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Deli Qiao, Mustafa Cenk Gursoy, Senem Velipasalar
Department of Electrical Engineering

University of Nebraska-Lincoln, Lincoln, NE 68588
Email: dqiao726@huskers.unl.edu, gursoy@engr.unl.edu, velipasa@engr.unl.edu

Abstract—1 Transmission over wireless fading channels under
quality of service (QoS) constraints is studied when only the
receiver has perfect channel side information. Being unaware
of the channel conditions, transmitter is assumed to send the
information at a fixed rate. Under these assumptions, a two-state
(ON-OFF) transmission model is adopted, where information is
transmitted reliably at a fixed rate in the ON state while no
reliable transmission occurs in the OFF state. QoS limitations
are imposed as constraints on buffer violation probabilities, and
effective capacity formulation is used to identify the maximum
arrival rate that a wireless channel can sustain while satisfying
statistical QoS constraints. Energy efficiency is investigated by
obtaining the minimum bit energy and wideband slope expres-
sions in both low-power and wideband regimes. The increased
energy requirements due to the presence of QoS constraints
are quantified. Comparisons with variable-rate/fixed-power and
variable-rate/variable-power cases are given. Overall, an energy-
delay tradeoff for fixed-rate transmission systems is provided.

I. INTRODUCTION

Efficient use of limited energy resources is of paramount
importance in most wireless systems. From an information-
theoretic perspective, the energy required to reliably send one
bit is a metric that can be adopted to measure the energy
efficiency. Generally, energy-per-bit requirement is minimized,
and hence the energy efficiency is maximized, if the system
operates in the low-power or wideband regimes. Recently,
Verdú in [1] has determined the minimum bit energy required
for reliable communications over a general class of channels,
and studied the spectral efficiency–bit energy tradeoff in the
wideband regime.

While providing powerful results, information-theoretic
studies generally do not address delay and quality of ser-
vice (QoS) constraints [2]. However, the impact upon the
queue length and queueing delay of transmission using codes
with large blocklength, which are required to achieve the
information-theoretic performance limits, can be significant.
Situation is even further exacerbated in wireless channels
in which the ergodic capacity has an operational meaning
only if the codewords are long enough to span all fading
states. Hence, in slow fading environments, large delays can
be experienced in order to achieve the ergodic capacity. Due
to these considerations, performance metrics such as capacity
versus outage [3] and delay limited capacity [4] have been
considered in the literature for slow fading scenarios.

1This work was supported by the National Science Foundation under Grants
CCF – 0546384 (CAREER) and CNS – 0834753.

Fig. 1. The general system model.

More recently, Wu and Negi in [5] defined the effective
capacity as the maximum constant arrival rate that a given
time-varying service process can support while providing
statistical QoS guarantees. Effective capacity formulation uses
the large deviations theory and incorporates the statistical
QoS constraints by capturing the rate of decay of the buffer
occupancy probability for large queue lengths. The analysis
and application of effective capacity in various settings has
attracted much interest recently (see e.g., [6]–[8]).

In this paper, we consider a wireless communication sce-
nario in which only the receiver has the channel side informa-
tion, and the transmitter, not knowing the channel conditions,
sends the information at a fixed-rate. If the fixed-rate trans-
mission cannot be supported by the channel, outage occurs
and information has to be retransmitted. In this scenario, we
investigate the energy efficiency under QoS constraints in
the low-power and wideband regimes by considering the bit
energy requirement defined as average energy normalized by
the effective capacity.

II. SYSTEM MODEL

We consider a point-to-point wireless link in which there is
one source and one destination. The system model is depicted
in Fig.1. It is assumed that the source generates data sequences
which are divided into frames of duration T . These data frames
are initially stored in the buffer before they are transmitted
over the wireless channel. The discrete-time channel input-
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output relation in the ith symbol duration is given by

y[i] = h[i]x[i] + n[i] i = 1, 2, . . . . (1)

where x[i] and y[i] denote the complex-valued channel input
and output, respectively. We assume that the bandwidth avail-
able in the system is B and the channel input is subject to
the following average energy constraint: E{|x[i]|2} ≤ P̄ /B
for all i. Since the bandwidth is B, symbol rate is assumed to
be B complex symbols per second, indicating that the average
power of the system is constrained by P̄ . Above in (1), n[i] is
a zero-mean, circularly symmetric, complex Gaussian random
variable with variance E{|n[i]|2} = N0. The additive Gaussian
noise samples {n[i]} are assumed to form an independent and
identically distributed (i.i.d.) sequence. Finally, h[i] denotes
the channel fading coefficient, and {h[i]} is a stationary and
ergodic discrete-time process. We denote the magnitude-square
of the fading coefficients by z[i] = |h[i]|2.

