
Flocking Over 3D Terrain

Joel Gompert

Constraint Systems Laboratory

Department of Computer Science and Engineering

University of Nebraska-Lincoln

jgompert@cse.unl.edu

December 11, 2003

Abstract

A method is presented for animating herds of animals that can
follow terrain while being efficient enough to run in real-time. This
method involves making simple modifications to Reynolds’ agent-based
flocking algorithm. The modifications use only local properties of the
terrain, and thus have low complexity. This method focuses on us-
ing terrain that can be described as an elevation grid, but it may
be extendible to arbitrary terrain. The flocking algorithm with these
modifications produces naturally behaving herds that follow the ter-
rain. They will swerve around hills and attempt to follow paths that
reduce energy expenditure. The terrain-following rule added to the
flocking algorithm has a constant parameter that can be adjusted to
produce different behaviors. Empirical analysis shows how this param-
eter affects energy expenditure of the animals while traveling over the
terrain.

Acknowledgments: Thanks to my advisor, Dr. Berthe Y. Choueiry. Thanks
to Christopher Kline [5] for a sample flocking implementation which I oc-
casionally referred to while creating my own implementation. This work
is supported by the CAREER Award #0133568 from the National Science
Foundation.

1

Contents

1 Introduction 4

2 Simulation basics 5

3 Reynolds’ Flocking Algorithm 8

3.1 Obstacle avoidance . 9
3.2 Implementation . 10

4 Goal seeking 11

5 Terrain following: from flocks to herds 13

5.1 3D Correction . 15
5.2 Natural Behavior Over 3D Terrain 17

5.2.1 Natural Routes . 17
5.2.2 Energy Expenditure 19
5.2.3 Drag Force . 20

6 Avoiding trees 28

6.1 Repulsive Force . 29
6.2 Steering Towards the Nearest Silhouette Edge 29

7 Complexity 31

8 Implementation 33

8.1 Collision handling . 33
8.2 Flock Size . 35

9 Parameters 37

9.1 Independent parameters . 40
9.2 Animal reaction . 41
9.3 Inference of landmark values through empirical analysis . . . 43

9.3.1 Comfort zone . 43
9.3.2 Visible flock-mate range 43
9.3.3 Visible obstacle range 45
9.3.4 Viewing Angle . 47
9.3.5 Drag factor . 48

9.4 Summary . 49
9.5 Varying Behaviors . 49

2

10 Results 51

11 Future Work 53

12 Conclusion 55

A Source code 56

List of Tables

1 Parameter landmarks. 49
2 Parameters used to create various behaviors. 51

List of Figures

1 Rotating velocity by the slope. 15
2 Possible paths to get past a hill. 18
3 Drag force while traveling uphill 21
4 Drag force while following the contour more closely 22
5 Gravity’s influence on an object on an inclined plane 23
6 Energy expenditure as a function of the coefficient K 25
7 Energy expenditure as a function of slope. 27
8 Projection of an obstacle . 30
9 Screenshot of animals flocking with obstacles. 32
10 Dependency of the parameters. 39
11 Screenshot showing animals avoiding obstacles. 46
12 Screenshot of herds moving over terrain 51
13 Screenshot of herd dividing into two group to go around a hill. . . . 52

3

1 Introduction

To animate a large number of objects by hand would be a tedious job. To

make the job easier, we would like to try to automate as much of the process

as possible. For the case of flocks or herds of animals, Reynolds introduced

a simple agent-based approach to animate a flock of animals through space

[10]. In this method, each animal makes its own decisions on how to move,

according to a small number of simple rules that consider the neighboring

members of the flock. Reynolds suggested that further modifications could

lead to a herd model by giving the animals the ability to follow terrain.

The challenge is how to give the animals the ability to follow terrain while

keeping the complexity low enough to still allow for real-time simulation of

the herd. We would like the herd to move in natural-looking paths. Also,

we would like the animals to travel fastest on flat ground, more slowly when

navigating downhill and slowest when moving uphill. We present here a

simple method to satisfy all of these requirements, by modifying Reynolds’

basic flocking algorithm. The modifications use only local properties of the

terrain to minimize complexity, namely the gradient and the heigt of the

terrain. This method only considers terrain that can be described as an

elevation grid, in other words, terrain that is given by a function h(x, y)

that returns the height at each horizontal position. However, it may be

4

simple to extend this method to be applicable to arbitrary terrain. This is

an area for future work, as described in Section 11.

Section 2 discusses physical simulation. Section 3 gives a short descrip-

tion of Reynolds’ flocking algorithm, followed by an explanation of the modi-

fications that we need to make to this algorithm. Sections 4, 5, and 6 discuss

the main behaviors that this paper focuses on, which are goal seeking, ter-

rain following, and obstacle avoidance, respectively. Section 7 discusses the

time-complexity of the algorithm, and Section 8 discusses some implemen-

tation issues.

In our implementation of the algorithm, we identify several parameters

that allow us to control the behavior of the flock. Section 9 describes these

parameters. Sections 10 and 11 discuss the results and future work respec-

tively.

2 Simulation basics

Simulating the behavior of an animal in the flock amounts to updating the

animal’s position (Eq 1) and velocity (Eq 2) at each time step ∆t. This

applies not only to our animals but to any moving physical body we are

simulating.

~p←− ~p + ~v ·∆t +
1

2
~a · (∆t)2 (1)

5

~v ←− ~v + ~a ·∆t (2)

In these equations, ~p is the position, ~v is the velocity, ~a is the acceleration,

and ∆t is the elapsed time between updates. These equations constitute a

forward Euler approximation to a set of differential equations. We cannot

simply find the explicit solution to the differential equations because the

acceleration ~a will be a function of the positions and velocities of other

similar dynamic bodies in the animal’s environment. When we have multiple

bodies interacting in this fashion, then the differential equations become

unsolvable. However, by using this simple Euler approximation, then the

calculation remains the same, no matter how complex the system becomes as

we add more bodies. Also note that, in Equation 1, if one cannot afford the

time it takes to compute the last term involving the acceleration, one may

simply ignore it in most situations. Typically, in a real time simulation, we

want to animate the simulation at some frame rate, say 30 frames per second

or higher. So ∆t should be small, and the (∆t)2 term may be negligible

depending on the application. This term becomes significant only for large

accelerations. Thus, there is a tradeoff here between speed and accuracy.

Now we want to be able to determine the acceleration. The acceleration

is going to be a result of forces exerted by the animal, based on its decisions

on how to move, as well as outside forces acting on it. At each time step,

6

we want to update the acceleration, based on these forces, according to

Newton’s law:

~a←−
~F

m
, (3)

where ~F is the net force and m is the mass of the body. Each time through

the update loop of our program, we merely need to, for each body, calculate

the net force acting on it, and update the acceleration, position, and velocity

of the body using these three motion formulas. Now, the only difference

between an animal and an inanimate object is that for an animal, at least

some of the forces acting on the animal originate from the animal itself,

while inanimate objects react only to outside influences.

It should be noted that this forward Euler method of integration is not

the only possible method. We chose Forward Euler for its simplicity. Integra-

tion methods fall into one of two categories: implicit and explicit. Forward

Euler is an example of an explicit method. There are more complex explicit

methods that result in more accurate results, however it turns out that all

explicit methods become unstable when ∆t becomes too large, while im-

plicit methods (such as reverse Euler) remain stable. The downside to using

implicit methods is that they make the math much more complicated. In

addition, implicit methods require explicit knowledge of the derivatives of

the forces on each body. This becomes quite complex when one has mul-

7

tiple bodies whose derivatives depend on each other. This requires solving

a system of equations. So, in this implementation, we use forward Euler in

order to maintain simplicity. Our observations showed that the simulation

remained stable as long as ∆t remained below approximately 100ms.

3 Reynolds’ Flocking Algorithm

The animals (‘boids’) in Reynolds’ flocks move according to three simple

rules. Each of these rules results in an acceleration. The accelerations from

the various behavioral rules can be combined in various ways and used to

animate the animals. These three simple rules can produce a natural-looking

flock behavior:

1. Separation: accelerating away from nearby members of the flock that

are closer than some threshhold distance,

2. Alignment: adjusting an animal’s velocity to match the average veloc-

ity of its neighbors, and

3. Cohesion: accelerating towards the center of mass of the visible flock-

mates.

Each behavior here is executed for each animal individually.

8

Reynolds also describes a few other possible behaviors that could be

added, that we will also use. These are obstacle avoidance and goal seeking .

Obstacle avoidance produces an acceleration to steer around obstacles, and

goal seeking produces an acceleration in the direction of some goal location.

There are other possibilities for behaviors.1 For our purposes we will use

the following set of behaviors: (1) Separation, (2) Alignment, (3) Cohesion,

(4) Obstacle avoidance, and (5) Goal seeking. In Section 3.1 we will begin

to discuss obstacle avoidance, and in Section 4, we will discuss goal-seeking.

We will also make some additions to allow for following the terrain, which

are explained in Section 5.

3.1 Obstacle avoidance

Reynolds discusses various methods of obstacle avoidance [9], which we will

not discuss here in detail. Reynolds divides the methods into three groups,

those based on geometric models, those based on image processing , or those

based on geometrical path-planning . The methods are listed below:

• Obstacle Avoidance Techniques Based on Geometric Models:

1. repulsive force field,

2. steer away from center,

1For example, Flake discusses another behavior that he calls view clearing [2].

9

3. steer along surface (“curb feeler”), and

4. steer towards nearest silhouette edge.

• Obstacle Avoidance Techniques Based on Image Processing:

1. fuzzy silhouette,

2. obstacle density image, and

3. z-buffer image.

For this implementation we used a method similar to ‘steer away from cen-

ter,’ that will be discussed in Section 6.

3.2 Implementation

In the implementation of a physical simulation, one must choose the size of

the time-step ∆t. One option is to choose a fixed ∆t and then synchronize

the simulation to the system clock using a delay when an execution of the

main loop of the simulation takes less time than ∆t. This solution will

cause problems if it is executed on a machine that takes longer than ∆t to

go once through the main loop. Another option is to let the main loop run

as often as it can, and each time through, set ∆t to the amount of time that

has elapsed since the previous execution of the main loop, according to the

system clock.

10

In this main loop, we need to update each body’s acceleration, position,

and velocity according to our motion equations (1) and (2), and the frame

of animation needs to be drawn. For this implementation, every animal is

updated every frame. However, in order to speed up the frame-rate in a

real-time simulation, one may update some fraction of the herd each frame.

For example, one may wish to update half of the herd at a given frame and

the other half at the next frame. In that case ∆t for each animal becomes

the amount of time since the last time that animal’s behavior was updated.

