2015

Phase transformation and magnetic properties of rapidly solidified Mn-Al-C alloys modified with Zr

Yunlong Geng
University of Nebraska–Lincoln, gengyunlong@gmail.com

Michael J. Lucis
University of Nebraska–Lincoln

Pamela Rasmussen
Raymond Central High School

Jeffrey E. Shields
Raymond Central High School, University of Nebraska–Lincoln

Follow this and additional works at: http://digitalcommons.unl.edu/mechengfacpub

Part of the [Mechanical Engineering Commons](http://digitalcommons.unl.edu/mechengfacpub) and the [Physical Sciences and Mathematics Commons](http://digitalcommons.unl.edu/mechengfacpub)

Geng, Yunlong; Lucis, Michael J.; Rasmussen, Pamela; and Shields, Jeffrey E., "Phase transformation and magnetic properties of rapidly solidified Mn-Al-C alloys modified with Zr" (2015). Mechanical & Materials Engineering Faculty Publications. Paper 121.
http://digitalcommons.unl.edu/mechengfacpub/121

This Article is brought to you for free and open access by the Mechanical & Materials Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Mechanical & Materials Engineering Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Phase transformation and magnetic properties of rapidly solidified Mn-Al-C alloys modified with Zr

Yunlong Geng,1,2,a) Michael J. Lucas,1,2 Pamela Rasmussen,3 and Jeffrey E. Shield1,2

1Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
2Nebraska Center for Materials and Nanoscience, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
3Raymond Central High School, Raymond, Nebraska, USA

(Received 25 March 2015; accepted 12 July 2015; published online 20 July 2015)

Mn54–xAl43C3Zrx (x = 1, 3) alloys were prepared by rapid solidification followed by heat treatment to produce the ferromagnetic τ phase. The substitution of Zr for Mn in the structure resulted in an increase of the saturation magnetization (Ms) compared to that of Mn54Al43C3. While the highest Ms (128 ± 1 emu/g) was obtained in Mn53Al43C3Zr1, the coercivity was also improved to 1.62 kOe, compared to 1.25 kOe for Mn54Al43C3. To further improve the coercivity through grain refinement, additional C (1%, 3%, 5%, and 7%) was added to Mn53Al43C3Zr1. An increase in the coercivity was observed due to a decrease of grain size and the formation of nonmagnetic phases, which reduced the magnetostatic interactions between the τ-phase grains. However, excess C reduced the saturation magnetization due to the formation of the other non-ferromagnetic phases, including e, γ2, and β phases. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4927289]

INTRODUCTION

Mn-Al-based permanent magnets, free from rare-earth elements, exhibit an excellent combination of magnetic and mechanical properties.1,2 Due to the presence of the intermetallic tetragonal L10 phase (τ phase), it shows strong, uniaxial magnetocrystalline anisotropy energy with an “easy” c-axis. The τ phase is typically formed by quenching from the high-temperature hcp ε phase, followed by heat treatment at 450–600 °C.3–5 Since the τ phase is metastable, prolonged annealing at elevated temperatures can lead to the transformation of τ phase to the stable but nonmagnetic γ (Al8Mn5) and β (Mn) phases.6 The addition of a small amount of carbon into the MnAl alloy can stabilize the τ phase by inhibiting the decomposition of the τ phase.7,8 The highest coercivity in C-added Mn-Al was obtained for carbon content just above the solubility limit of carbon.9–11 Thus, the composition of Mn52Al41C3 was used as reference composition in this research.