We assume that while the receiver has perfect channel
side information and hence perfectly knows the instantaneous
values of {h[i]}, the transmitter has no such knowledge. Under
this assumption, the instantaneous capacity of the channel with
channel gain z[i] = |h[i]|2 is

C[i] = B log2(1 + SNRz[i]) bits/s (2)

where SNR = P̄ /(N0B) is the average transmitted signal-to-
noise ratio. Since the transmitter is unaware of the channel
conditions, information is transmitted at a fixed rate of r bits/s.
When r < C, the channel is considered to be in the ON state
and reliable communication is achieved at this rate. If, on the
other hand, r ≥ C, outage occurs. In this case, channel is
in the OFF state and reliable communication at the rate of
r bits/s cannot be attained. Hence, effective data rate is zero
and information has to be resent. We assume that a simple
automatic repeat request (ARQ) mechanism is incorporated in
the communication protocol to acknowledge the reception of
data and to ensure that the erroneous data is retransmitted [6].

Fig. 2 depicts the two-state transmission model together
with the transition probabilities. In this paper, we assume that
the channel fading coefficients stay constant over the frame
duration T . Hence, the state transitions occur at every T
seconds. Now, the probability of staying in the ON state, i.e.,
p22, is defined as follows2:

p22 = P{r < C[i + TB]
∣∣ r < C[i]}

= P{z[i + TB] > α
∣∣ z[i] > α} (3)

where

α =
2

r
B − 1
SNR

. (4)

Note that p22 depends on the joint distribution of (z[i +
TB], z[i]). For the Rayleigh fading channel, the joint density
function of the fading amplitudes can be obtained in closed-
form [11]. In this paper, in order to simplify the analysis
while considering general fading distributions, we assume that

2The formulation in (3) assumes as before that the symbol rate is B
symbols/s and hence we have TB symbols in a duration of T seconds.

Fig. 2. ON-OFF state transition model.

fading realizations are independent for each frame. Hence, we
basically consider a block-fading channel model. Note that in
block-fading channels, the duration T over which the fading
coefficients stay constant can be used as a parameter to model
how fast or slow the fading varies.

Under the block fading assumption, we now have p22 =
P{z[i + TB] > α} = P{z > α}. Similarly, the other
transition probabilities become

p11 = p21 = P{z ≤ α} =
∫ α

0

pz(z)dz (5)

p22 = p12 = P{z > α} =
∫ ∞

α

pz(z)dz (6)

where pz is the density function of z. We finally note that rT
bits are successfully transmitted and received in the ON state,
while the effective transmission rate in the OFF state is zero.

III. PRELIMINARIES – EFFECTIVE CAPACITY AND

SPECTRAL EFFICIENCY-BIT ENERGY TRADEOFF

In [5], Wu and Negi defined the effective capacity as the
maximum constant arrival rate3 that a given service process
can support in order to guarantee a statistical QoS requirement
specified by the QoS exponent θ. If we define Q as the
stationary queue length, then θ is the decay rate of the tail
distribution of the queue length Q:

lim
q→∞

log P (Q ≥ q)
q

= −θ. (7)

Therefore, for large qmax, we have the following approxima-
tion for the buffer violation probability: P (Q ≥ qmax) ≈
e−θqmax . Hence, while larger θ corresponds to more strict
QoS constraints, smaller θ implies looser QoS guarantees.
Similarly, if D denotes the steady-state delay experienced in
the buffer, then P (D ≥ dmax) ≈ e−θδdmax for large dmax,
where δ is determined by the arrival and service processes
[7].