While, the position and velocity of each animal should be updated every

frame, it may be benificial to divide the behavioral updates to acceleration

over multiple frames in this manner.

4 Goal seeking

We experimented with a goal-seeking behavior. First we tried a simple

attractive force pulling towards the goal in the form

~F ←− K(~pg − ~pa) (4)

where ~pg is the position of the goal point, ~pa is the position of the animal,

and K is an arbitrary constant. This gives a force in the direction of the goal,

proportional to the distance to the goal. Along with the scaling constant K,

11

~F can be clipped off at a maximum magnitude. Alternatively, instead of a

linear function, one can use a constant magnitude, quadratic, exponential,

or a more complex function.

This force towards the goal did not, however, provide the desired results,

because it tends to draw the boids into a full-speed flight towards the goal.

This situation prevents the boids in the back from being able to catch up

with the ones in front of the herd, because the ones in front are at the

maximum speed.

We propose here a novel and improved goal-seeking behavior that seems

to solve this issue. Instead of the boid’s position being attracted to the goal,

the boid’s velocity is attracted towards a velocity pointing in the direction of

the goal. This target velocity is defined as the cruising speed Cs. This

cruising speed is a constant that is less than the maximum speed. Define

the target cruising velocity ~vg as:

~vg ←− Cs
~pg − ~pa

||~pg − ~pa||
. (5)

Now create a force pointing from the current velocity towards the desired

velocity.

~F ←− K(~vg − ~v) (6)

Thus, instead of trying to get to the goal as quickly as possible, the

12

boids travel at some slower cruising velocity, allowing boids to occasionally

go faster when necessary, as when stragglers need to catch up. The resulting

behavior seems more realistic as well, since a flock or herd should travel at

some cruising speed, not the maximum speed, unless emergency conditions

arise.

5 Terrain following: from flocks to herds

In this section we will discuss the modifications to the flocking algorithm

necessary to create herd behavior. First, the animals must be confined to

a two-dimensional space, namely the surface of the terrain, which curves

through 3-space. In the approach presented here, we use a two-dimensional

flocking algorithm, and the terrain is modeled as a height field. So, effec-

tively the animals are flocking on a two dimensional plane that has, at every

point, a ‘height’ property, which the animals use to adjust their behavior.

Now, although everything is modeled internally as being two-dimensional,

when rendering the animation, the animals are still drawn at their correct

height on the terrain.2

2In this implementation, the boids always adjust their position to be a constant height

above the surface of the terrain. A future implementation may allow more complex be-

havior (e.g. jumping or falling).

13

In this model, the horizontal plane is (x, y) and the height of the ter-

rain at each point is z = h(x, y). We also define the gradient ~g(x, y) of the

height at each point on the terrain. The gradient of h(x, y) is a vector whose

components are the function’s partial derivatives, or ~g(x, y) = (dh
dx

, dh
dy

), eval-

uated at the point (x, y). The gradient ~g gives us a vector pointing in the

direction of the most rapid increase of height, thus pointing in the direction

of ’uphill’. The magnitude of the gradient is the slope of the terrain in that

direction, which we will denote as s = ||~g||. At a local maximum or minimum

of the terrain’s height, and on perfectly level terrain, the gradient is exactly

zero (0, 0). At the exact point of a sheer cliff, there is a discontinuity, and

the gradient at this point is undefined. For this paper we assume we have

some efficient way of computing the gradient at any point on the terrain.

This is normally simple to compute. For example, if the normal vector of

the terrain at point p is the vector ~n = (nx, ny, nz), then the gradient at p

is ~g(p) = (−nx/nz,−ny/nz), and the slope of the terrain in the direction of

the gradient is

s = ||~g|| =
√

(
−nx

nz
)
2

+ (
−ny

nz
)
2

=

√

nx
2 + ny

2

nz
. (7)

14

5.1 3D Correction

Since the animals are confined to a two-dimensional surface, we use a two-

dimensional flocking algorithm. Local properties of the terrain such as height

and gradient are used to apply forces to the animals or otherwise modify

the two-dimensional flocking algorithm.

Using a 2D flocking algorithm requires a correction to be applied to

each animal’s velocity because an animal with a constant 2D (x, y) velocity

traveling over hills will be moving through 3-space faster when going uphill

or downhill than when moving across level terrain. However, this is not the

effect we are seeking. This problem can be fixed by applying a correcting

factor to the 2D velocity before using it to update the animal’s position each

frame. This correcting factor takes into account the slope of the terrain in

the direction of travel, which is sv = ~v·~g
||~v|| , where ~v is the 2D velocity and ~g

is the gradient.

θ

X

v

v
new

v

|| ||

Figure 1: Rotating velocity by the slope.

15

Figure 1 illustrates how we want the velocity to be rotated to point up

(or down) the slope of the terrain. The goal is to keep the final 3D velocity

correct for a given ~v. In this figure, the angle θ corresponds to the slope of

the terrain in the direction of travel, and ~vnew is the corrected 2D velocity,

given the slope. We can solve for ~vnew as a function of ~v and the slope sv.

X = tan θ||~vnew|| = sv||~vnew|| (8)

||~vnew||2 + X2 = ||~v||2 (9)

~vnew =
~v√

sv
2 + 1

(10)

Thus, when updating the animal’s position, instead of simply updating

the 2D position by the velocity ~v, we must first multiply ~v by the correcting

factor 1√
sv

2+1
.

Note that, to be more accurate, the same correcting factor needs to

be applied to acceleration, except that the slope in the direction of the

acceleration must be used (sa). However, applying the correction factor to

acceleration does not produce a noticeable difference.

Applying this correcting factor allows us to make the animals’ motion

over the terrain to look much more natural. In particular it causes the 2D

16

velocity to be translated correctly to a 3D velocity.3

5.2 Natural Behavior Over 3D Terrain

The application of the correcting factor of Section 5.1 will not change the

animals’ overall 2D routes as they travel over the terrain. At this point, the

herd will travel straight over hills or whatever terrain features are in its way

as in Path 1 in Figure 2. However, we do not usually want the herd to go

straight over the top of a hill, but we would like it to swerve in a natural-

looking route around the hill such as Path 2 or 3. In order to get this more

natural-looking behavior, we want to add to the basic flocking algorithm a

new behavior rule that takes the terrain into account.

5.2.1 Natural Routes

One possibility is to pre-compute the ‘best’ route. There are many articles

on computing shortest routes over terrain. For example, Kapoor describes

a method for computing the geodesic shortest path across the surface of

a polygonal mesh such as terrain [4]. The shortest path is not necessarily

what we would like. The shortest path in Figure 2 is closer to Path 2 than

to Path 1 or 3. However, we may prefer that the animals follow a path closer

3Note that this does not mean that the animals will always travel at a constant speed.

It simply guarantees that the animated speed of the animal will match the expected speed.

17

Path 1

Path 2
Path 3

Figure 2: Possible paths to get past a hill.

to Path 3.

Although the shortest path would possibly be best for robots or vehicles

when time is the most important factor, animals and humans naturally

choose behaviors that minimize energy expenditure. For example, different

gaits are employed because they use less energy at different speeds. Running

is more efficient than walking at higher speeds, and walking is more efficient

than running at slower speeds [7]. Similarly, it seems reasonable that animals

would choose paths that minimize their energy expenditure.

Also, in comparison to the field of general relativity, a body in space

follows a geodesic shortest path in the space-time continuum, without doing

any shortest-route planning. It merely follows, at all times, a straight line

18

in the locally flat space-time. It seems reasonable, then, that the animals in

the herd can follow a reasonable path by looking only at the properties of

the locally flat terrain, i.e. the gradient at the current position. Admittedly,

this is a simplification since, in reality, animals could see a hill in front of

them and react to it before the animal feels the change in gradient beneath

its feet. However, this seems to be an acceptable approximation.

5.2.2 Energy Expenditure

From the above discussion, it becomes clear that we need to consider how

the terrain affects energy expenditure. Naturally, walking on level terrain

uses less energy than walking uphill, and any hiker knows that walking down

a steep hill also uses more energy than walking on level terrain.

Generally, to conserve energy, the herd should try to follow contour lines

to avoid traveling up or down. However this is not a hard rule, because

energy expended increases with distance traveled, so following a contour

line around a wide, short hill might make the distance to travel so long that

a more direct route over the hill would be more economical. Looking at

Figure 2, Path 3 has less vertical travel than Path 2, but 3 is a longer path.

Also starting and goal points may often be at different altitudes, or have

a ridge or valley between them. When it becomes necessary to get to the

19

other side of a ridge, the herd will want to pass over the lowest point of the

ridge without going too far out of its way.

5.2.3 Drag Force

My solution to this problem is to have the terrain create a force on the

animals. This force resists any motion that is not following the contour

lines. The force should increase with the magnitude of the gradient at the

current position. For example, to deflect the animals from going straight over

a steep hill, there should be a force acting on the animals in the direction

of ‘downhill’ (i.e., in the opposite direction of the gradient). However, if

the animals are already following a contour line (traveling orthogonally to

the gradient), then we need to avoid pushing them downhill, away from the

contour line, so the force should be proportional to the animal’s component

of velocity in the direction of the gradient, as shown in Figures 3 and 4. This

can be compared to drag as a result of moving through a viscous fluid. Drag

is a force acting in the direction opposite that of velocity, and is proportional

to the magnitude of velocity as in ~Fd = −B~v. So, this force from the terrain

can be thought of as a drag force that acts only parallel to the gradient (or

orthogonal to the contour lines). And the drag coefficient B grows with the

magnitude of the gradient.

20

gradient

drag force

animal

velocity

� �
� �

�
�

Figure 3: Drag force while traveling uphill

Notice that the velocities in both figures, Figure 3 and 4, have the same

magnitude, however they produce different drag forces because only the

component of the velocity perpendicular to the contour lines is used when

computing this drag force. The result of this force is to deflect the herd’s mo-

tion away from the direction of the gradient, and to deflect it more strongly

as the terrain becomes steeper. So, the herds will take a more direct route

when moving over a wide, short hill, and will swerve more widely around a

steeper hill.

The question now is how this drag coefficient B should be computed as

a function of slope. B should increase as slope increases, but how? A linear

relationship seems reasonable, but can this be justified? Consider the effect

gravity has on bodies on the surface of the terrain.

21

drag force

animal

gradient
velocity

� �
� �
� �
� �

Figure 4: Drag force while following the contour more closely

On an inclined plane as shown in Figure 5, if gravity exerts a constant

force ~F downward on a body, it will produce a force parallel to the inclined

plane, and one perpendicular to it, of magnitudes ||~F || sin θ and ||~F || cos θ re-

spectively, where θ is the angle the inclined plane makes with the horizontal.

