Unraveling structures of protection ligands on gold nanoparticle \(\text{Au}_{68}(\text{SH})_{32} \)

Wen Wu Xu
Shanghai Institute of Applied Physics

Yi Gao
Shanghai Institute of Applied Physics, gaoyi@sinap.ac.cn

Xiao Cheng Zeng
University of Nebraska - Lincoln, xzeng1@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/chemzeng

Part of the [Analytical Chemistry Commons](https://digitalcommons.unl.edu/analyticalchemistry), [Materials Chemistry Commons](https://digitalcommons.unl.edu/materialschemistry), and the [Physical Chemistry Commons](https://digitalcommons.unl.edu/physicalchemistry)

Xu, Wen Wu; Gao, Yi; and Zeng, Xiao Cheng, "Unraveling structures of protection ligands on gold nanoparticle \(\text{Au}_{68}(\text{SH})_{32} \)" (2015).
http://digitalcommons.unl.edu/chemzeng/135
According to the atomic positions of Au determined from SP-TEM, structure determination of the protection ligands requires theoretical input can only yield the positions of heavy (that is, gold) atoms. Thus, structures of many RS-AuNPs has largely hindered a comprehensive understanding of the structure-property relationship of RS-AuNPs. Hence, a new experimental technique that can detect the atomic structures of RS-AuNPs in the range of 1 to 2 nm has attracted considerable research interests over the past two decades (1–9). In the laboratory, the most common approach to determine the structures of the RS-AuNPs is x-ray crystallography. However, a critical prerequisite for using the x-ray crystallography technology is to achieve a sizable single crystal of the RS-AuNPs, which generally is a very challenging task. To date, only the structures of the following RS-AuNPs have been fully resolved by x-ray crystallography: \(\text{Au}_{102}(\text{p-MBA})_{44} \), \(\text{Au}_{25}(\text{SPh}-\text{t-Bu})_{20} \), \(\text{Au}_{28}(\text{SPh}-\text{t-Bu})_{16} \), \(\text{Au}_{38}(\text{SCH}_{2}\text{CH}_{2}\text{Ph})_{24} \), \(\text{Au}_{36}(\text{SC}_{2}\text{H}_{4})_{18} \), \(\text{Au}_{25}(\text{SCH}_{2}\text{CH}_{2}\text{Ph})_{18} \), \(\text{Au}_{18}(\text{SC}_{6}\text{H}_{11})_{14} \), \(\text{Au}_{38}(\text{SCH}_{2}\text{CH}_{2}\text{Ph})_{24} \), \(\text{Au}_{20}(\text{SPh}-\text{t-Bu})_{16} \), \(\text{Au}_{25}(\text{SCH}_{2}\text{CH}_{2}\text{Ph})_{18} \), \(\text{Au}_{18}(\text{SC}_{6}\text{H}_{11})_{14} \). The lack of atomic structures of many RS-AuNPs has largely hindered a comprehensive understanding of the structure-property relationship of RS-AuNPs.

Recently, Azubel et al. (20) have reported the atomic structure of an RS-AuNP containing 68 Au atoms determined by the powerful single-particle transmission electron microscopy (SP-TEM) combined with density-functional theory (DFT) computation and absorption spectroscopy. This SP-TEM–centered approach is transformative in the structure determination of AuNPs because it no longer requires producing a single crystal of RS-AuNPs. Nevertheless, thus far, SP-TEM can only yield the positions of heavy (that is, gold) atoms. Thus, structure determination of the protection ligands requires theoretical input from DFT computation and absorption spectroscopy measurement. According to the atomic positions of Au determined from SP-TEM, the structure of \(\text{Au}_{68}(\text{SH})_{32} \) has been suggested (20) where some gold-thiolate motifs, such as bridging thiolates and ring-like structures, are predicted. In this communication, we present a series of new low-energy isomers in which the pattern of thiolate ligands on the gold core is determined according to the D&P (divide and protect) concept (7, 21). DFT optimization indicates that all the new isomers are uniformly lower in energy by 3 to 4 eV than the state-of-the-art low-energy isomer reported in (20).

We note that the D&P approach combined with the DFT computation has been proven as a viable theoretical approach to predict low-energy or even global minimum structures of RS-AuNPs (22–29). The D&P approach elucidates that highly stable AuNPs tend to have a symmetrical gold core covered by various levels of interfacial -RS-Au-RS-staple motifs (7). The lengths (or levels) of staples can vary, but overall they must obey two stoichiometry constraints for a given number of Au atoms in the inner core and in the ligand-core interface (7, 26). The validation of the D&P concept has been confirmed by the conceptual breakthrough (for example, the staple motifs for the ligand structures) being made in the total structure determination of the \(\text{Au}_{68}(\text{p-MBA})_{44} \) by Kornberg and co-workers via x-ray crystallography (10), as well as the total structure determination of relatively small-sized clusters, such as \(\text{Au}_{28}(\text{SCH}_{2}\text{CH}_{2}\text{Ph})_{16} \) (11–13).