The effective capacity is given by

−Λ(−θ)
θ

= − lim
t→∞

1
θt

loge E{e−θS[t]} (8)

where S[t] =
∑t

k=1 R[k] is the time-accumulated service
process and {R[k], k = 1, 2, . . .} denote the discrete-time
stationary and ergodic stochastic service process. Note that
in the model we consider, R[k] = rT or 0 depending on the

3For time-varying arrival rates, effective capacity specifies the effective
bandwidth of the arrival process that can be supported by the channel.
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channel state being ON or OFF, respectively. In [9] and [10],
it is shown that for such an ON-OFF model, we have

Λ(θ)
θ

=
1
θ

loge

(1
2

(
p11 + p22e

θTr

+
√

(p11 + p22eθTr)2 + 4(p11 + p22 − 1)eθTr
))

.

(9)

Note that p11 + p22 = 1 in our model. Then, for a given QoS
delay constraint θ, the effective capacity normalized by the
frame duration T and bandwidth B, or equivalently spectral
efficiency in bits/s/Hz, becomes

RE(SNR, θ) =
1

TB
max
r≥0

{
− Λ(−θ)

θ

}
= max

r≥0

{
− 1

θTB
loge

(
p11 + p22e

−θTr
)}

(10)

= max
r≥0

{
− 1

θTB
loge

(
1−P{z > α}(1 − e−θTr)

)}
(11)

= − 1
θTB

loge

(
1 − P{z > αopt}

(
1 − e−θTropt

))
bits/s/Hz (12)

where ropt is the maximum fixed transmission rate that solves
(11) and αopt = (2

ropt
B − 1)/SNR. Note that both αopt and ropt

are functions of SNR and θ.
The normalized effective capacity, RE , provides the maxi-

mum throughput under statistical QoS constraints in the fixed-
rate transmission model. It can be easily shown that

lim
θ→0

RE(SNR, θ) = max
r≥0

r

B
P{z > α}. (13)

Hence, as the QoS requirements relax, the maximum constant
arrival rate approaches the average transmission rate. On the
other hand, for θ > 0, RE < 1

B maxr≥0 rP{z > α} in order
to avoid violations of QoS constraints.

In this paper, we focus on the energy efficiency of wire-
less transmissions under the aforementioned statistical QoS
limitations. Since energy efficient operation generally requires
operation at low-SNR levels, our analysis throughout the paper
is carried out in the low-SNR regime. In this regime, the trade-
off between the normalized effective capacity (i.e, spectral
efficiency) RE and bit energy Eb

N0
= SNR

RE(SNR)
is a key tradeoff

in understanding the energy efficiency, and is characterized by
the bit energy at zero spectral efficiency and wideband slope
provided, respectively, by

Eb

N0

∣∣∣∣
R=0

= lim
SNR→0

SNR

RE(SNR)
=

1
ṘE(0)

and (14)

S0 = −2(ṘE(0))2

R̈E(0)
loge 2 (15)

where ṘE(0) and R̈E(0) are the first and second derivatives
with respect to SNR, respectively, of the function RE(SNR) at
zero SNR [1].

IV. LOW-POWER REGIME

In this section, we investigate the spectral efficiency–bit
energy tradeoff as the average power P̄ diminishes. In this
regime, SNR = P̄ /(N0B) vanishes with decreasing P̄ . Note
that we assume that the bandwidth allocated to the channel is
fixed. The following result provides the expressions for the bit
energy at zero spectral efficiency and the wideband slope.

Theorem 1: In the low-power regime, the bit energy at zero
spectral efficiency and wideband slope are given by

Eb

N0

∣∣∣∣
R=0

=
loge 2

α∗
optP{z > α∗

opt}
and (16)

S0 =
2P{z > α∗

opt}
1 + β(1 − P{z > α∗

opt})
, (17)

respectively, where β = θTB
loge 2 is normalized QoS con-

straint. In the above formulation, α∗
opt is defined as α∗

opt =
limSNR→0 αopt, and α∗

opt satisfies

α∗
optpz(α∗

opt) = P{z > α∗
opt}. (18)

Proof: We first consider the Taylor series expansion of ropt

in the low-SNR regime:

ropt = aSNR + bSNR2 + o(SNR2) (19)

where a and b are real-valued constants. Substituting (19) into
(4), we obtain the Taylor series expansion for αopt:

αopt =
a loge 2

B
+

(
b loge 2

B
+

a2 log2
e 2

2B2

)
SNR+o(SNR). (20)

From (20), we note that in the limit as SNR → 0, we have

α∗
opt =

a loge 2
B

. (21)

Next, we obtain the Taylor series expansion with respect to
SNR for P{z > αopt} using the Leibniz Integral Rule:

P{z > αopt} = P{z > α∗
opt}

−
(

b loge 2
B

+
a2 log2

e 2
2B2

)
pz(α∗

opt)SNR + o(SNR).