The slope of the plane is s = tan(θ).

It seems reasonable that there are two things that affect the speed at

which animals will travel up or down hill: (1) the extra energy required to

travel up or down a slope and (2) less traction friction on a steeper slope

which will make an animal more cautious and want to travel more slowly.

The parallel force is proportional to the effort that is required to ascend

the plane However, the amount of traction on the hill is proportional to

the perpendicular, or normal, force. The animal’s ability to go up the hill

22

θF cos()

F

θ

θ

dx

dzF sin()θ

Figure 5: Gravity’s influence on an object on an inclined plane

should be inversely proportional to the amount of traction, thus inversely

proportional to the normal force.

So, if ability to travel up the inclined plane is directly proportional to the

parallel force and inversely proportional to the perpendicular force, then,

introducing some arbitrary constant K, the aversion to going up the hill

should be in this form:

K
||~F || sin(θ)

||~F || cos(θ)
= K tan(θ) = Ks. (11)

Thus it seems reasonable to use a linear function of the slope for the

coefficient of our drag force and so we make this assignment:

B = Ks. (12)

23

The fact that the drag coefficient B goes to infinity as the slope goes to

infinity also seems reasonable.

So, to summarize, drag force is normally a force proportional to velocity,

or ~F = −B~v. However we want the drag force to act only parallel with

the gradient, so we take the dot product of velocity with the normalized

gradient, thus

~F = −B
~v · ~g
||~g||2

~g (13)

where ~g is the gradient. Now in Equation (12), we said that the coefficient

B is Ks, but we know s = ||~g||. So the drag force becomes

~F = −Ks
(~v · ~g)~g

||~g||2
= −K

(~v · ~g)~g

||~g|| . (14)

And we define the force to be zero if the magnitude of the gradient is zero.

Now, the only question that remains to be answered is what value to

use for the multiplying constant K. We implemented all the modifications

to the flocking algorithm described thus far. We then performed tests, with

the herds traveling from one location to a goal point located some distance

away using a simple goal-seeking behavior. We let the constant K vary from

0 to 75, and for each value we had the herds travel over smooth, randomly-

generated terrains and calculated an estimate for the average amount of

energy expended over the trip. For each value of the constant, we gathered

24

data from about 300 trips in order to obtain a reliable mean. For each trip,

I computed the energy expended for each member of the herd, and took

the average over all the members of the herd when they reached the goal.

(Reaching the goal was defined as the average position of the herd being

within a certain arbitrary allowable error radius ε of the goal.) The results

of this are shown in the graph of Figure 6.

Figure 6: Energy expenditure as a function of the coefficient K

The energy expenditure for each animal was computed by determining,

at each time step, the amount of energy expended at that time step, and

summing over the entire trip. For a given time step, the energy expended

25

was computed as a function of distance traveled and slope of the terrain in

the direction of travel. The energy expended should be linear with distance

traveled in a small time step.

It has been found that the most economical slope (at least for humans)

is downhill at about a -10% slope [6]. Thus our energy function should

reach a minimum around there. As the slope increases to infinity, the re-

quired energy should have an asymptote at some (finite) maximum value,

since traveling straight up (an infinite slope) should only require a finite

amount of energy, just as climbing a vertical ladder requires a finite amount

of energy. And, similarly, as the slope decreases to negative infinity, the

required energy should have an asymptote at another, smaller, maximum

value for downhill travel, just as climbing down a vertical ladder requires

a finite amount of energy less than that of climbing up the ladder. This

required energy as a function of slope is illustrated in Figure 7. This fig-

ure shows energy expenditure per distance traveled per unit of mass of the

animal. The maximum at the left was placed at 1/5 of the maximum at

the right because it has been found that downward breaking action expends

about 1/5 as much energy as upward motion [6].

By measuring an average energy expenditure for various values for the

constant K, we can find values that result in low energy expenditure. The

26

R
a

te
 o

f
e

n
e

rg
y
 e

x
p

e
n

d
it
u

re

Minimum = −0.1 Slope

Figure 7: Energy expenditure as a function of slope.

value zero for the constant would eliminate any effect the terrain has on the

animals, and the herd will travel in a straight line over the terrain. It would

seem reasonable that increasing the value above zero, would decrease the

energy expenditure, up to a point. Above some point, the animals would be

constrained to the contour lines so much that they would be taking much

longer paths than necessary and thus would be expending too much energy.

Above some higher value, the animals would no longer be able to accelerate

themselves fast enough to climb hills, and they might never be able to reach

their goal, making the energy expenditure measure infinite. This possibility

of becoming ‘stuck’ when K is too large necessitated inserting a limit in the

experimental runs. Either there needs to be a time limit or an expended-

energy limit, beyond which the herd is assumed to be stuck. The results for

27

my implementation are shown in the chart of Figure 6.

Of course it is not necessary to always choose the value that minimizes

the energy expenditure. In fact, different values may be chosen for different

desired animal behaviors. Slow moving cattle, for example, may choose to

stick close to the contour lines, while energetic mountain goats may prefer

to hop over the top of a steep hill. A single animal may even have different

values for K at different times depending on its mood or situation. Also

note that different values may be used for negative and positive slope. A

larger K for positive slopes causes the animals to travel more slowly uphill

than downhill.

6 Avoiding trees

Avoiding obstacles such as trees on the terrain can be implemented as an

obstacle avoidance flocking behavior mentioned in Section 3.1. For sake of

comparison, I designed, implemented and evaluated two different methods.

The first method, discussed in Section 6.1, was a simple repulsive force

pointing away from the trees. The second method, discussed in Section 6.2,

was a steering force towards the nearest silhouette edge. This second method

produced more realistic-looking results. Experiments here involved only

small objects which might represent objects like trees or boulders. Future

28

work might involve larger objects like a long fence. More complex objects

such as large concave objects would require more complicated algorithms to

navigate.

6.1 Repulsive Force

The flock did not appear to behave naturally when modeling the trees as

repulsive forces. The force should fall off as the distance to the tree increases

(possibly an inverse square relation similar to forces in nature). Thus, there

is some radius from the tree where the force becomes significant. If the

flock heads straight towards a tree at cruising speed, instead of swerving or

splitting around the tree, it seems to hit this invisible radius around the tree

and bounces backwards before going around the tree. The effect is similar

to what it might be like to drop a handful of bouncy balls onto a metal

cylinder. They would all bounce back and outward when colliding with the

cylinder, before continuing on their way.

6.2 Steering Towards the Nearest Silhouette Edge

This method produced much more natural-looking behavior, but may not

work correctly for areas with dense collections of obstacles. A simple approx-

imate way to accomplish this is illustrated in Figure 8 in two dimensions for

29

convex polygonal obstacles. First, each vertex of the polygon is projected

onto the line perpendicular to the velocity, shown as a dotted line in the

figure. Of the projected values, we determine the maximum and minimum

values. If they are both positive or both negative, then the obstacle is to one

side or the other, so we can safely ignore it. Of the maximum and minimum

values, the one with the smaller absolute value is the nearest silhouette edge.

The animal should steer towards this edge, or better, past the edge by an

distance at least the radius of the animal in order to clear the obstacle.

Obstacle

Animal

Nearest Silhouette Edge

Figure 8: Projection of an obstacle

Before doing this check, one can reduce computation by first eliminating

obstacles that lie entirely behind the animal, since they are irrelevant. This

can be done while filtering out all obstacles that are not within the animal’s

range of vision.

This method for steering around obstacles works for most cases. How-

30

ever, it might fail in some situations when an animal is too close to an

obstacle, but usually by the time the animal gets that close to an obstacle,

it has already steered towards the nearest silhouette edge, thus avoiding the

troublesome situations.

A possible improvement to this method can be made by taking into

account the direction to the goal in addition to just the current direction of

travel.

Figure 9 shows a screenshot of animals navigating in the presense of

tree-like obstacles.

7 Complexity

Reynolds’ flocking algorithm has a complexity of O(n2), since each animal

must consider every other animal in the flock, even if just to determine

whether each animal is within the range of vision. We can consider the

workload as two parts. For each animal, (1) we must decide which animals

are ‘neighbors’ of the animal, and (2) the interactions with those neighbors

must be computed. The first part, computing the neighbor lists for all

the animals, is O(n2) in the size of the flock. The second part, computing

interactions between neighbors, is O(n2) in the size of the neighbor list.

The first part could be sped up by some sort of spatial sorting, as

31

Figure 9: Screenshot of animals flocking with obstacles.

Reynolds discusses in his 1987 paper [8], where each animal is placed in

a ‘bin’ and computing the neighbor list requires looking at only the animals

in the nearby bins. This only speeds up the task of computing the neighbor

list. The amount of time required to actually compute the interactions be-

tween neighbors is not changed. The simplest way to improve this second

part is to just reduce the visible range of each animal in the flock, thus

reducing the effective ‘neighborhood.’

32

8 Implementation

The ideas presented in this paper were implemented in C++ on a Windows

machine using the Microsoft Direct3D API. When tested on a 2.53GHz

Pentium 4 processor, with 50 animals in a flock, a one-frame update of all

the animals took about 10ms.

8.1 Collision handling

If the simulation is to look at all realistic then we must handle collisions

properly so that solid objects are not passing through each other. Because

the simulation is really a discrete-time approximation, we will sometimes

have solid objects overlapping the same space. A simple but crude solution

is just to force the objects to move so they are not overlapping. After

computing the next update to the objects’ positions, if two objects are found

to be overlapping, then one or both objects should artificially be ‘backed up’

so that the objects are no longer overlapping. At this time any changes in

velocity, energy, etc. that result from the collision should be made. This is

not an ideal solution because this artificial movement of the objects produces

small errors that can accumulate over time. These errors become larger if

the objects are moving at higher speeds so that their overlaps are larger.

Another solution is described by Bourg [1]. If, after the ∆t update to

33

position is calculated, an overlap is detected, then the simulation is backed

up to the point before the update and a smaller time-step (e.g., ∆t
2) update

is attempted. In case there is still an overlap, then we repeat the above-

described procedure with smaller and smaller time steps until there is no

overlap. Note that we need to specify some small threshold distance between

two objects such that if two objects are closer together than the threshold

distance, but not overlapping, then they are defined to be colliding.

This method of dividing the time step and recalculating should provide

much more accurate simulations. However, if our desire is to produce real-

time simulations, then this is unlikely to be possible. Generally, the real-time

simulator will be computing updates as rapidly as possible and will not have

the time to divide time steps and recompute.

In addition to these concerns, there is another problem. If an object is

traveling fast enough, then it may jump through an obstacle with no overlap

ever occurring. If overlap is our only way to detect collisions, then an object

may pass through an obstacle without our even detecting it.

