</td>
<td>Stine 3203-4 (1999 only)</td>
<td></td>
</tr>
<tr>
<td>Northrup King S28V8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Did glyphosate adversely affect growth and development of glyphosate-resistant soybeans? No. Flowering date was affected by neither glyphosate nor AMS (Table II).

Table II. Spray treatment effects on plant characteristics. University of Nebraska, 1998-1999.

<table>
<thead>
<tr>
<th>Spray Treatment</th>
<th>Flowering Date</th>
<th>Physiological Maturity</th>
<th>Mature Plant Height</th>
<th>Seed Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 Env.</td>
<td>7 Env.</td>
<td>8 Env.</td>
<td>2 Env.</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>— days from May 31 —</td>
<td>— days from May 31 —</td>
<td>— inches —</td>
<td>— g/100 —</td>
</tr>
<tr>
<td>Ammonium sulfate</td>
<td>57*</td>
<td>112</td>
<td>37.9a</td>
<td>14.6a</td>
</tr>
<tr>
<td>Water</td>
<td>57</td>
<td>112</td>
<td>38.1a</td>
<td>14.4b</td>
</tr>
</tbody>
</table>

*Means followed by the same letter within a column are similar (P≤0.05).
Table III. Varieties and lines included in the glyphosate gene effect study. These were all either Maturity Group II or III varieties adapted to the locations of the trials.

<table>
<thead>
<tr>
<th>Entry number(s) in each group</th>
<th>Variety Group</th>
<th>Flowering days from May 31</th>
<th>1999 Seed wt</th>
<th>Lodging at R7</th>
<th>Plant height at Mat. (R7)</th>
<th>Maturity (R7) days from May 31</th>
<th>Maturity (R8) days from May 31</th>
<th>Grain moisture</th>
</tr>
</thead>
<tbody>
<tr>
<td>(9, 11, 15, 17)</td>
<td>Non-GR Sisters</td>
<td>43.6a</td>
<td>14.7a</td>
<td>1.6 a</td>
<td>33.9 b</td>
<td>111.9a</td>
<td>120.4a</td>
<td>10.0a</td>
</tr>
<tr>
<td>(10, 12, 16, 18)</td>
<td>GR Sisters</td>
<td>43.7a</td>
<td>14.1 b</td>
<td>1.4a</td>
<td>34.6a</td>
<td>112.7a</td>
<td>121.7a</td>
<td>10.0a</td>
</tr>
<tr>
<td>No. of locations reporting data</td>
<td>1998/1999</td>
<td>2/4</td>
<td>0/3</td>
<td>4/4</td>
<td>3/4</td>
<td>3/1</td>
<td>4/4</td>
<td></td>
</tr>
</tbody>
</table>

Did the glyphosate gene or its insertion affect soybean growth or development? Yes. Weight of 100 seed of the nonglyphosate-resistant sister lines was 0.6 grams heavier (in 1999) and the plants were 0.7 inches shorter than the glyphosate-resistant sisters (Table IV). Other variables monitored were similar between the two variety groups.

Did the glyphosate gene or its insertion affect soybean yield? Yes. On average, nonglyphosate-resistant sister lines yielded 5 percent (3 bushels per acre) more than the glyphosate-resistant sisters when averaged over all locations and both years (Figure 3). Nonglyphosate-resistant sister grain yields were greater than those of their associated glyphosate-resistant sisters in two of the five pairs. This 5 percent difference is a yield drag. Results were similar in the single-year analyses (data not shown). Grain yields of sister-line pairs are shown in Figure 4. The greater number of data points below the 1:1 ratio line indicates that the nonglyphosate-resistant sisters yielded more on the average than their glyphosate-resistant sister counterparts.

The high-yield, nonherbicide-resistant varieties yielded 5 percent more (57.7 bu/a) than the nonglyphosate-resistant
siblings (54.8 bu/a) (Figure 3). This 5 percent difference is a yield lag. The glyphosate-resistant gene in the glyphosate-resistant siblings therefore reduced soybean yield 5 percent compared to the nonglyphosate-resistant siblings. This 5 percent is a yield drag. When this is added to the 5 percent yield lag, the glyphosate-resistant siblings yielded 10 percent less than the high-yield, non-herbicide-resistant varieties.

What Does This All Mean?

Yields were suppressed with glyphosate-resistant soybean varieties relative to their sister lines, but we found no effect of spraying glyphosate on glyphosate-resistant varieties. The research reported here demonstrates that a 5 percent yield suppression was related to the gene or its insertion process and another 5 percent suppression was due to variety genetic difference. Producers should consider the potential for 5 percent to 10 percent yield differentials between glyphosate-resistant and nonglyphosate-resistant varieties as they evaluate the overall profitability of producing soybean. However, producers should consider that yields are often reduced far more than 5 percent or 10 percent if weeds are not controlled. Variety choices are best based on:

1) previous weed pressure and success of control measures in specific fields,
2) the availability and cost of herbicides,
3) availability and cost of herbicide-resistant varieties, and
4) yield.

Variety choices should not be made solely on whether varieties are herbicide resistant. Based on our results from this study, the yield suppression appears associated with the glyphosate-resistant gene or its insertion process rather than glyphosate damage to the soybeans.

Two interrelated concerns are worth discussion. First, since the demand for glyphosate-resistant soybeans is high, breeding efforts on nonglyphosate-resistant cultivars by commercial seed firms will likely decrease proportionately. Thus, yield potential gains of nonglyphosate-resistant cultivars over time may be less than those of glyphosate-resistant cultivars. Second, and as result of this and the reported 5 percent yield suppression associated with the glyphosate-resistant gene, long-range yield potentials are also less than if soybean breeder efforts and associated gains in yield potential of nonglyphosate-resistant soybeans were maintained. If the trend continues, we may look back on this time and likely see little or no gain in genetic yield potentials at the beginning of the 21st century.

Project Summary

Yield suppressions were observed.
Yield drag from glyphosate application was not observed.
Yield lag from glyphosate-resistant gene = 5 percent.
Yield lag from variety genetic differences = 5 percent.

Information Resources

These publications are also available at: http://screc.unl.edu/Research/research.htm

For more information on this research contact Roger Elmore at: relmore1@unl.edu

This research was funded in part by a grant from the Nebraska Soybean Board.