Larvae of Ceratocanthidae and Hybosoridae (Coleoptera: Scarabaeoidea): study of morphology, phylogenetic analysis and evidence of paraphyly of Hybosoridae

Vasily V. Grebennikov
University of Pretoria, Pretoria, South Africa

Alberto Ballerio
Viale Venezia 45, I-25123 Brescia, Italy

Federico C. Ocampo
University of Nebraska - Lincoln, focampo2@unl.edu

Clarke E. Scholtz
University of Pretoria, Pretoria, South Africa

Follow this and additional works at: http://digitalcommons.unl.edu/entomologypapers

Part of the Entomology Commons

http://digitalcommons.unl.edu/entomologypapers/128

This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Larvae of Ceratocanthidae and Hybosoridae (Coleoptera: Scarabaeoidea): study of morphology, phylogenetic analysis and evidence of paraphyly of Hybosoridae

Vasily V. Grebennikov1,*, Alberto Ballerio2, Federico C. Ocampo3, and Clarke H. Scholtz1

1 Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
2 Viale Venezia 45, I-25123 Brescia, Italy
3 Systematic Research Collection, W436 Nebraska Hall, University of Nebraska, Lincoln, NE, U.S.A.
* Correspondence: Vasily V. Grebennikov, Institut für Spezielle Zoologie und Evolutionbiologie, Friedrich Schiller Universität Jena, Erbertstraße 1, D-07743 Jena, Germany. E-mail: v_grebennikov@mail.ru

Abstract. Larvae of the scarabaeoid genera Germarostes Paulian, Cyphopisthes Gestro, Paulianostes Ballerio, Ceratocanthus White, Pterorthochaetes Gestro, Madrasostes Paulian, Astaenomoechus Martinez & Pereira (Ceratocanthidae) and Hybosorus Macleay, Phaeochrous Castelnau, and Anaides Westwood (Hybosoridae) are described, keyed and illustrated with fifty-seven drawings. A phylogenetic analysis of these two families based on larval morphology is presented. Fifty-four larval morphological and three biological characters from twenty-seven taxa revealed nineteen equally parsimonious cladograms. The monophyly of (Ceratocanthidae + Hybosoridae) is supported by four unambiguous unique synapomorphies: dorsal medial endocarina on cranium extended anteriorly into frontal sclerite; presence of large membranous spot on apical antennomere; labium dorsally with four pores in center (secondarily reduced to two pores in some groups); and presence of stridulatory organ on fore- and middle legs (secondarily reduced in some groups). Our analysis suggests that the family Hybosoridae is paraphyletic with respect to Ceratocanthidae. The clade comprising the hybosorid genera Hybosorus and Phaeochrous is the sister group of the remaining Hybosoridae plus Ceratocanthidae. It is supported by two unambiguous synapomorphies: two apical antennomeres completely joined and the stridulatory organ represented by seven to nine large teeth anteriorly on the middle leg. The hybosorid genus Anaides is a sister group to the remaining Hybosoridae plus Ceratocanthidae (without Hybosorus and Phaeochrous) and the ceratocanthid genus Germarostes is a sister group to the remaining Hybosoridae plus Ceratocanthidae (without Hybosorus, Phaeochrous and Anaides). The ceratocanthid genera Cyphopisthes, Astaenomoechus, Paulianostes, Pterorthochaetes, and Madrasostes constitute a sister group to the hybosorid genus Cryptogenius and are supported by the presence of two reversions: two dorsal pores on labium and completely reduced stridulatory organs on fore- and middle legs.

Introduction

The primarily tropical family Ceratocanthidae (Figure 1A–D) includes forty genera and about 320 species (Ballerio, 1999, 2000a, b; Howden & Gill, 2000; Scholtz & Grebennikov; in press, and references therein), with many undescribed taxa detected in recent years (Ballerio, unpublished data). The first larval morphology was described by Ohaus...
Larvae of Ceratocanthidae and Hybosoridae (Coleoptera: Scarabaeoidea)

(1909) for the stridulatory organs of the larva of Cloeotus globosus Say, 1835, from Brazil (likely to be a Germarostes macleayi (Perty, 1830)). More recently, larvae of six species in five genera of Ceratocanthidae have been described: Germarostes aphodioides (Illiger, 1800) and “Philharmostes” sp. (in Ritcher, 1966; the latter likely to be Astaenomoechus sp.; Madrasostes kazumai Ochi, Johki & Nakata, 1990 (in Iwata et al., 1992); Germarostes macleayi (Perty, 1830) (in Costa et al., 1988); Ceratocanthus relucens (Bates, 1887) (in Morón & Arce, 2003) and Cyphopisthes descarpentriesi Paulian, 1977 (in Grebennikov et al., 2002). A detailed summary of the present day knowledge of Ceratocanthidae larvae is provided in Grebennikov et al. (2002).