(22)

Using (19), (20), and (22), we find the following series
expansion for RE :

RE(SNR) = − 1
θTB

loge

[
1 −

(
P{z > α∗

opt}−(
b loge 2

B
+

a2 log2
e 2

2B2

)
pz(α∗

opt)SNR + o(SNR)
)

× (
θTaSNR + (θTb − (θTa)2

2
)SNR2 + o(SNR2)

)]

=
aP{z > α∗

opt}
B

SNR +
1
B

(
− θTa2

2
P{z > α∗

opt}

− a3pz(α∗
opt) log2

e 2
2B2

+
θT (P{z > α∗

opt}a)2

2

)
SNR2

+ o(SNR2). (23)
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Then, using (21), we immediately derive from (23) that

ṘE(0) =
α∗

optP{z > α∗
opt}

loge 2
(24)

R̈E(0) = −α∗
opt

3pz{α∗
opt}

loge 2

− θTBα∗
opt

2

log2
e 2

P{z > α∗
opt}(1 − P{z > α∗

opt}). (25)

Next,we derive an equality satisfied by α∗
opt. Consider the

objective function in (11):

− 1
θTB

loge

(
1 − P{z > α}(1 − e−θTr)

)
(26)

It can easily be seen that both as r → 0 and r → ∞, this
objective function approaches zero4. Hence, (26) is maximized
at a finite and nonzero value of r at which the derivative of
(26) with respect to r is zero. Differentiating (26) with respect
to r and making it equal to zero leads to the following equality
that needs to be satisfied at the optimal value ropt:

2ropt/Bpz(αopt) loge 2
BSNR

(1−e−θTropt) = θTe−θTroptP{z > αopt}.
(27)

Taking the limits of both sides of (27) as SNR → 0 and
employing (19), we obtain

apz(α∗
opt) loge 2
B

= P{z > α∗
opt}. (28)

From (21), (28) simplifies to

α∗
optpz(α∗

opt) = P{z > α∗
opt}. (29)

This proves the equality condition stated in the Theorem.
Moreover, using (29), the first term in the expression for R̈E(0)
in (25) becomes −α∗

opt
2P{z>α∗

opt}
loge 2 . Together with this change,

evaluating the expressions in (14) with the results in (24) and
(25), we obtain (16) and (17). �

The following result shows that Eb

N0

∣∣
R=0

is the minimum bit
energy when the magnitude-square of the fading coefficients,
z, is Gamma distributed. Note that the distribution of z in
Nakagami-m and Rayleigh fading channels can be obtained
as special cases of the Gamma distribution.

Theorem 2: If z is Gamma distributed and hence the prob-
ability density function of z is given by

pz(z) =
λβ

Γ(β)
zβ−1e−λz (30)

where β ≥ 1 and λ > 0, then the bit energy required at zero
spectral efficiency is indeed the minimum one, i.e. Eb

N0

∣∣
R=0

=
Eb

N0 min
, for all θ ≥ 0.

Next, we provide numerical results. Throughout the paper,
we set the frame duration to T = 2ms. For the fixed bandwidth
case, we have assumed B = 105 Hz. Fig. 3 plots the spectral
efficiency as a function of the bit energy for different values

4Note that α increases without bound with increasing r.
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Fig. 3. Spectral efficiency vs. Eb/N0 in the Rayleigh channel (equivalently
Nakagami-m channel with m = 1).
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Fig. 4. Spectral efficiency vs. Eb/N0 in Nakagami-m channels; θ = 0.01,
m = 0.6, 1, 2, 5.

of θ in Nakagami-m channel with E{|h|2} = E{z} = 1 and
m = 1. The pdf of z in Nakagami-m channels is [12]

pz(z) =
mmzm−1

Γ(m)
e−mz (31)

where Γ(·) is the Gamma function. Note that when m = 1,
we have the Rayleigh fading channel. In all cases in Fig.
3, we readily note that Eb