If an object is traveling at a speed below L
∆t

(where L is the length of

the object in the direction of travel), then there will be no overlap between

the object’s positions at consecutive time-steps. However, if the object is

traveling above that speed, there will be a gap between the consecutive

34

positions. The size of this gap is ||~v|| · (∆t − L) where ~v is the velocity of

the object. If this value is positive, then there is a gap, and if the gap is

large enough for an obstacle to fit inside, then it is possible for the object

to jump ‘through’ the obstacle with no overlap occurring. A solution to this

would be to test whether the line segment connecting the two consecutive

positions intersects with the obstacle. An even more precise strategy would

be to test for an intersection between the obstacle and the volume swept out

through space as the object moves between the consecutive positions.

8.2 Flock Size

When running a simulation in real-time, it is important to keep the frame

rate high. Unfortunately the ability to do this is dependent on the complex-

ity of the computation, the implementation, and the hardware on which the

simulation is run. Ignoring for the moment any annoyance that a low frame-

rate causes the user of a real-time simulation, there seems to be a lower limit

on the update rate for the flocks of animals. With my implementation, the

animals’ acceleration needs to be updated based on behavior at least about

ten times per second in order for normal flocking behavior to occur. If all the

animals are updated every frame, and the frame-rate is artificially lowered to

about ten per second or less, then the animals fail to flock together as they

35

should. Also, I implemented a feature that allows every animal’s velocity

and position to be updated every frame, but behavior is recalculated every

i-th frame, where the set of animals is randomly divided at generation time

into i equal groups, and frame-rate up to a point. Indeed, when i is set large

enough to cause each animal’s behavior to be updated at or less than about

ten times per second, then the results are the same as when the original

simulation was slowed down artificially. The reason for this breakdown in

the simulation at such low frame-rates is the use of forward Euler’s for the

simulation. Since this is an explicit integration technique, then it become

unstable when δt becomes too large.

Since the complexity of the flocking algorithm is quadratic in the number

of animals in the flock, the flock size drastically affects the frame-rate. Since

there seems to be a lower limit on the allowable frame-rate, this places a

restriction on the maximum flock size. Of course this depends heavily on the

implementation and the hardware the simulation is run on. On my machine,

with my implementation, the largest reasonable flock size was 140.

As discussed in Section 9.3.4 the process of computing which of the mem-

bers of the flock are neighbors to each animal can take a large percentage of

the simulations computation time, especially when trigonometric functions

are needed to compute the viewing angle. It should be kept in mind, then,

36

that this may be a major limiting factor in the frame rate, and thus the

flock size.

9 Parameters

This implementation has many parameters that can be adjusted to create

the desired results. The main set of these parameters is listed here:

• Animal size: For this implementation, we defined the simulation pa-

rameters in terms of the size of the animals. By defining our unit

of length as the radius of an animal, then the other parameters may

be given in animal-radius units. The animal size can then be consid-

ered no longer a parameter but merely a constant, because all other

parameters are defined in terms of the animal size.

• Maximum speed (vmax): the animals’ top speed

• Cruising speed (vc): The cruising speed is the natural speed the ani-

mals will attempt to maintain when heading towards some goal over

flat terrain.

• Maximum acceleration (amax): the animals’ top acceleration

37

• Comfort-zone radius (C): The comfort-zone radius defines a circle

around each animal. If a second animal enters the first animal’s com-

fort zone, the first animal will move away.

• Danger-zone radius (D): The danger-zone radius specifies a smaller,

concentric circle inside the comfort-zone radius. This danger-zone ra-

dius aids in defining the comfort zone and specifies the radius at which

two animals are much too close, and they must accelerate (amax) away

to avoid a collision. If a second animal enters the outer edges of the

first animal’s comfort-zone, the first animal will use minimal acceler-

ation to move away. However, if the second animal manages to get

closer, then the acceleration increases until it reaches the maximum

possible acceleration at the danger-zone radius.

• Visible flock-mate range (Rf): Visible flock-mate range is simply the

maximum distance at which a second animal may be from the first

animal and still be used in calculating the first animal’s behavior.

• Visible obstacle range (Ro): Similarly, the visible obstacle range is the

maximum distance an obstacle can be from an animal and still be used

in calculating the animal’s behavior for avoiding the obstacle. These

two visible-range parameters (Rf and Ro) may be set equal to each

38

other; however, for maximum flexibility, we have separated the two.

And they will be discussed separately in this paper.

• Viewing angle (θv): The animal’s field of view, which is measured as

an angle from the direction of the current velocity.

• Drag factor (fd): A drag force causing the animals to follow the con-

tour lines of the terrain more closely.

Figure 10 shows which parameters are dependent on each other. In the

figure, an arrow from A to B indicates that the value of B depends on the

value of A.

Independant parameter

Defined constant

Comfort radius

cruising speed

maximum speed

drag factor

Danger radius

maximum acceleration

visible range

Animal Size

Figure 10: Dependency of the parameters.

Section 9.1 describes the set of parameters that may be considered in-

dependently. Section 9.2 describes the set of parameters that determines

39

the animals’ abilities to react quickly to events (such as collisions) and gives

the relation connecting these parameters. Section 9.3 discusses parameters

individually and landmark values for those parameters.

9.1 Independent parameters

A few of the parameters can be set independently from the others. As stated

earlier, the animal size is a constant defining the unit of length. After setting

this constant, the following parameters may be set independently from the

other parameters and define the basics of the animal behaviors:

• Maximum speed (vmax)

• Cruising speed (vc)

• Maximum acceleration (amax)

• Comfort zone radius (C)

Section 9.2 explains the relationship between these parameters. Speed and

the comfort zones C and D may likely be the first parameters to be chosen

since they so greatly define the behavior of the flock by defining its rate of

movement and its spacing.

40

9.2 Animal reaction

The animals’ ability to react to events like impending collisions is governed

by two quantities: the time the animals have to react and the rate at which

they are able to react. For an impending collision, the time that an animal

has to react is, of course, dependent on the animal’s speed and the distance

to the obstacle. The ability to react in that amount of time is dependent on

the animal’s ability to accelerate.

For example, if an animal is moving straight toward a tree, then whether

or not a collision occurs is dependent on:

• how close the animal needs to get to the tree to notice it (Ro),

• how fast the animal is going (up to vmax), and

• the animal’s maximum acceleration amax.

These are related to each other as shown, assuming that the animal is head-

ing directly towards an obstacle and needs to accelerate orthogonally to its

original velocity by a certain distance to sidestep the obstacle.

Reaction time(t) =
R

||~v0||
(15)

maximum distance able to be cleared =
1

2
amax · t2 =

1

2
amax(

R

||~v0||
)2 (16)

41

where R is the visible range and ~v0 is the initial velocity. It seems, then, that

adjusting the velocity and the visible range is more effective than adjusting

acceleration, since they have a quadratic relationship with the ability to

react, while acceleration has only a linear relationship.

On the other hand, if, instead of sidestepping the obstacle, we would like

the animal heading towards an obstacle to be able to decelerate to a stop

before the collision, then the following inequality must hold:

||~v0||2 ≤ 2amaxR (17)

assuming that the acceleration amax is in the opposite direction of the ve-

locity. Thus, the ratio

2amaxR

||~v0||2
(18)

must be held above unity.

Of course, when setting these parameters, we need to allow for more

than the exact ability to react. We must give some room for error to allow

for inaccuracies and imprecision in the simulation. At minimum we have

inaccuracy from the discrete-time nature of the simulation, and we have

imprecision from finite-precision floating-point numbers.

42

9.3 Inference of landmark values through empirical analysis

This section describes some of the parameters individually in more detail.

Reasonable bounds are considered for these parameters in order to determine

landmark values.

9.3.1 Comfort zone

The comfort zone C of the animal is the radius that an animal tries to keep

between itself and its flock-mates. Clearly this is dependent on the animal

size as it must be larger than the animal. If two animals’ centers get closer

than this distance, then the animals will accelerate apart. Also the danger

zone radius D must be larger than the animal size but smaller than the

comfort zone radius.

9.3.2 Visible flock-mate range

This parameter Rf controls how far away two animals can get from each

other and still affect each other’s behavior. The range of possible values for

this parameter are discussed here.

In order to improve the real-time performance of the simulation, the vis-

ible range of the animals should be reduced as much as possible to reduce

the number of other flock members that each animal has to consider. How-

43

ever, this raises the question of how far can the visible range practically be

lowered.

First, it is clear that reducing the visible range below the comfort zone

radius will significantly change the flock’s behavior. If the animal cannot

see as far out as the edges of its comfort zone, it will not know if another

animal has entered its comfort zone. And if the two animals have the same

parameters, then the two animals may be closer to each other than they

should be.

Another factor limiting the minimum acceptable value for the visible

range is the maximum speed vmax of the animals. If the animal’s top speed

is increased, then the minimum value for the visible range should be in-

creased. The reason for this is that the ratio of visible range to speed gives

the reaction time for collisions. And this ratio must be kept above some

minimum allowed reaction time. This was covered in more detail in Sec-

tion 9.2.

As for the maximum value for the visible flock-mate range, it can be

set arbitrarily large, keeping in mind that as Rf is increased, then each

animal has a larger neighborhood of flock-mates to consider which will slow

the simulation. Beyond some point, however, raising the value will have no

44

further effect4. Increasing the visible range beyond the diameter of the flock

will have no effect on the flock’s behavior. An approximate value for this

largest distance might possibly be computed for a flock at rest. When at

rest, the flock is squeezed together as tight as possible while keeping from

invading each others’ comfort zones. Indeed, in simulation they typically

arrange themselves in a tight group with approximately a hexagonal packing

lattice5. This makes sense since hexagonal packing becomes optimal for

packing circles inside a larger circle for large enough n (in this case, number

of animals). The area that this group covers should increase approximately

linearly with n. Thus the diameter of the group should vary proportionally

with
√

n. The downside to this is that by forming a lattice, the animals are

arranged in straight rows, which may be undesirable. Perhaps, to avoid this

phenomena, an additional behavior module is needed for random grazing

behavior when a herd is not traveling.

9.3.3 Visible obstacle range

This parameter Ro controls the distance from an animal within which ob-

stacles (such as trees) affect an animal’s behavior.

4It is worth mentioning that this statement hold only for the visible flock-mate range.

The visible obstacle range has different landmark values, as we discuss in Section 9.3.3.
5Gauss proved that this is the most compact lattice pattern.

45

In my implementation of obstacle avoidance, if an animal is heading

towards an obstacle, then the animal will attempt to steer towards the edge

of the obstacle that provides the shortest path to the goal. Figure 11 shows

an example of animals avoiding obstacles.