The nearly cosmopolitan family Hybosoridae (Figure 1E–G), which is best represented in the tropics, includes thirty-two genera and approximately 210 described species (Allsopp, 1984; Ocampo, 2002a; Scholtz & Grebennikov, in press) and these numbers keep increasing (Ratcliffe & Ocampo, 2001; Ocampo & Vaz-de-Mello, 2002; Ocampo, 2002b, 2c, 2003). Late-instar larvae of five species, representing four genera, have been described. Gardner (1935) described the larvae of Phaeochrous emarginatus Laporte, 1840, which Ritcher (1966) re-described, together with a description of Hybosorus orientalis Westwood, 1845. Patil & Veeresh (1988) re-described the larva of Hybosorus orientalis. Costa et al. (1988) described the larvae of Chaetodus sp. and Cryptogenius fryi Arrow, 1909. Paulian (1939) first indicated that some hybosorid larvae stridulate by rubbing the front legs against the anterior margin of the epipharynx, a character justifying the monophyly of Hybosoridae (Jameson, 2002). Additionally, the description of the larva of Brenskea coronata Reitter, 1891 by Medvedev (1964), is, in fact, that of Hybosorus illigeri Reiche, 1853 (Nikolajev, 1987: 125).

The Hybosoridae are hypothesized to be related to Ochodaeidae and Ceratocanthidae (Scholtz et al., 1988; Browne & Scholtz, 1999) and Nikolajev (1995a, b) suggested that both Ceratocanthidae and Hybosoridae are closely related to the family Glaresidae. Browne & Scholtz (1995, 1999) suggested that the clade (Ceratocanthidae + Hybosoridae) + Ochodaeidae is the adelphaxon to Geotrupinae, Taurocerastinae and Lethrinae (excluding Bolboceratidae). Howden & Gill (2000) agreed that Ceratocanthidae and Hybosoridae constitute a monophyletic group. Ocampo & Hawks (unpublished data), based on molecular data, indicated that Ceratocanthidae and
Hybosoridae constitute a monophyletic group which is sister to Glaphyridae and these three are a sister group of Ochodaeidae. The monophyly of Hybosoridae and Ceratocanthidae has been questioned by Nikolajev (1999) who proposed that Ceratocanthidae might be derived from Hybosoridae.

The aims of the present paper are to: (1) review critically published descriptions of Ceratocanthidae and Hybosoridae larvae and to describe unknown larvae; (2) provide an identification key to genera of Hybosoridae and Ceratocanthidae larvae; (3) conduct a phylogenetic analysis of Ceratocanthidae and Hybosoridae based on larval morphology and biology characters; and (4) seek the closest relatives of Ceratocanthidae and Hybosoridae by including a wide variety of members of possible sister groups in the analysis.

Materials and methods

Specimens’ depository

Larval specimens for the present study were borrowed from and/or studied at the following collections: ANIC, Australian National Insect Collection, Canberra, Australia (T. Weir, S. A. Ślipiński); CMNC, Canadian Museum of Nature, Ottawa, Canada (H. F. Howden, R. Anderson); BMNH, The Natural History Museum, London, U.K. (S. Hine, M. Kerley); FMNH, Field Museum of Natural History, Chicago, U.S.A. (M. K. Thayer, A. F. Newton); MNHU, Museum für Naturkunde, Humboldt-Universität, Berlin, Germany (H. Wendt, M. Uhlig); NMNH, National Museum of Natural History, Washington DC, U.S.A. (D. G. Furth, N. Adams); ZISP, Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia (G. S. Medvedev); PZC, Peter Zwick Collection, Schlitz, Germany; MMC, Miguel A. Morón Collection, Xalapa, Mexico; ABC, Alberto Ballerio Collection, Brescia, Italy.

Specimen preparation and terminology

At least one larva of each available species was disarticulated, cleaned in a hot water solution of KOH, mounted on a microscope slide in Euparal medium, and studied under dissecting and compound microscopes with magnification up to 900×. Drawings were made with the aid of a camera lucida. The morphological terms used in this work are those of Lawrence (1991: 147–177). “A” refers to adult; “L3” to third-instar larva; “P” to pupa.