N0

∣∣∣
R=0

= Eb

N0 min
. Moreover, the

minimum bit energy is the same and is equal to the one
achieved when there are no QoS constraints (i.e., when
θ = 0). From the equation α∗

optpz(α∗
opt) = P{z > α∗

opt}, we
can find that α∗

opt = 1 in the Rayleigh channel for which
pz(α∗

opt) = P{z > α∗
opt} = e−α∗

opt . Hence, the minimum bit
energy is Eb

N0 min
= 2.75 dB. On the other hand, the wideband

slopes are S0 = {0.7358, 0.6223, 0.2605, 0.0382, 0.0040} for
θ = {0, 0.001, 0.01, 0.1, 1}, respectively. Hence, S0 decreases
with increasing θ and consequently more bit energy is required
at a fixed nonzero spectral efficiency.

Fig. 4 plots the spectral efficiency curves as a function
of the bit energy for Nakagami-m channels with different
m values. θ is set to be 0.01. For m = {0.6, 1, 2, 5},
we compute that α∗

opt = {1.2764, 1, 0.809, 0.7279},
Eb

N0 min
= {3.099, 2.751, 2.176, 1.343}, and S0 =
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{0.1707, 0.2605, 0.4349, 0.7479}, respectively. We observe
that as m increases and hence the channel quality improves,
lower bit energies are required. Finally, in Fig. 5, we plot
the spectral efficiency vs. Eb/N0 for different transmission
strategies. The variable-rate/variable-power and variable-
rate/fixed-power strategies are studied in [8]. We immediately
see that substantially more energy is required for fixed-
rate/fixed-power transmission schemes considered in this
paper.

V. WIDEBAND REGIME

In this section, we consider the wideband regime in which
the bandwidth is large. We assume that the average power
P̄ is kept constant. Note that as the bandwidth B increases,
SNR = P̄

N0B approaches zero and we again operate in the
low-SNR regime similarly as in Section IV. However, energy
requirements in the wideband regime will be different from
those in the low-power regime as will be evident with the
result of Theorem 3.

We introduce the notation ζ = 1
B . Note that as B → ∞,

we have ζ → 0. Moreover, with this notation, the effective
capacity can be expressed as

RE(SNR) = − ζ

θT
loge

(
1−P{z > αopt}

(
1−e−θTropt

))
. (32)

Note that αopt and ropt are also in general dependent on B and
hence ζ. The following result provides the minimum bit energy
and wideband slope expressions in the wideband regime.

Theorem 3: In the wideband regime, Eb

N0 min
and wideband

slope are given by

Eb

N0 min
=

−δ loge 2
loge ξ

and (33)

S0 =
2ξ log2

e ξ

(δα∗
opt)2P{z > α∗

opt}e−δα∗
opt

, (34)

respectively, where δ = θT P̄
N0 loge 2 and ξ = 1−P{z > α∗

opt}(1−
e−δα∗

opt). Still, α∗
opt is defined as α∗

opt = limζ→0 αopt and α∗
opt

satisfies

δα∗
opt = loge(1 + δ

P{z > α∗
opt}

pz(α∗
opt)

). (35)
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Fig. 6. Spectral efficiency vs. Eb/N0 in the Rayleigh channel.

Unlike in the low-power regime, the minimum bit energy in
the wideband regime depends on θ . Fig. 6 plots the spectral
efficiency curves as a function of bit energy in the Rayleigh
channel. In all the curves, we set P̄ /N0 = 104. We compute
that α∗

opt = {1, 0.9858, 0.8786, 0.4704, 0.1177} from which
we obtain Eb

N0 min
= {2.75, 2.79, 3.114, 5.061, 10.087}dB for

θ = {0, 0.001, 0.01, 0.1, 1}, respectively. For the same set of
θ values in the same sequence, we compute the wideband slope
values as S0 = {0.7358, 0.7463, 0.8345, 1.4073, 3.1509}. We
immediately observe that more stringent QoS constraints and
hence higher values of θ lead to higher minimum bit energy
values and also higher energy requirements at other nonzero
spectral efficiencies.
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