One shortfall of the τ-MnAl is its lower saturation magnetization, especially compared to Fe- or Co-based permanent magnets. While the Al layer in the L10 structure effectively increases the Mn-Mn distances (Fig. 1), resulting in ferromagnetic coupling, its presence dilutes the magnetization. Furthermore, the L10 phase in this system is hyperstoichiometric relative to Mn, as the minimum Mn content is governed by the composition of the ε phase from which τ forms. In τ phase Mn54Al46, 4% of the Mn atoms occupy Al sites, which couple antiferromagnetically with the Mn atoms in the Mn layers, resulting in a decrease in the saturation magnetization over stoichiometrically perfect L10.2 Therefore, one approach to substitutional alloying is to replace the Mn atoms in the Al layer with non-magnetic atoms, which would effectively increase the magnetization. Alloying effects of several elements including Ti, Ni, Zn, Cu, B, Dy, and Pr in Mn-Al alloy have been studied.12–15 A decrease in magnetization and constant coercivity was observed with a Ni addition;12 an enhancement of coercivity from 1 kOe to 3 kOe and reduction in magnetization was caused by the addition of B;12 the phase transformation to τ was depressed by the addition of Ti;12 and Cu showed no influence on the magnetic properties of Mn-Al alloys.12 A Mn-Al-Zn alloy, prepared by water quenching the induction-melted alloy followed by heat treatment at 420 °C for 1 h, showed an initial increase in magnetization at low Zn content and then a decrease at Zn content of more than 1.6 at. %. However, the overall magnetization of these Mn-Al-Zn alloys was as low as ~15 emu/g, compared to ~100 emu/g produced with other processing.2 Substitution of rare-earth elements Pr and Dy slightly improved the magnetic properties, and the anisotropy constant enhancement was attributed to either the 3d–4f electron interactions or simply the

FIG. 1. Schematic illustration of perfect L10 structure for MnAl in τ phase.

a)Author to whom correspondence should be addressed. Electronic mail: gengyunlong@gmail.com. Tel.: +1(402)-770-6842; Fax: +1(402) 472-8292.
increase in atomic distance between Mn atoms. The alloying effect of Zr, with a similar electronegativity but larger atomic radius compared to Mn, has never been studied. Therefore, the introduction of Zr element into Mn$_{54}$Al$_{43}$C$_3$ was investigated in this research.

EXPERIMENTAL PROCEDURES

All ingots were prepared by arc melting high-purity (>99.97%) Mn, Al, C, and Zr elements in an Ar atmosphere. Melt spun ribbons (~50 μm in thickness, ~2 mm in width, and ranging from several centimeters to tens of centimeters in length) with compositions Mn$_{54-\text{x}}$Al$_{43}$C$_3$Zr$_{\text{x}}$ (x = 1, 3) and (Mn$_{53}$Al$_{43}$C$_3$Zr$_{1}$)$_{100-\text{z}}$C$_{\text{z}}$ (with z = 1, 3, 5, 7) were obtained by rapid solidification through a single-roller melt spinner at a tangential wheel speed of 40 m/s in an Ar atmosphere. The brittle as-solidified ribbons were hand-grounded in a mortar and pestle into powders for heat treatment and analysis. Heat treatment was conducted at 500°C by sealing in quartz capsules after repeated evacuation/backfill cycles using ultrahigh purity Ar followed by water quenching to retain the τ phase. In order to follow the kinetics of the τ-phase formation and decomposition, each sample was annealed for a series of time increasing from 10 min to 60 min.

Crystal structure and microstructure characterization was performed by X-ray diffraction (XRD) (Rigaku Multiflex with Cu-Kα radiation). To minimize the background, an off-cut single-crystal Si slide was used as a sample holder. To determine the magnetic properties, the powders were embedded in epoxy resin and measured at room temperature using a Quantum Design Magnetic Property Measurement System (MPMS) superconducting quantum interference device magnetometer (SQUID) under a field of 7 T. No demagnetization correction was made for the magnetic measurements. The law of approach to saturation was utilized to estimate the saturation magnetization (Ms). Briefly, this is accomplished by plotting M (magnetization) as a function of 1/H (H represents applied field) for H > 20 kOe and extrapolating the linear regression fit to 1/H = 0.