Ingroup taxa

We performed a cladistic analysis of larvae of all studied species of Ceratocanthidae and Hybosoridae. We also included the Ceratocanthidae and Hybosoridae species described by Costa et al. (1988), which were unavailable to us for re-examination. Different authors have proposed Ochodaeidae (Browne & Scholtz, 1995, 1999), Glaresiidae (Nikolajev, 1995a, b) and Glaphyridae (David Hawks, personal communication) as the closely related group to the clade of Ceratocanthidae + Hybosoridae. Larvae of Ochodaeidae are unavailable and relatively poorly known (Pseudochochodaes estriatus (Schaeffer, 1906) was described by Carlson & Ritcher (1974); the description of the larva of Codocera ferruginea Eschscholtz, 1818 by Medvedev (1960) belongs in fact to a species of the genus Trox Fabricius, 1775 (Carlson & Ritcher, 1974), whereas larvae of Glaresiidae are unknown. We included in the present analysis two representatives of Glaphyridae: Anphicoma vulpes Fabricius, 1792 (ZISP) and Licnanthe vulpina Hentz, 1826 (NMNH). The family Geotrupidae (s.str., sensu Scholtz & Browne, 1996) was proposed as a sister group to the clade comprising Hybosoridae, Ceratocanthidae and Ochodaeidae (Browne & Scholtz, 1999) and thus we included in the analysis Geotrupes spiniger Marsham, 1802 (MNHU), Frickius variolosus Germain, 1897 (CMNC), Taurocerastes patagonicus Philippi, 1866 (CMNC) and Letrus apterus (Laxman, 1770) (ABC), representing three subfamilies of Geotrupidae (s.str.). It was argued recently (Scholtz & Browne, 1996) that the family Bolboceratidae, formerly included as a subfamily in Geotrupidae is in fact an independent lineage unrelated to Geotrupidae s.str., but this view was recently challenged by Verdú et al. (2004), who concluded, based on the study of larval morphology, that Bolboceratidae belongs to Geotrupidae. To address this question, we also included one species of Bolboceratidae in the analysis: Odonenteus darlingtononi Wallis, 1928 (CMNC).

Outgroup taxa

The superfamilies Dascilloidea and Hydrophiloidea (sensu Lawrence & Newton, 1995; Hansen, 1997) have been proposed by different authors as sister groups to the superfamily Scarabaeoidea (for a detailed discussion and references on this subject see Grebennikov & Scholtz, 2003). It was shown recently that Dascilloidae are unlikely to be closely related to Scarabaeoidea, because the larvae of the former family demonstrate characters suggesting dryopoid, particularly Eulichadidae, affinities (Grebennikov & Scholtz, 2003). We avoided using larvae of any Hydrophiloidea taxa as an outgroup due to numerous adaptive characters associated with the predatory way of life in water (family Hydrophilidae s.l.; see: Hansen, 1991; Beutel, 1994, 1999; Archangelsky, 1998a, b, 1999) or in other substrates (family Histeridae, see: Kovarik & Passoa, 1993; Caterino & Vogler, 2002). We chose the genus Necrophilus Latreille, 1829, a representative of the relatively early branching staphylinoid family Agyrtidae (Zwick, 1981; Newton, 1997) as an outgroup to polarize the character states. We studied larvae of two Necrophilus species: N. hydrophilooides Guérin-Méneville, 1835 (FMNH) and N. subterraneus Dahl, 1807 (PZC).
Phylogenetic analysis

Reconstruction of the phylogeny of the studied taxa was performed based on a matrix comprising fifty-four larval morphological and three biological characters (Table 1), compiled in winclada version 1.00.08 (Nixon, 2002), and then spawned in hennig86 (Farris, 1988) using the exhaustive search option (i.e. *) to search for the shortest trees. We obtained nineteen equally parsimonious trees with length 95 steps, consistency index = 0.76 and retention index = 0.89. The strict consensus of these trees (command “n;” in hennig86) is shown in Figure 2. Character state distributions were examined with winclada (Nixon, 2002).

Characters

Morphological characters

(Characters treated as nonadditive, unless otherwise indicated.)

1. **Body shape**: (0) nearly straight, not or only slightly curved ventrally; (1) broadly C-shaped (Figure 3).

Character state 1 is observed in all Scarabaeoidea, except Passalidae.

2. **Body shape**: (0) flattened dorsoventrally; (1) not flattened, nearly round in cross-section (Figs 3, 4A, B).

Character state 1 is an autapomorphy for Scarabaeoidea.

3. **Thoracic and abdominal segments dorsally and laterally**:

(0) complete, not subdivided into folds; (1) subdivided into two or three folds (Figure 4A, B).

Subdivided body segments are characteristic of all Scarabaeoidea except Passalidae and Lucanidae.

4. **Number of folds on thoracic and abdominal segments**: (0) two; (1) three.

5. **Defined body sclerites**: (0) present; (1) absent, body mainly membranous (Figure 4A, B).

Character state 1 is an autapomorphy for Scarabaeoidea.

6. **Body, head and all appendages**: (0) with few setae; (1) moderate number of covering setae (Figure 4A, B); (2) covered with numerous setae and larvae appear hairy (additive).