RESULTS AND DISCUSSION

First, on the basis of the precise positions of all Au atoms in the inner gold core and in the interface region of the \(\text{Au}_{68}\text{NP} \) determined from the SP-TEM experiment (20), we construct a number of different ligand structures with various levels of S-Au-S staple motifs, following the generic rule of the D&P approach (7). The generic rule states that an RS-AuNP can be divided into several groups as illustrated by \([\text{Au}]_{a} + a'[\text{Au}(\text{SR})_{2}]_{b} + [\text{Au}(\text{SR})_{2}]_{c} \), where \(a, a', b, \) and \(c \) are integers. Here, \([\text{Au}]_{a} \) represents the gold core, which satisfies the constraint condition that the number of “surface” Au atoms (\(a' \)) in the gold core equals the sum of end points of the exterior motifs (\(2b + 2c \)); that is, each surface Au atom of the gold core is protected by one end point of the staple motif. Hence, the parameters \(a, a', b, \) and \(c \) for...
Au_{68}(SH)_{32} may satisfy \(a + a' + b + 2c = 68, 2b + 3c = 32 \), and \(a' = 2b + 2c \). Four initial core structures \([\text{Au}]_{15} + a\times(a + a' = 48 \text{ to } 51)\) are examined, and each was covered by a certain number of \(-\text{HS}-\text{Au-HS-}\) and \(-\text{HS}-\text{Au-}\) staple motifs: (i) \([\text{Au}]_{24} + 24[\text{Au}(\text{SR})_2]_{8}\), (ii) \([\text{Au}]_{23} + 26[\text{Au}(\text{SR})_2]_{10}[\text{Au}(\text{SR})_3]_{6}\), (iii) \([\text{Au}]_{22} + 28[\text{Au}(\text{SR})_2]_{10}[\text{Au}(\text{SR})_3]_{6}\), (iv) \([\text{Au}]_{21} + 30[\text{Au}(\text{SR})_2]_{12}[\text{Au}(\text{SR})_3]_{6}\). The four newly constructed isomer structures together with the previously reported isomer based on the SP-TEM experiment (20) were optimized using the DFT method implemented in Materials Studio Dmol3 7.0 (30, 31). The generalized gradient approximation with the Perdew-Burke-Ernzerhof (PBE) (32) functional and the double numeric polarized (DNP) basis set were adopted. Lastly, the linear and quadratic synchronous transit (LST/QST) method (33, 34) was used to locate the transition state of CO oxidation on Au_{68}(SH)_{32}. The theoretical powder x-ray diffraction (XRD) curve is calculated using the Debye formula:

\[
I(s) = \sum_i \sum_{j \neq i} \frac{\cos \theta}{(1 + \alpha \cos(2\theta))} \exp \left(-\frac{B s^2}{2} \right) f_i f_j \frac{\sin(2\pi d_{ij})}{2\pi d_{ij}}
\]

where \(s \) is the diffraction vector length and \(\theta \) is the scattering angle, satisfying \(s = 2\sin \theta / \lambda \). \(\lambda \) and \(\alpha \) are determined by the experimental setup and are set to be 0.1051967 nm and 1.01, respectively. \(B \) is the damping factor, which reflects thermal vibrations, and is set to be 0.03 nm^{2}. The corresponding atomic numbers are used for the scattering factor \(f_i \). \(d_{ij} \) is the distance between atoms \(i \) and \(j \). The atomic distance \(d_{ij} \) used in the calculation is taken from the optimized structure of clusters.