Figure 11: Screenshot showing animals avoiding obstacles.

This particular method of obstacle avoidance described in Section 6 cre-

ates a limit to the maximum acceptable value for the visible obstacle range.

The reason is that if an animal is facing an obstacle, then it will attempt

to steer towards the nearest edge that minimizes the path distance to the

46

goal. If the obstacles are positioned densely enough, or if the visible obstacle

range is large enough, then the animal may ‘see’ a solid wall of obstacles.

As soon as it has steered away from one obstacle, it will be facing another

obstacle, and may steer back to the original obstacle or to yet another ob-

stacle. This may continue indefinitely and may prevent the animals from

making progress. This problem can be eliminated by limiting the visible

obstacle range so that only the nearest obstacles are visible.

9.3.4 Viewing Angle

The viewing angle θv indicates how far behind itself an animal can ‘see.’

This is given as an angle from directly ahead, so the parameter can range

from 0 to π. However, in order for a traveling flock to keep the proper

spacing, then two animals side by side need to be able to see each other.

Thus, the viewing angle must be at least π
2 . This angle need not represent

merely peripheral vision, may include any way of sensing neighbors, such as

turning the head to scan a wider angle, and hearing.

Filtering by the viewing angle presents a small problem since it requires

calculating the angle between two vectors, which requires a trigonometric

operation. This operation will have to be calculated O(n2) number of times

every frame. In my implementation, results showed that this trigonometric

47

operation was using most of the computation time. This can be sped up by

storing cosine of the viewing angle.

9.3.5 Drag factor

The drag factor df is a multiplying constant to a force that helps the animals

travel more closely to the contour lines of the terrain. Setting this parameter

to zero eliminates this force, so that the animals travel in a straight line

over the terrain, ignoring the slope. Increasing the parameter results in a

stronger force keeping the animals from traveling across contour lines. If the

parameter is increased too high, then the animals will be held to contour

lines so strongly that they will not be able to climb even shallow hills. In

this case, the animals may easily become stuck. Figure 13 shows an example

of animals following contour lines as their group splits to get around a hill.

The drag factor normally resists the animals’ movements away from con-

tour lines. However, a negative value for df will actually accelerate the an-

imals away from the contour lines, producing unrealistic behavior. In this

case the animals will accelerate rapidly up and down the steepest hills and

never follow contour lines.

48

9.4 Summary

Table 1 lists the parameters discussed above and their landmark values,

summarizing our analysis.

Table 1: Parameter landmarks.

Landmark values

Parameter minimum maximum

animal size 0 ∞
max speed vmax cruising speed ∞
cruising speed vc 0 max speed

max acceleration amax 0 ∞
comfort zone C animal size ∞
danger zone D animal size comfort zone

visible flock-mate Rf comfort zone farthest flock-mate

visible obstacle Ro animal size ∞
viewing angle θv

π
2 π

drag factor fd 0 ~55

9.5 Varying Behaviors

By varying different parameters, different behaviors can emerge. Within

reasonable ranges, a fairly realistic herding behavior occurs. However, by

setting extreme values, odd behavior can occur. All of these results were

obtained from a flock of animals that all had the same parameter values.

• Ghost-like: By reducing the animals’ vision of each other to nil, then

each animal completely ignores the other. And, if the physics engine

49

does not handle the collisions, then the behavior is like a group of

independent ghosts that can pass right though each other. The vision

can be reduced to nothing by setting either the visible range or the

viewing angle to zero.

• Trapped by obstacles: By including enough obstacles within the visible

obstacle range so that the animals will see a solid wall of obstacles,

then the animals will no longer to be able to make progress and will

be, in a sense, trapped.

• Overwhelmed by terrain: By setting the drag force high enough, or

creating terrain steep enough, then the animals will no longer be able

to climb the slope. Thus the animals can become trapped by the

terrain and not be able to make progress.

• Swarm of insects: By allowing the animals to see each other only for

the purpose of trying to move to the center of the flock, then it can

create an effect that looks similar to a swarm of flying insects as they

appear to move randomly or perhaps in an orbit around the center of

mass of the flock.

50

Table 2: Parameters used to create various behaviors.

Behavior Parameters

Ghost-like Rf = 0 or
θv = 0

Trapped by obstacles Ro small enough, and
enough trees

Overwhelmed by terrain fd large enough

Swarm of insects Rf = 0 for avoid-
collision behavior

10 Results

These modifications to the flocking algorithm produce pleasing results. The

animals swerve around hills and dips in the terrain. They travel more slowly

when traveling downhill and more slowly still when traveling uphill. Fig-

ure 12 shows a screen-shot of a herd moving over the terrain towards the

camera. Each animal is represented by a small sphere.

Figure 12: Screenshot of herds moving over terrain

51

Figure 13 shows another screenshot from a top-down view. In this pic-

ture, the herd is moving towards the bottom right. This demonstrates that

the herd can divide into two groups to go around a hill. They will regroup

on the other side of the hill.

Figure 13: Screenshot of herd dividing into two group to go around a hill.

Since the 3D correction (Section 5.1) and the drag force (Section 5.2.3)

for following terrain are simply functions of the slope at the animal’s current

position, then computing this is constant-time for each animal, and thus for

the herd as a whole it is O(n) in the number of animals in the herd.

52

11 Future Work

There are many avenues for future exploration. Among the possible issues

raised are these listed here:

How do we handle a long ridge in the terrain with a distant gap? Should

the animals be smart enough to travel along the ridge to pass through the

gap in it.

This method is limited in that it was created specifically for terrain

described as an elevation grid. Perhaps modifications can be made to apply

this method to arbitrary terrain which might include features such as sheer

cliffs, overhangs, land bridges, or tunnels.

This method consists of a two-dimensional flocking algorithm with cor-

rections applied to it. Perhaps another method should be explored using

a three-dimensional flocking algorithm with constraints so the animals’ are

positioned on the terrain and their headings are tangent to the terrain.

Future progress could be done to give the animals higher-level behavior.

At this point, they merely navigate to a pre-determined goal location. A

higher-level behavior control module could make decisions about behavior.

Such behaviors could include finding food and water, migrating, and avoid-

ing danger. This brings up many complex issues such as how do the animals

find food and water? What sort of representation of the terrain should be

53

used to use to make behavioral decisions? Would this involve some sort of

spatial database system? This could be used to allow the animals to analyze

the terrain in front of them to make more intelligent decisions about where

to travel. What kind of memory should the animals have? Is one animal in

the herd the leader? If so, is there any challenging of the leader’s position?

Is there some kind of decision making at the herd-level? How much influence

do individual animals have?

Experiments could be done concerning the interaction of different species.

Especially interesting would be the integration of predators and prey, and

the factors that determine whether the ecological system is stable.

This method was designed for use with point-mass objects. Further work

could include the use of objects with a more complex representation or with

complex dynamics. Also involuntary motion like slipping and sliding down

a hill has not yet been implemented here.

This method simply uses distance to determine if neighbors are visible.

A more complex version might analyze the terrain and any obstacles in the

area to determine if vision is obstructed.

54

12 Conclusion

Reynolds’ flocking algorithm creates flocking behavior by combining a small

set of simple rules that each animal follows. By adding additional rules,

various behaviors can be created. In order to create the behavior of herds

moving over terrain we have made three modifications to the basic flocking

algorithm.

1. The position, velocity, and acceleration vectors in the flocking algo-

rithm are restricted to the 2D (x, y) plane.

2. At each time step, the position of an each animal is updated no longer

by just its velocity ~v but by ~v√
sv

2+1
.

3. An additional behavioral rule is added: an acceleration equal to−K (~v·~g)~g
||~g|| .

The constant K controls how tightly the herd will follow the contour

lines of the terrain. K can be adjusted to allow low energy expenditure and

other terrain-following behaviors.

55

A Source code

///

// Boid.h: interface for the Boid class.

// A Boid object represents one animal in the simulation

// Joel Gompert

//

#if !defined(AFX_BOID_H__4A9416A7_C323_4E53_87BB_A1E6DD0D0123__INCLUDED_)

#define AFX_BOID_H__4A9416A7_C323_4E53_87BB_A1E6DD0D0123__INCLUDED_

#if _MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000

#include "Vector2D.h"

#include "Entity.h"

#include "Mesh.h"

#include "Terrain.h"

#include "Flock.h"

class Flock;

class Boid : public PhysicalEntity

{

public:

// Constructor #1

// creates an individual boid with randomized position,

// velocity, and orientation.

Boid(LPDIRECT3DDEVICE9 CreationDevice, Flock* f, Terrain* t);

// Constructor #2

// creates an individual boid with specific position and velocity.

Boid(LPDIRECT3DDEVICE9 CreationDevice, Flock* f, Terrain* t,

const Vector2D& startpos, const Vector2D& startvel);

///

// functions required for PhysicalEntity

D3DXVECTOR3 GetGroundContactPoint();

56

void GetMeshes(Mesh** MeshArray);

int GetMeshCount();

unsigned int GetAction(float TimeStep, Msg** SentMsgs);

unsigned int SendMsg(Msg* RecievedMsg, Msg** SentMsgs);

///

// Destructor

virtual ~Boid() {}

// Update_Behaviors needs to be called frequently.

// This is where the animal makes decisions and updates

// its behavior and current acceleration

void Update_Behaviors();

// Update needs to be called every frame. This is where

// the animal’s position is updated and animated

void Update(float elapsed_time);

// helper stuff for controlling the rate at which

// Update_Behaviors() is called

int behavior_update_delay;

// number of frames between behavior updates

int last_behavior_update;

// number of frames since last behavior update

// accessor function

// retrieves the current 2D position of the animal

Vector2D getPos() const;

// for some experiments we want the boids in the flock

// in different groups, we’ll call the groups ’teams’

int team;

// a pointer to the terrain object

Terrain* terrain;

///////////////////////////////////

// Temporary addition for calculating energy expenditure

D3DXVECTOR3 lastPos;

57

float energy;

void reset();

float TERRAIN_DRAG_FACTOR;

float DOWNHILL_TERRAIN_DRAG_FACTOR;

//

// this lets the animal know which flock it is a member of

Flock* parentFlock;

private:

// this is the 3D model that appears in the

// animation for this animal

Mesh* m_mesh;

// current 2D acceleration, velocity and position of the animal

Vector2D m_2acceleration;

Vector2D m_2velocity;

Vector2D m_2position;

// this is scratch space used by each boid

static list<Boid *> neighborList;

// finds all animals in parentFlock which are to be considered

// neigbors of this animal and stores this

// list of animals in neighborList

void computeNeighbors();

// computes new acceleration for the boid each frame

// it is called by Update_Behaviors()

Vector2D navigator();

// These functions provide all of the basis behaviors that are

// combined to create the overall behavior of the animal

Vector2D keepDistance();

// keeps comfort space between animals

Vector2D matchHeading();

// adjusts velocity to match neighbors

58

Vector2D steerToCenter(); // maintains flock cohesion

Vector2D avoidObstacles(); // steer arounds trees

Vector2D gotoGoal(); // steers animal towards the goal

//Vector2D avoidCircularObstacle(Vector2D pos, float radius);

// this is the function that combines the basis behaviors

// it combines valueToAdd with the running total contained

// in accumulator and returns the magnitude of the resulting

// value of accumulator

float accumulate(Vector2D& accumulator,

const Vector2D& valueToAdd);

};

#endif//!defined(AFX_BOID_H__4A9416A7_C323_4E53_87BB_A1E6DD0D0123__INCLUDED_)

59

//

//

// Boid.cpp: implementation of the Boid class.

