Investigation of Critical Heat Flux and Heat Transfer Coefficients of metallic surfaces with micro/nanostructures produced through femtosecond laser surface processing

Joseph Sheehan
University of Nebraska - Lincoln, joseph.sheehan@huskers.unl.edu

Cory Kruse
University of Nebraska-Lincoln, s-ckruse9@unl.edu

Craig Zuhlke
University of Nebraska-Lincoln, czuhlke@unl.edu

Dennis R. Alexander
University of Nebraska-Lincoln, dalexander1@unl.edu

George Gogos
University of Nebraska - Lincoln, ggogos1@unl.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/ucareresearch
Authors
Joseph Sheehan, Cory Kruse, Craig Zuhlke, Dennis R. Alexander, George Gogos, and Sidy Ndao
Investigation of Critical Heat Flux and Heat Transfer Coefficients of metallic surfaces with micro/nanostructures produced through femtosecond laser surface processing

Joe Sheehan, Corey Kruse, Craig Zuhlke, Dennis Alexander, George Gogos, and Sidy Ndao
University of Nebraska – Lincoln, http://nmrl.unl.edu

Motivation

Effects of surface geometry on critical heat flux (CHF)

Wettability effect on treated surfaces influencing CHF

FLSP Procedure

Femtosecond Laser Surface Processing

- Surfaces are processed with Spectra-Physics Spitfire Laser
- Different settings produce unique surfaces

Surface examples of Processed Stainless Steel

Creation of Microstructures and Nanostructures
- Increase surface area
- Increase in multiscale roughness
- Increase wettability
- Increase capillary wicking

Experimental Setup

Pool Boiling Containment

- 8 liters of deionized water
- Heated to saturation temperature by immersion heater
- Pressure and temperature data is recorded inside container

Test Surface Parameters
- Processed surface (25.4 mm diameter) heated by copper heating block
- Two-phase heat transfer occurs at the interface between the test surface and liquid
- Thermocouples in copper block gather temperature data
- Heat flux is calculated based on the temperature gradient
- Surface temperature is calculated from the heat flux
- Heat flux is plotted with respect to surface superheat

Results and Conclusions

Heat Transfer Data

- Processed data is compared to a polished reference curve
- Critical heat flux is maximum allowable heat flux and is signaled by a very fast jump in surface temperature due to the transition to film boiling
- All processed surfaces resulted in an enhancement of the critical heat flux
- Heat transfer coefficient is plotted with respect to the heat flux
- HTCs increase with increasing heat flux
- Heat transfer enhancement is a result of a combination of increased wettability, roughness, surface area, and capillary wicking

Future Study

- Efforts to link other factors to increased critical heat fluxes and heat transfer coefficients
  - Wettability (See right Column)
  - Surface Roughness
  - Capillary Wicking

Acknowledgements

This work has been supported by a grant through the Nebraska Center for Energy Sciences Research (NCESR) with funds provided by Nebraska Public Power District (NPPD) to the University of Nebraska – Lincoln (UNL) No. 420000844, and by funds from the Department of Mechanical and Materials Engineering and the College of Engineering at UNL, awarded to SN.