The optimized structures of the four isomers, Iso1 to Iso4, classified by group divisions (i) to (iv), are shown in Fig. 1. The computed total energies of Iso1 to Iso4 are 3.95, 3.28, 3.31, and 3.06 eV, respectively, lower than the state-of-the-art low-energy isomer reported (20). The isomer Iso1 appears to be the most stable isomer. The large energy difference between Iso1 and the previously reported isomer indicates that the ligand patterns that can meet the generic formulation of the D&P approach are energetically much more favorable. In Iso1 to Iso4, the 68 gold atoms can be grouped into an Au_{15} core with an Au atom in the center. Figure 2 displays two orthogonal views of the Au_{15} core in Iso1 to Iso4 and the Au_{15} core taken from the previously reported experimental isomer. In addition, the root mean square deviation (RMSD) values as a measure of deviation of the Au_{15} core in Iso1 to Iso4 from the experimental structure are presented in Table 1. The small RMSD values (about 0.3 Å) indicate that the overall structures of Au_{15} inner cores in Iso1 to Iso4 are consistent with the experimental one. Moreover, the structural distortion of the Au_{15} core in all five isomers can be recognized in Fig. 2. The slight distortion is probably induced by the different interfacial -RS-Au-RS- staple structures. As such, the core structure of Au_{68}NP is slightly distorted rather than being highly symmetric.

The fcc-like gold frameworks in Iso1 to Iso4 were singled out in Fig. 3. Here, to illustrate the fcc-like structure of gold frameworks more clearly, a common neighbor analysis (CNA) (35) was undertaken. Detailed information of CNA is given in table S1. The distinct CNA signatures demonstrate that the inner gold core structures of Iso1 toIso4 exhibit the fcc (100) and (111) surfaces, consistent with the SP-TEM experiment. The analysis of the Au_{15} core and the fcc-like framework suggests that the interior structures of Iso1 to Iso4 are consistent with the SP-TEM experiment. The RMSD values (about 0.7 Å) for the Au_{68} structures of Iso1 to Iso4, however, become larger after including the surface Au atoms, as shown in Table 1, suggesting that the positions of the surface Au atoms that bind with the end point of the exterior motifs differ from those in the reported isomer. We note that in the SP-TEM experiment, a minimal electron dose was used (20). Could the...
TEM electron beam alter the positions of several surface Au atoms during the measurement? This question can be addressed through further experimental investigation using known RS-AuNP structures resolved from x-ray crystallography as a benchmark.

Computed optical absorption spectra of Iso1 to Iso4, using the time-dependent DFT (TD-DFT) method, are shown in Fig. 4. As a comparison, both experimental and theoretical spectra of the previously reported isomer (20) are also included in Fig. 4. The locations of four prominent absorption peaks (a, b, c, and d) show that the computed optical absorption spectra of Iso1 to Iso4 are largely consistent with the experimental spectrum. Additionally, the simulated XRD curves of Iso1 to Iso4 and the experimental Au68(SH)32 cluster are shown in Fig. 5. Overall, Iso1 results in the best agreement with the experimental curve. For Iso2 to Iso4, their first, second, and third peaks are slightly shifted compared to the corresponding experimental peaks. Further analysis of the molecular orbital (MO) levels and the corresponding atomic orbital components in each MO of Iso1 to Iso4 are presented in figs. S1 to S4. We find that the strong absorption peaks b to d are mainly contributed by the core [Au]a+a’ (a + a’ = 48 to 51). Overall, the positions of the major absorption peaks of these five isomers are more or less similar to one another because they have similar core structures. However, as shown in Fig. 4, the shape of the computed absorption curves of Iso1 to Iso4 are different, suggesting that the overall shape of the optical absorption spectrum of Au68(SH)32 is sensitive to the isomer structure.

Finally, we examine catalytic properties of Au68(SH)32 by using the CO oxidation as a probe. The computed catalytic reaction pathway for the CO oxidation on the Iso1 cluster is shown in Fig. 6. Because all gold atoms in the clusters are protected by the thiolate groups, several surface staple motifs of Iso1 are removed to make the catalytic reaction, as indicated in previous studies (36, 37). As shown in Fig. 6, the CO and O2 molecules can be favorably coadsorbed on two neighboring low-coordinated Au atoms, with the coadsorption energy of CO2 and O2 being about −1.24 eV. Upon the coadsorption of CO and O2, the two molecules can move closer while the O-O bond length is elongated.

Table 1. RMSD values as a measure of the deviation of the Au15 core and Au68 in Iso1 to Iso4 from the experimental structure. The unit is in angstrom.

<table>
<thead>
<tr>
<th></th>
<th>Iso1</th>
<th>Iso2</th>
<th>Iso3</th>
<th>Iso4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au15</td>
<td>0.28</td>
<td>0.28</td>
<td>0.33</td>
<td>0.32</td>
</tr>
<tr>
<td>Au68</td>
<td>0.70</td>
<td>0.71</td>
<td>0.69</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Fig. 3. The fcc-like frameworks of Au68 in Iso1 to Iso4. The 15 Au atoms in the core are in gold, and the other Au atoms are in red.