// A Boid object represents one animal in the simulation

// Joel Gompert

//

#include "Boid.h"

#include "utils.h"

#include "forest.h"

#include <cmath>

//

// stuff for profiling

#include "profiler/profiler_lowlevel.h"

#include "profiler/profiler_highlevel.h"

// Definitions for the program zones we will use in

// this file (there are also some zones in the

// ’profiler’ subdirectory)

Define_Zone(boid_update);

Define_Zone(boid_navigator);

Define_Zone(boid_accumulate);

Define_Zone(boid_compute_neigbors);

Define_Zone(boid_avoid_obstacles);

Define_Zone(boid_keep_distance);

Define_Zone(boid_match_heading);

Define_Zone(boid_steer_to_center);

Define_Zone(boid_goto_goal);

// end of profiling stuff

///

//

// Here are the parameters that control the animal behavior

// at this point they are constants, but they could be different

// for each individual animal

const float BOID_MAX_SPEED = 10.00f;

const float BOID_CRUISING_SPEED = 0.7f * BOID_MAX_SPEED;

const float BOID_MAX_ACCELERTION = BOID_MAX_SPEED * 2.0f;

60

const float BOID_RADIUS = .05f;

const float BOID_COMFORT_RADIUS = BOID_RADIUS * 8.0f;

const float BOID_DANGER_RADIUS = BOID_RADIUS * 4.0f;

const float BOID_VISIBLE_RANGE = BOID_RADIUS * 200.0f;

const float BOID_VISIBLE_TREE_RANGE = 10.4f;

const float BOID_VIEWING_ANGLE = PI*3.0f / 4.0f;

// Maximum angle (from the vector pointing directly ahead)

// that a boid can see

const float BOID_INITIAL_TERRAIN_DRAG_FACTOR = 30.0f;

const float BOID_INITIAL_DOWNHILL_DRAG_FACTOR =

BOID_INITIAL_TERRAIN_DRAG_FACTOR / 5;

///

// declaration necessary for static members

list<Boid *> Boid::neighborList;

//

// Construction/Destruction

//

// Constructor #1

// creates an individual boid with randaomized position,

// velocity, and orientation.

Boid::Boid(LPDIRECT3DDEVICE9 CreationDevice, Flock* f, Terrain* t)

{

parentFlock = f;

terrain = t;

///

// set up the 3D model for this boid

m_mesh = new Mesh();

LPD3DXMESH NewMesh;

// for now animals will be represented by simple spheres

D3DXCreateSphere(CreationDevice, BOID_RADIUS, 10,10,

&NewMesh, NULL);

m_mesh->SetD3DXMesh(NewMesh);

61

// set up the material for this boid

// for now, a simple red color will do

D3DMATERIAL9 NewMaterial;

memset(&NewMaterial,0, sizeof(NewMaterial));

NewMaterial.Ambient.a = 1;

NewMaterial.Ambient.b = 0;

NewMaterial.Ambient.r = 1;

NewMaterial.Ambient.g = 0;

NewMaterial.Diffuse = NewMaterial.Ambient;

m_mesh->SetMaterials(1, &NewMaterial);

///

team = 0;

// set a random position

m_2position = Vector2D(

3.0f * (float(rand()) / float(RAND_MAX)) +3.5f,

3.0f * (float(rand()) / float(RAND_MAX)) +3.5f);

// pick a random angle...

float r = 2*PI * (float(rand()) / float(RAND_MAX));

// ...and a random speed...

float speed = BOID_MAX_SPEED * (float(rand()) / float(RAND_MAX));

// ...to form a random velocity

m_2velocity = Vector2D((float)sin(r), (float)-cos(r)) * speed;

// initial acceleration is zero

m_2acceleration = Vector2D(0,0);

// set the PhysicalEntity 3D positon

Position = D3DXVECTOR3(m_2position.x, m_2position.y,

terrain->GetHeight(m_2position.x, m_2position.y) + BOID_RADIUS*2);

///////////////////////////////////

// Temporary addition for calculating energy expenditure

lastPos = Position;

energy = 0;

TERRAIN_DRAG_FACTOR = BOID_INITIAL_TERRAIN_DRAG_FACTOR;

DOWNHILL_TERRAIN_DRAG_FACTOR = BOID_INITIAL_DOWNHILL_DRAG_FACTOR;

62

//

}

// Constructor #2

// creates an individual boid with specific position and velocity.

Boid::Boid(LPDIRECT3DDEVICE9 CreationDevice, Flock* f, Terrain* t,

const Vector2D& startpos, const Vector2D& startvel)

{

parentFlock = f;

terrain = t;

///

// set up the 3D model for this boid

m_mesh = new Mesh();

LPD3DXMESH NewMesh;

//Radius = BallRadius;

// for now animals will be represented by simple spheres

D3DXCreateSphere(CreationDevice, BOID_RADIUS, 10,10, &NewMesh, NULL);

m_mesh->SetD3DXMesh(NewMesh);

// set up the material for this boid

// for now, a simple red color will do

D3DMATERIAL9 NewMaterial;

memset(&NewMaterial,0, sizeof(NewMaterial));

NewMaterial.Ambient.a = 1;

NewMaterial.Ambient.b = 0;

NewMaterial.Ambient.r = 1;

NewMaterial.Ambient.g = 0;

NewMaterial.Diffuse = NewMaterial.Ambient;

m_mesh->SetMaterials(1, &NewMaterial);

///

team = 0;

// set position and velocity

m_2position = startpos;

m_2velocity = startvel;

63

// initial acceleration is zero

m_2acceleration = Vector2D(0,0);

// set the PhysicalEntity 3D positon

Position = D3DXVECTOR3(m_2position.x, m_2position.y,

terrain->GetHeight(m_2position.x, m_2position.y) + BOID_RADIUS*2);

///

// Temporary addition for calculating energy expenditure

lastPos = Position;

energy = 0;

TERRAIN_DRAG_FACTOR = BOID_INITIAL_TERRAIN_DRAG_FACTOR;

DOWNHILL_TERRAIN_DRAG_FACTOR = BOID_INITIAL_DOWNHILL_DRAG_FACTOR;

///

}

// Update() must be called every frame, but

// Update_Behaviors() may be called less often,

// but preferably still at least several times a second

// Update_Behaviors needs to be called frequently. This is where the animal

// makes decisions and updates its behavior and current acceleration

void Boid::Update_Behaviors()

{

// at this point just get new acceleration based on basis behaviors

m_2acceleration = navigator();

}

// Update needs to be called every frame. This is where the animal’s position

// is updated and animated

void Boid::Update(float elapsed_time)

{

Profile_Scope(boid_update);

//

// Drag Force behavior

// we want to take into account the gradient

// of the terrain at the boid’s current position

Vector2D grad(terrain->GetGradient(this->m_2position.x,

this->m_2position.y));

64

// slope in the direction of the gradient

float slope = grad.magnitude();

//m_2acceleration -= grad * 4 / (1+ slope*slope);// * slope;

if(slope > 0) // if the slope is zero, then nothing to do

{

//Vector2D unitgrad = grad / slope; // normalized gradient

// component of current velocity in the direction of the gradient

float dot = DotProduct(this->m_2velocity, grad);

Vector2D new_a;

if(dot > 0) // boid is traveling uphill

{

new_a = (-TERRAIN_DRAG_FACTOR * dot / slope) * grad ;

}

else if(dot < 0) // boid is traveling downhill

{

new_a = (-DOWNHILL_TERRAIN_DRAG_FACTOR * dot / slope) * grad;

}

m_2acceleration += new_a;

}

//

// update position

// component of the gradient in the direction of the current velocity

// in other words, the slope in the direction the boid is travelling.

float grad_velcomp = DotProduct(this->m_2velocity.normalized(), grad);

// the 1/sqrtf(s*s + 1) adjustments are there to account for

// the fact that the two dimensional velocity and acc are actually

// moving the boids over 3D terrain. This effectively reduces the speed

// by a function of the slope in that direction. A possible

// optimization would be to approximate the 1/sqrt(s*s + 1) factor

m_2position += m_2velocity*elapsed_time /

sqrtf(grad_velcomp*grad_velcomp + 1);

65

//

// update velocity

m_2velocity += m_2acceleration * elapsed_time;

// Cap off velocity at maximum allowed value

if (m_2velocity.squared_magnitude() > (BOID_MAX_SPEED*BOID_MAX_SPEED))

{

m_2velocity.setMagnitude(BOID_MAX_SPEED);

}

// set the Physical entity positon

Position = D3DXVECTOR3(m_2position.x, m_2position.y,

terrain->GetHeight(m_2position.x, m_2position.y) + BOID_RADIUS*2);

//

// Temporary addition for calculating energy expenditure

//D3DXVECTOR3 disp = Position - lastPos;

//lastPos = Position;

//float distance = sqrtf(D3DXVec3LengthSq(&disp));

//if(distance > 0)

//{

// float movement_slope = disp.z / sqrtf(D3DXVec3LengthSq(&disp) - SQUARED(disp.z));

// // energy expended is linear with distance traveled, and slope determines the constant,

// // come up with some multiplying factor as a function of the slope.