RESULTS AND DISCUSSION

The as-solidified phase formation for x = 0 revealed single-phase ε (Fig. 2). The addition of Zr slightly altered the solidification behavior, resulting in the formation of some minor phases and indicated by the low-intensity peaks at ~56°, 66°, and 82° 2θ (Fig. 3). These peaks are evident for both x = 1 and 3, and the intensity of this peak is slightly higher at x = 3. Since intensities of the peaks were too low and the peaks may be from multi phases, it was difficult to unequivocally identify the phases.

Heat treatment at 500°C for 10 min was applied to all the as-solidified samples, which, for Mn$_{54}$Al$_{43}$C$_3$, typically results in the formation of the τ phase. XRD patterns for the annealed Mn$_{54-\text{x}}$Al$_{43}$C$_3$Zr$_{\text{x}}$ (x = 0, 1, 3) revealed that the τ phase was the predominant phase, while a small fraction of ε and γ$_2$ phases were also observed, increasing in phase fraction as x increased (Fig. 3). The lattice parameters were calculated with the first 5 Lorentz-shaped peaks after removal of the Kα$_2$ component. For x = 1, a = 3.912 ± 0.003 Å and c = 3.598 ± 0.005 Å were obtained. Compared to the lattice parameters for τ phase Mn$_{54}$Al$_{43}$C$_3$ (a = 3.901 ± 0.003 Å, c = 3.634 ± 0.004 Å), the c/a ratio decreased from 0.932 ± 0.002 to 0.923 ± 0.002. When the Zr content was increased to 3 at. %, the transformation of ε to τ phase was suppressed. Instead, ε, γ$_2$, and β phases were observed after heat treatment. Since the transformation from ε to τ phase is a massive transformation, formation of τ phase nuclei with the same composition as the matrix is critical for the τ phase to compete with the formation of the equilibrium phases.

The hysteresis loop for the L1$_0$-structured Mn$_{54}$Al$_{43}$C$_3$Zr$_1$ and Mn$_{54}$Al$_{43}$C$_3$ alloy is shown in Figure 4. The Ms and Hc for L1$_0$-structured Mn$_{54}$Al$_{43}$C$_3$ were reported to be 115 emu/g and 1.2 kOe. Briefly, this is accomplished by plotting M (magnetization) as a function of 1/H (H represents applied field) for H > 20 kOe and extrapolating the linear regression fit to 1/H = 0.

FIG. 2. XRD patterns for as-solidified Mn$_{54-\text{x}}$Al$_{43}$C$_3$Zr$_{\text{x}}$ (x = 0, 1, 3).

FIG. 3. XRD patterns for Mn$_{54-\text{x}}$Al$_{43}$C$_3$Zr$_{\text{x}}$ (x = 0, 1, 3) heat treated at 500° for 10 min.
Grain refinement can be facilitated by two factors: the microstructure, particularly the grain size, and the increase in Mn. The increase in Mn could be due to the substitution of Zr to Mn in Al sites, suppressing the antiferromagnetic coupling and thus increasing the net magnetization. Also, some contribution to the increase in magnetization could conceivably be from inducing a magnetic moment on Zr, which has 2 unpaired electrons in the 4d shell. The Hc increased to 1.62 kOe with the addition of 1 at. % Zr, which could be due to changes in the magnetocrystalline anisotropy caused by the decrease of the c/a ratio. Since the coercivity is closely related to the microstructures, the increase in Hc with the addition of 1 at. % Zr could also be caused by microstructural changes, notably a decrease in grain size, during the formation of the τ phase. The grain size for Mn₅₃Al₄₃C₃Zr₁ was determined by the Scherrer equation \(d = \frac{\lambda}{B_{0} \cdot \sin \theta} \), where \(d \) is the mean grain size, \(\lambda \) is the wavelength of incident x-radiation in nm, and \(B_{0} \) is the instrument-corrected FWHM of the diffraction peak of interest (in this case, (101)). The grain size was ~45 nm, while it was ~500 nm (Ref. 11) for Mn₅₃Al₄₃C₃.