Fig. 4. Optical absorption spectra of Au68(SH)32. Top row: The experimental (wine and olive) curves and the theoretical (black) curve plotted by taking the data from Ref. 20. Rows 2 to 5: Computed optical absorption spectra of Iso1 to Iso4. The red curve denotes the vibrational frequency analysis based on the individual vibrational intensities (red vertical lines). The blue curve denotes spectra from TD-DFT computation of the individual optical transitions. In all five rows, the locations of four prominent absorption peaks (a, b, c, and d), from either experiment or theory, are displayed.

Fig. 5. Simulated XRD curves of Iso1 to Iso4 and the experimental Au68(SH)32 cluster.
In the first step, a relatively low-energy barrier of 0.18 eV (TS1 in Fig. 6) can be overcome while the two molecular species arrive at a bridge-like metastable intermediate state characterized by the O–C–O–O species, with the O–O bond length being 1.43 Å. In the second step, the O–O bond length is further elongated to 1.85 Å while CO fully grasps an O atom of O$_2$ to form a CO$_2$ molecule. Lastly, CO$_2$ desorbs with the O–O bond adsorbed on the gold cluster. The second step (TS2 in Fig. 6) is the rate-determining step that requires overcoming a reaction barrier of 0.68 eV. These reaction barriers are comparable to those of typical nanogold catalysts (38–40), indicating that the Au$_{68}$ cluster can be a stand-alone nanoscale catalyst for future applications.

CONCLUSION

We have presented a series of new low-energy isomer structures of Au$_{68}$(SH)$_{32}$ determined from the generic formulation of the D&P approach. The consistency in the interior structure of Au$_{68}$ and the peak locations of the optical absorption spectra between the new isomers and the isomer reported from the SP-TEM experiment suggests that these isomers, Iso1 in particular, are promising candidates for the most stable atomic structure of Au$_{68}$(SH)$_{32}$. Further computation of catalytic properties of Au$_{68}$(SH)$_{32}$ toward CO oxidation suggests that this magic number cluster can be a stand-alone nanoscale catalyst for future applications. Confirmation of the predicted staple motif–based atomic structure of Au$_{68}$(SH)$_{32}$ must await future benchmark experiments, for example, using known motif–based RS-AuNPs, such as Au$_{102}$ (p-MBA)$_{44}$, as a benchmark in future SP-TEM experiment.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/1/3/e1400211/DC1

REFERENCES AND NOTES

31. B. Delley, From molecules to solids with the Dmol3 approach. J. Chem. Phys. 113, 7756–7764 (2000). Dmol3 is available from Biovia.

Funding: W.W.X. is supported by the China Postdoctoral Science Foundation (Y41902201). Y.G. is supported by startup funding from the Shanghai Institute of Applied Physics, Chinese Academy of Sciences (Y290011011), National Natural Science Foundation of China (21273268), "Hundred People Project" from the Chinese Academy of Sciences, and "Pujiang Rencai Project" from the Science and Technology Commission of Shanghai Municipality (13PJ1410400). X.C.Z. is supported by grants from Army Research Laboratory (W911NF1020099) and the Nebraska Center for Energy Sciences Research and by the University of Nebraska Holland Computing Center.

Competing interests: The authors declare that they have no competing interests.

Submitted 13 December 2014
Accepted 26 March 2015
Published 24 April 2015
10.1126/sciadv.1400211

Unraveling structures of protection ligands on gold nanoparticle Au$_{68}$(SH)$_{32}$

Wen Wu Xu, Yi Gao and Xiao Cheng Zeng (April 24, 2015)

Sci Adv 2015, 1:. doi: 10.1126/sciadv.1400211

This article is published under a Creative Commons license. The specific license under which this article is published is noted on the first page.

For articles published under CC BY licenses, you may freely distribute, adapt, or reuse the article, including for commercial purposes, provided you give proper attribution.

For articles published under CC BY-NC licenses, you may distribute, adapt, or reuse the article for non-commercial purposes. Commercial use requires prior permission from the American Association for the Advancement of Science (AAAS). You may request permission by clicking here.

The following resources related to this article are available online at http://advances.sciencemag.org. (This information is current as of April 13, 2016):

Updated information and services, including high-resolution figures, can be found in the online version of this article at: http://advances.sciencemag.org/content/1/3/e1400211.full

Supporting Online Material can be found at: http://advances.sciencemag.org/content/suppl/2015/04/21/1.3.e1400211.DC1

This article cites 40 articles, 3 of which you can be accessed free: http://advances.sciencemag.org/content/1/3/e1400211#BIBL