// float slope_factor = -(atanf(6.0f * (movement_slope + 0.34f)) - 5.0f * atanf(8.0f

//

// //// lets try some piecewise linear function

// //// less than x1, the energy expenditure is at some maximum for downhil movement

// //// at slope of x2, energy expenditure is at a minimum

// //// greater than x3, the energy expenditure is at some maximum for uphill movement

// //const float x1 = -1.0f, x2 = -0.1f, x3 = 1.0f;

// //if(movement_slope < x1) // below this we just use a constant

// //{

// // slope_factor = 3;

// //}

// //else if(movement_slope < x2) // in the range [x1, x2)

66

// //{

// // const float m = (1.0f-3.0f)/(x2 - x1);

// // const float b = 3.0f - m*(x1);

// // slope_factor = m * movement_slope + b; // (y = m*x + b)

// //}

// //else if(movement_slope < x3) // in the range [x2, x3)

// //{

// // const float m = (4.0f-1.0f)/(x3 - x2);

// // const float b = 1.0f - m*x2;

// // slope_factor = m * movement_slope + b; // (y = m*x + b)

// //}

// //else // in the range [x3, infinity)

// //{

// // slope_factor = 4;

// //}

// energy += distance * slope_factor;

//}

//

// see if it is time to update behavior

last_behavior_update = (last_behavior_update + 1) %

behavior_update_delay;

if(0 == last_behavior_update)

Update_Behaviors();

}

// this is the function that combines the basis behaviors

// it combines valueToAdd with the running total contained in accumulator

// and returns the magnitude of the resulting value of accumulator

float Boid::accumulate(Vector2D& accumulator, const Vector2D& valueToAdd)

{

Profile_Scope(boid_accumulate);

// we want to come up with some combination of these two

// vectors but we do not want the final result’s magnitude

// to be greater than 1.0

// so first, we add the two together and check if we’re within

// the limit.

67

Vector2D temp = accumulator + valueToAdd;

if(temp.squared_magnitude() <= 1.0)

{

// we are, so go ahead and return this result

accumulator = temp;

return temp.magnitude();

}

else

{

// we’re not, so we want to add on just enough of the valueToAdd

// to bring our magnitude to 1.0

// to do this, we want to find a value t such that

// the magnitude of accumulator + t*valueToAdd is 1.0

// solving for this value t requires solving a quadratic

// equation. Here are the 3 coefficients:

float a = valueToAdd.squared_magnitude();

float b = 2 * DotProduct(valueToAdd, accumulator);

float c = accumulator.squared_magnitude()-1;

// quadratic formula

float t = (float) (-b + sqrt(b*b - 4*a*c))/(2*a);

accumulator += valueToAdd*t;

return 1.0f;

}

}

// finds all animals in parentFlock which are to be considered

// neigbors of this animal and stores this list of animals in neighborList

void Boid::computeNeighbors()

{

Profile_Scope(boid_compute_neigbors);

// loop through all the members of the flock

list<Boid *>::iterator i;

for(i = (parentFlock->members.begin());

i != parentFlock->members.end(); i++)

{

Boid *pBoid = *i;

// do not bother adding this boid itself to its own

68

// list of its neighbors

if(pBoid == this)

continue;

// get vector pointing from this boid to its flock-mate

Vector2D dir = pBoid->m_2position - this->m_2position;

// if this other boid is visible then it is a neighbor

if(dir.squared_magnitude() <= SQUARED(BOID_VISIBLE_RANGE) &&

// if it is close enough

this->m_2velocity.angle(dir) < BOID_VIEWING_ANGLE)

// and if it is in the field of view

{

// then add it to the list of neighbors

neighborList.push_back(pBoid);

}

}

}

// computes new acceleration for the boid each frame

// it is called by Update_Behaviors()

Vector2D Boid::navigator()

{

Profile_Scope(boid_navigator);

Vector2D acc(0,0);

float mag;

computeNeighbors();

mag = accumulate(acc, avoidObstacles());

if(mag < 1.0)

mag = accumulate(acc, keepDistance());

if(mag < 1.0)

mag = accumulate(acc, matchHeading());

69

if(mag < 1.0)

mag = accumulate(acc, steerToCenter());

if(mag < 1.0)

mag = accumulate(acc, gotoGoal());

// IMPORTANT:

// Since the FlockCentering, CollisionAvoidance, and VelocityMatching modules

// return a vector whose magnitude is a percentage of the maximum acceleration,

// we need to convert this to a real magnitude

acc *= BOID_MAX_ACCELERTION;

neighborList.clear();

return acc;

}

extern Forest* MainForest;

// steer arounds trees

Vector2D Boid::avoidObstacles()

{

Profile_Scope(boid_avoid_obstacles);

Tree** Trees;

int TreeCount = MainForest->GetTrees(Trees); // Get the list of trees

int i;

Vector2D force(0,0); // accumulative force of all the trees

float closest_dist_squared;

bool tree_found = false;

for(i=0; i<TreeCount; i++) // for each tree

{

// get the posititon and radius of this tree

Vector2D treepos = Vector2D(Trees[i]->Position.x,

Trees[i]->Position.y);

float radius = (Trees[i]->Height / 10.0f) + (BOID_RADIUS);

// we add BOID_RADIUS, because we want the boid to aim not

// for the exact edge of the tree, but to allow enough

// room for boid to get past the edge

70

// disp is the vector pointing from the

// boid’s position to the tree’s center

Vector2D disp = treepos - this->m_2position;

// get the squared distance to the tree

float disp_mag_squared = disp.squared_magnitude();

if(tree_found && closest_dist_squared < disp_mag_squared)

continue; // with next tree

// check emergency condition of colliding with the tree.

if(disp_mag_squared <= SQUARED(radius))

{

// in this case we want to accelerate directly away

// add a force directly away from the tree

force = - disp * (100 * SQUARED(BOID_RADIUS) /

disp_mag_squared);

tree_found = true;

closest_dist_squared = disp_mag_squared;

continue; // with next tree

}

// otherwise we are not colliding yet

// check if the direction to the tree is behind the boid.

// if so, we can ignore it and just go on to the next tree

if(DotProduct(disp, this->m_2velocity) <= 0)

continue; // with next tree

// if we get to this point we know that the

// direction to the tree make an angle

// with the velocity vector of less than 90 degrees.

// find the projection of the tree onto the line

// perpendicular to disp

float projected_r;

if(disp_mag_squared < 4 * SQUARED(radius))

71

// estimate if we are getting "close" to the tree

{

// we’re getting too close to the circle for

// approximations, we need to be more exact

projected_r = sqrtf(SQUARED(radius) * disp_mag_squared /

(disp_mag_squared - SQUARED(radius)));

}

else if(disp_mag_squared < SQUARED(BOID_VISIBLE_TREE_RANGE))

{

// use a bigger radius than the actual

// radius just to give some comfort space

projected_r = radius * 1.3f;

}

else // the tree is not within visible range

{

continue; // with next tree

}

// here comes the tricky part. Basically we want to

// project the circle of the tree onto a line perpendicular

// to the velocity. If the tree projects entirely to the left

// or to the right of the current position, then the boid is

// not heading on a collision course

// this is the distance to the tree

float disp_mag = sqrtf(disp_mag_squared);

// use it to calculate the unit vector pointing to the tree

Vector2D unit_disp = disp / disp_mag;

// unit vector pointing towards center of tree

// d = unit vector pointing to the tree but rotated 90 degrees

Vector2D d = Vector2D(unit_disp.y, -unit_disp.x);

// rotate 90 degrees

// projection of the velocity on a line perpendicular

// to the direction to the tree

// we need to calculate the 2 points to the either

// side of the tree that we will project

72

Vector2D point1 = (d * projected_r) + disp;

Vector2D point2 = (-d * projected_r) + disp;

// rotate the velocity 90 degrees so that we have a vector

// perpendicular to the velocity

Vector2D right(m_2velocity.y, -m_2velocity.x);

// we do not need to normalize it because we only care about

relative distances

// p1 and p2 are the projections of point1 and point2

float p1 = DotProduct(point1, right);

float p2 = DotProduct(point2, right);

// if one projection is positive and the other is negative

// then the velocity is pointing at the tree.

// Otherwise we can ignore this tree

if((p1<0 && p2>0) || (p1>0 && p2<0))

{

// okay, we’re looking at the tree. Now, which

// edge of the tree is closer to the current

// direction the boid is facing.

Vector2D new_vel;

// use the point that is closer to the velocity

// direction (the one whose projection is

// closest to zero)

if(fabs(p1) > fabs(p2))

new_vel = point2;

else

new_vel = point1;

// we’ve got a vector pointing the direction we want.

// Now to set its magnitude.

// we can just use the boid’s current speed.

new_vel.setMagnitude(this->m_2velocity.magnitude());

// now apply a force pushing the current velocity

// towards this new velocity

// (use the radius/distance ratio so that nearer

// trees have a greater impact)

73

force = 10000*(new_vel - m_2velocity)*(radius/disp_mag);

tree_found = true;

closest_dist_squared = disp_mag_squared;

}

}

// limit at magnitude 1

if(force.squared_magnitude() > 1)

force.setMagnitude(1.0f);

return force;

}

// keeps comfort space between animals

// provides an acceleration away from nearest neighbors if

// they are too close

// it assumes that neighborList already contains the list

// of neighbor boids

Vector2D Boid::keepDistance()

{

Profile_Scope(boid_keep_distance);

if(neighborList.size() == 0)

return Vector2D(0,0);

Vector2D change(0,0);

list<Boid *>::iterator i;

for(i = neighborList.begin(); i != neighborList.end(); i++)

{

Boid* pBoid = *i;

// dist is a vector pointing to the other boid

Vector2D dist = pBoid->m_2position - this->m_2position;

// get the squared distance to the other boid

float mag2 = dist.squared_magnitude();

// check if the other boid is invading our comfort zone

if(mag2 < SQUARED(BOID_COMFORT_RADIUS))

{

74

// okay we’re too close, a collision may be immenent

// decide how strongly we need to accelerate away

float newmag = (SQUARED(BOID_COMFORT_RADIUS) - mag2) /

(SQUARED(BOID_COMFORT_RADIUS) -

SQUARED(BOID_DANGER_RADIUS));

// cap it off at 1

if(newmag > 1.0f) newmag = 1.0f;

dist.setMagnitude(newmag);

change -= dist;

}

}

if(change.squared_magnitude() > 1)

change.setMagnitude(1.0f);

return change;

}

// adjusts velocity to match average of neighbors

// assumes that neighborList already contains a list

// of the neighbors

Vector2D Boid::matchHeading()

{

Profile_Scope(boid_match_heading);

// if there are no neighbors, nothing to do

if(neighborList.size() == 0)

return Vector2D(0,0);

// we’ll use ave to find the average velocity of the neighbors

Vector2D ave(0,0);

int count = 0;

list<Boid *>::iterator i;

for(i = neighborList.begin(); i != neighborList.end(); i++)

{

Boid* pBoid = *i;

if(pBoid->team == this->team)

{

ave += pBoid->m_2velocity;

count++;

}

75

}

if(count == 0)

return Vector2D(0,0);

ave /= (float)count; // finish computing the average

Vector2D change = (ave - this->m_2velocity) / (BOID_MAX_SPEED/2);

if(change.squared_magnitude() > 1)

change.setMagnitude(1);

return change;