In order to maximize the energy product of Mn₅₃Al₄₃C₃Zr₁, the enhancement of the saturation magnetization should be coupled with an increase in coercivity, as the coercivity should be at least \(M_{s}/4 \) for applications. Here, the \(M_{s} \) is 8 kG, so the observed coercivity is slightly smaller than \(M_{s}/4 \). Thus, further improvement in coercivity would ensure usefulness, particularly at temperatures above room temperature. Here, further improvements in coercivity were attempted through microstructural modification. In magnetic materials, the microstructure, particularly the grain size, plays a critical role in maximizing the extrinsic coercivity.

Grain refinement can be facilitated by two factors: number and potency of the nucleation sites, and solute elements present in the melt that retards grain growth. Carbon additions could increase the number of nucleation sites or may tend to segregate, restricting grain growth during the solidification process. Therefore, additional amounts of C (1%, 3%, 5%, and 7%) were added to the Mn₅₃Al₄₃C₃Zr₁ alloys to study the effects on microstructural development.

XRD patterns for as-solidified (Mn₅₃Al₄₃C₃Zr₁)₁₀₀₋ₓCₓ (with \(x = 0, 1, 3, 5, 7 \)) were indexed to the ε phase. In contrast to the Zr-free alloys and the alloys without excess C where conversion from ε to τ occurred readily after heat treatment at 500 °C for 10 min, excess C appeared to alter the decomposition kinetics. In as-solidified (Mn₅₃Al₄₃C₃Zr₁)₉₅C₅, the ε phase was retained until heat treatment for 30 min when a large fraction of τ phase and a small amount of ε phase was observed (Fig. 5). Heat treatment at 500 °C for 40 min did not noticeably increase the τ phase fraction, but after heat treatment at 500 °C for 60 min, in addition to τ and ε, the equilibrium \(γ_{2} \) and β phases were also observed, indicating that complete conversion from ε to τ is not possible before decomposition to the equilibrium phases occurs. To obtain a larger fraction of the τ phase, variable annealing time (10 min, 30 min, 40 min, and 60 min) was applied to each as-solidified sample. The annealing time to produce the largest fraction of the τ phase is defined here as “optimum time,” which is represented by the largest I(101) peak in τ phase, I(100) peak in ε phase, and I(330) peak in γ₂ phase, and I(411) peak in β phase. For example, for (Mn₅₃Al₄₃C₃Zr₁)₉₅C₅, the values of I(101) calculated from the data shown in Fig. 5 are 0, 13 ± 2, 31 ± 5, and 2.0 ± 0.1 for samples annealed for 10 min, 30 min, 40 min, and 60 min, respectively. Thus, the “optimum time” is 40 min. Based on this calculation, the “optimum time” changes with C content are shown in Fig. 6. When the amount of C (x) was increased from 1 to 7, the heat treatment time to maximize τ formation (i.e., “optimum time”) increased from 10 min to 60 min. XRD patterns for annealed (Mn₅₃Al₄₃C₃Zr₁)₁₀₀₋ₓCₓ (\(x = 0, 1, 3, 5, 7 \)) are shown in Fig. 7. The τ phase was determined to be the primary phase in annealed (Mn₅₃Al₄₃C₃Zr₁)₁₀₀₋ₓCₓ (\(x = 0, 1, 3, 5, 7 \)) samples, while ε, γ₂, and β phases were found as minor phases.

![Image](52x546 to 296x746)

FIG. 4. Hysteresis loops for as-annealed Mn₅₃Al₄₃C₃Zr₁. The inset shows the coercivity and remanence in the 2nd quadrant.

![Image](316x71 to 560x279)

FIG. 5. XRD patterns for (Mn₅₃Al₄₃C₃Zr₁)₉₅C₅ with variable annealing time (10, 30, 40, 60 min).
Annealing the (Mn_{53}Al_{43}C_{3}Zr_{1})_{93}C_{7} at 500 °C for 60 min produced primarily τ phase with small amounts of ε, γ_2, and β phases, indicating that the τ phase in (Mn_{53}Al_{43}C_{3}Zr_{1})_{93}C_{7} was much more stable than in the case of (Mn_{53}Al_{43}C_{3}Zr_{1})_{95}C_{5}. This could be explained by the transformation from τ phase to ε, γ_2, and β phases, which is a diffusion-controlled process and involves nucleation and growth. The increase in stability with C content occurs because the excess C atoms, likely segregated to grain boundaries, inhibit the diffusion of the Mn and Al atoms necessary for decomposition. Thus, C suppressed the phase transformation process from ε phase to τ phase and stabilizes the τ phase.