}

// maintains flock cohesion

// accelerates toward the average position of the neighbors

// assumes that neighborList is already filled with the list of neighbors

Vector2D Boid::steerToCenter()

{

Profile_Scope(boid_steer_to_center);

// if no neighbors, then nothing to do

if(neighborList.size() == 0)

return Vector2D(0,0);

// we’ll use ave to find the average position of the neighbors

Vector2D ave(0,0);

int count = 0;

list<Boid *>::iterator i;

for(i = neighborList.begin(); i != neighborList.end(); i++)

{

Boid* pBoid = *i;

if(pBoid->team == this->team)

{

ave += pBoid->m_2position;

count++;

}

}

if(0 == count)

return Vector2D(0,0);

76

ave /= (float)count; // finish computing average

Vector2D change = (ave - this->m_2position)/50;

if(change.squared_magnitude() > 1)

change.setMagnitude(1);

return change;

}

// steers animal towards the goal

Vector2D Boid::gotoGoal()

{

Profile_Scope(boid_goto_goal);

// get a vector pointing towards the goal

Vector2D newV = (parentFlock->team_goals[this->team] - m_2position);

// adjust this vector to cap its magnitude off at BOID_CRUISING_SPEED

// we’ll use this new vector as our new target velocity

if(newV.squared_magnitude() > SQUARED(BOID_CRUISING_SPEED))

newV.setMagnitude(BOID_CRUISING_SPEED);

// find out the difference between our current velocity and

// our target velocity. This will be our new adjustment

Vector2D change = (newV - this->m_2velocity)/(BOID_MAX_SPEED/2);

if(change.squared_magnitude() > 1)

change.setMagnitude(1);

return change;

}

// accessor function

// retrieves the current 2D position of the animal

Vector2D Boid::getPos() const

{

return this->m_2position;

}

///

// functions required for PhysicalEntity

D3DXVECTOR3 Boid::GetGroundContactPoint()

{

77

D3DXVECTOR3 Result;

Result = Position;

Result.z -= BOID_RADIUS;

return Result;

}

void Boid::GetMeshes(Mesh** MeshArray)

{

MeshArray[0] = m_mesh;

}

int Boid::GetMeshCount()

{

return 1;

}

unsigned int Boid::GetAction(float TimeStep, Msg** SentMsgs)

{

Update(TimeStep);

return 0;

}

unsigned int Boid::SendMsg(Msg* RecievedMsg, Msg** SentMsgs)

{

return 0;

}

///

//

void Boid::reset()

{

m_2position = Vector2D(3 * (float(rand()) / float(RAND_MAX)) +3.5f,

3 * (float(rand()) / float(RAND_MAX)) +3.5f);

m_2velocity = Vector2D(0,0);

m_2acceleration = Vector2D(0,0);

Position = D3DXVECTOR3(m_2position.x, m_2position.y,

terrain->GetHeight(m_2position.x, m_2position.y) + BOID_RADIUS*2);

78

///////////////////////////////////

// Temporary addition for calculating energy expenditure

lastPos = Position;

energy = 0;

//

}

79

///

// Flock.h: interface for the Flock class.

// A flock contains a list of boids

// The Flock is not responsible for deleting dynamically

// allocated boids

// Joel Gompert

//

#if !defined(AFX_FLOCK_H__AB70E4E2_1566_4EF1_8991_00EB8A769A65__INCLUDED_)

#define AFX_FLOCK_H__AB70E4E2_1566_4EF1_8991_00EB8A769A65__INCLUDED_

#if _MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000

#include <list>

using namespace std;

#include "Entity.h"

#include "Mesh.h"

#include "Boid.h"

class Boid;

class Flock : public AbstractEntity

{

public:

///////////////////////////////

// Constructors and destructors

///////////////////////////////

Flock();

virtual ~Flock();

// a helper function to release the memory of all the boids in the flock

void cleanup();

/////////////////////

// flocking functions

/////////////////////

void Update(float elapsed_time); // updates all members of the flock

80

//////////////////////////

// miscellaneous functions

//////////////////////////

void AddTo(Boid* boid); // adds a boid to the flock

int GetCount() const {return members.size();}

// get number of boids in the flock

void RemoveFrom(Boid* boid);

// removes a boid from the flock and releases the boid’s memory

Vector2D ave2Pos(int team); // gives the average 2D position of the flock

D3DXVECTOR3 ave3Pos(int team);

// returns the average 3D position of the flock

///

// functions required for PhysicalEntity

unsigned int GetAction(float TimeStep, Msg** SentMsgs);

unsigned int SendMsg(Msg* RecievedMsg, Msg** SentMsgs);

///

//

// Temporary addition for calculating energy expediture

float aveEnergy();

//

friend Boid;

Vector2D team_goals[2];

private:

list<Boid *> members; // the members of the flock

};

#endif // !defined(AFX_FLOCK_H__AB70E4E2_1566_4EF1_8991_00EB8A769A65__INCLUDED_)

81

//

// Flock.cpp: implementation of the Flock class.

// A flock contains a list of boids

// Joel Gompert

//

#include <fstream> // for outputting energy data

#include "Flock.h"

//

// Construction/Destruction

//

Flock::Flock()

{

// set up some example goal positions

team_goals[0] = Vector2D(35,35);

team_goals[1] = Vector2D(50,50);

}

Flock::~Flock()

{

}

// calls Update() on all members of the flock

void Flock::Update(float elapsed_time)

{

list<Boid *>::iterator i;

for(i = members.begin(); i != members.end(); i++)

{

(*i)->Update(elapsed_time);

}

}

// adds a boid to the flock

void Flock::AddTo(Boid* boid)

{

// there are two steps to this because the flock

82

// and the boid must point to each other

members.push_back(boid); // let the flock know about the boid

boid->parentFlock = this; // let the boid know which flock it is in

}

// here’s a helper function to release the memory of all the boids in the flock

void Flock::cleanup()

{

while(!members.empty())

{

Boid *pBoid = members.front();

members.pop_front();

delete pBoid;

}

}

// removes a boid from the flock and releases the boid’s memory

void Flock::RemoveFrom(Boid* boid)

{

// first we have to find this boid in the list

list<Boid *>::iterator i;

for(i = members.begin(); i != members.end(); i++)

{

Boid *pBoid = *i;

if(pBoid == boid)

{

// here it is, remove it and delete it

members.erase(i);

delete pBoid;

return;

}

}

return;

}

// gives the average 2D position of the flock

Vector2D Flock::ave2Pos(int team)

{

Vector2D ave(0,0);

83

int count = 0;

list<Boid *>::iterator i;

for(i = members.begin(); i != members.end(); i++)

{

Boid *pBoid = *i;

if(team == pBoid->team)

{

ave += pBoid->getPos();

count++;

}

}

return (ave / (float)count);

}

// returns the average 3D position of the flock

D3DXVECTOR3 Flock::ave3Pos(int team)

{

D3DXVECTOR3 ave(0,0,0);

int count = 0;

list<Boid *>::iterator i;

for(i = members.begin(); i != members.end(); i++)

{

Boid *pBoid = *i;

if(team == pBoid->team)

{

Vector2D p = pBoid->getPos();

ave += D3DXVECTOR3(p.x, p.y,

pBoid->terrain->GetHeight(p.x, p.y));

count++;

}

}

return (ave / (float)count);

}

///

// functions required for PhysicalEntity

84

unsigned int Flock::GetAction(float TimeStep, Msg** SentMsgs)

{

const float some_error_constant = 10.0f;

// here we can check if the flock has reached its goal.

// if the average position of the flock is within some

// error constant distance from the goal

//if(aveEnergy() > 350 || (ave2Pos(0) - team_goals[0]).squared_magnitude() < some_error_constant)

//{

// // output the current average energy expended

// ofstream fout;

// fout.open("energy.dat", ios_base::app);

// fout << aveEnergy() << ’\t’;

//

// Boid *pBoid = (Boid *)members.front();

//

// pBoid->terrain->Initialize(40, 40);

// pBoid->terrain->NewRandomSmoothTerrain();

// pBoid->terrain->NormalizeHeight();

// float df = pBoid->TERRAIN_DRAG_FACTOR;

// df += 12.5f;

// if(df > 75.0f)

// {

// fout << endl;

// df = 0;

// }

// fout.close();

// list<Boid *>::iterator i;

// for(i = members.begin(); i != members.end(); i++)

// {

// pBoid = *i;

// pBoid->reset();

// pBoid->TERRAIN_DRAG_FACTOR = df;

// }

//}

85

return 0;

}

unsigned int Flock::SendMsg(Msg* RecievedMsg, Msg** SentMsgs)

{

return 0;

}

///

//

// Temporary addition for calculating energy expediture

float Flock::aveEnergy()

{

float ave = 0;

int count = 0;

list<Boid *>::iterator i;

for(i = members.begin(); i != members.end(); i++)

{

Boid *pBoid = *i;

if(0 == pBoid->team)

{

ave += pBoid->energy;

count++;

}

}

return (ave / (float)count);

}

//

86

References

[1] David M. Bourg. Physics for Game Developers. O’Reilly & Associates,
2001.

[2] Gary William Flake. The Computational Beauty of Nature. The MIT
Press, Cambridge, Massachusetts, 1999.

[3] Joel Gompert. Flocking over 3d terrain. Technical report, University
of Nebraska-Lincoln, 2002.

[4] Sanjiv Kapoor. Efficient computation of geodesic shortest paths. In
ACM Symposium on Theory of Computing, 1999.

[5] Christopher Kline. web.media.mit.edu/~ckline/cornellwww/boid/Boid.c++.
Cornell University.

[6] A. E. Minetti. Mechanical determinants of grade walking energetics.
Journal of Physiology, 472:725–735, 1993.

[7] A.E. Minetti and R. McN. Alexander. A theory of metabolic costs for
bipedal gait. Journal of Theoretical Biology, 186:467–476, 1997.

[8] Craig W. Reynolds. Flocks, herds, and schools: A distributed behavior
model. In SIGGRAPH ’87 Conference Proceedings, pages 25–34, 1987.

[9] Craig W. Reynolds. Not bumping into things: Notes on “obstacle
avoidance” for the course on physically based modeling. In SIGGRAPH

’88 Conference Proceedings, 1988.

[10] Craig W. Reynolds. Steering behaviors for autonomous charac-
ters. In Proceedings of Game Developers Conference, pages 763–
782, San Francisco, California, 1999. Miller Freeman Game Group.
http://www.red3d.com/cwr/papers/1999/gdc99steer.html.

87