The grain sizes for (Mn_{53}Al_{43}C_{3}Zr_{1})_{100-z}C_{z} (x = 0, 1, 3, 5, 7) were determined by the Scherrer equation. As shown in Fig. 8, the overall trend of the grain size with the amount of C was clear. A decrease of grain size from around 45 nm to 25 nm with C addition up to 7% (z = 7) was observed, although the grain size when z = 7 is larger than that when z = 5.

Influence of C addition in (Mn_{53}Al_{43}C_{3}Zr_{1})_{100-z}C_{z} (z = 0, 1, 3, 5, 7) on the magnetic properties, including coercivity (H_c) and saturation magnetization (M_s), is shown in Figs. 9 and 10. The effect of C content on M_s is clearly evident. A decrease of saturation magnetization from 128 emu/g to about 100 emu/g was observed, most likely due to the formation of nonmagnetic ε, γ_2, and β phases as determined by the XRD. Since the τ phase is the only ferromagnetic phase in the MnAl system, the M_s is proportional to the percentage of τ phase in the alloys. The coercivity shows an opposite trend with C addition as the saturation magnetization. This may be explained by the lower dependence of H_c on the amounts of τ phase and more on the microstructure. The coercivity increased even for z = 7, with a slightly larger grain size than z = 5. This could be due to the increasing amount of ε, γ_2, and β phases at the grain boundaries of τ phase, which would decouple the τ-MnAl grains. The maximum H_c (3.1 kOe) was obtained in (Mn_{53}Al_{43}C_{3}Zr_{1})_{93}C_{7}.
The other phases cause a dilution of magnetization. The addition of C (e.g., temperature equilibrium phases, including size from 45 nm to 25 nm, resulting in an increase of coercivity in Mn53Al43C3Zr1 was accomplished through grain refinement. The combination of C (0 at. %) and mechanical milling techniques, further enhancement of coercivity in Mn53Al43C3Zr1 was accomplished through grain refinement. The addition of C (~5 at. %) reduced the grain size from 45 nm to 25 nm, resulting in an increase of coercivity. However, the extra C resulted in the formation of room-temperature equilibrium phases, including ε, γ2, and β phases. These phases decoupled the β-phase grains, which improved the coercivity with increasing C from 5 at. % to 7 at. %. A decrease of saturation magnetization with the increasing amount of C resulted from the formation of these equilibrium phases, as only the β-phase is ferromagnetic and the other phases cause a dilution of magnetization.

CONCLUSION

As-solidified Mn53Al44C3 alloys with 1 at. % Zr addition exhibited a single-phase structure consisting of the ε phase. After heat treatment at 500 °C for 10 min, transformation from ε to β phase was achieved with a higher saturation magnetization (128.0 ± 1 emu/g) and coercivity (1.62 kOe). To maximize its energy product, further enhancement of coercivity in Mn53Al43C3Zr1 is needed. The addition of C resulted in the formation of two phases, including ε, γ2, and β phases. These phases decoupled the β-phase grains, which improved the coercivity with increasing C from 5 at. % to 7 at. %. A decrease of saturation magnetization with the increasing amount of C resulted from the formation of these equilibrium phases, as only the β-phase is ferromagnetic and the other phases cause a dilution of magnetization.

ACKNOWLEDGMENTS

The authors gratefully acknowledge research support from the Department of Energy through the ARPA-E REACT program under Grant No. 0472-1537. The authors are also grateful for facility support from the Nebraska Research Initiative through the Nebraska Center for Materials and Nanoscience at the University of Nebraska.