Character state 0 is a synapomorphy for Geotrupidae and Bolboceratidae; state 2 is an autapomorphy for Glaphyridae.

7. **Primary coleopteran chaetotaxy**: (0) ancestral type; (1) highly advanced type.

Larvae of many lineages of Coleoptera and Neuroptera have a characteristic set of similarly located primary sensilla (Ashe & Watrous, 1984; Bousquet & Goulet, 1984; Hoffman & Brushwein, 1992; Kovarik & Passoa, 1993; Alarie & Balke, 1999; Grebennikov & Beutel, 2002). Larvae of some groups of Coleoptera, including Scarabaeoidea, possess highly modified chaetotaxy hardly comparable with those of the coleopteran ground plan.

8. **Clypeus**: (0) uniformly sclerotized (Figure 5A, C, G–I); (1) with basal sclerotization and apical membranous parts.

Table 1. Larval character state matrix for Ceratocanthidae and Hybosoridae (Coleoptera: Scarabaeoidea).

<table>
<thead>
<tr>
<th>Species</th>
<th>Character State 1</th>
<th>Character State 2</th>
<th>Character State 3</th>
<th>Character State 4</th>
<th>Character State 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Necrophilus subterraneus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Necrophilus hidrophiloides</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Letheus apertus</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Odontea darlingtoni</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Taurocerastes patagonicus</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Frickius variolosus</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Geotrupes spiniger</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Amphipecta vulpes</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lichnanthe vulpina</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Paulianostes acromialis</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Astenomoechus Ecuador</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Astenomoechus Costa Rica</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cypholithes descarpentresi</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pterorhochaetae insularis</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Madrasostes variolosum</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Madrasostes sculpturatum</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ceratocanthus relucens</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Germaines aphodioides</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Germaines globosus</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Germaines macleayi</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chaetodus sp.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cryptogenus fryi</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hybosorus illigeri</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Phaeochrous emarginatus</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Anaides simplicicollis</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Anaides Mexico</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
9. **Shape of clypeus**: (0) symmetrical (Figure 5A, C, G–I); (1) asymmetrical, right side about one tenth longer than left; (2) asymmetrical, right side more than one fifth longer than left (additive).

10. **Cranium**: (0) prognathous; (1) hypognathous (Figure 4B).

A hypognathous cranium is characteristic of all Scarabaeoidea except Passalidae.

11. **Two slightly divergent apodemes connecting fronto-clypeal suture with anterior angles of clypeus**: (0) absent; (1) present (Figure 5I).

Autapomorphy for *Paulianostes*, deactivated.

12. **Frontoclypeal suture between dorsal mandibular articulation**: (0) present, straight (Figure 5A, C, G); (1) present, bent anteriorly (Figure 5H, I); (2) absent (Figure 5E).

13. **Median dorsal endocarina**: (0) absent; (1) present, poorly developed, not extending into frontal sclerite; (2) present, well developed, extending well into frontal sclerite (Figure 5A, C, E, G–I).

14. **Length of epicranial suture**: (0) short, not extending beyond middle of cranium; (1) long, extending beyond middle of cranium.

Character state 1 is an autapomorphy for *Amphicoma*, deactivated.

15. **Number of stemmata**: (0) six; (1) one; (2) nil (Figure 4B) (additive).

The majority of Scarabaeoidea larvae have no stemmata, whereas in a few groups there is one stemma on each side of the cranium (*Amphicoma*, all Trogidae, some pleurostict Scarabaeidae).
16. **Antennal fossa:** (0) clearly separated from mandibular base; (1) not or weakly separated from mandibular base.

Character state 1 is a synapomorphy of all Scarabaeoidea.

17. **Characteristic sensoriumlike projection on second antennomere bearing a small and flat sensorium:** (0) absent; (1) present.

Character state 1 is an autapomorphy for *Lichnanthe*, deactivated.

18. **Length of antenna:** (0) long, extending to the level of clypeal apex; (1) short, not extending to the level of clypeal apex.

Character state 1 is an autapomorphy for *Lethrus*, deactivated. Within Scarabaeoidea, Passalidae are also unique with their short and two-segmented antennae.

19. **Markedly developed antennifer:** (0) absent; (1) present.

Character state 1 is a synapomorphy of all Scarabaeoidea.

20. **Antennomere 2 and 3:** (0) subequal in size; (1) antennomere 3 markedly smaller; (2) antennomere 3 absent (additive).

21. **Size and shape of antennal sensorium:** (0) medium-sized, conical; (1) markedly reduced in size, conical; (2) flat; (3) not recognizable/absent.

22. **Membranous subdivision of basal antennomere:** (0) absent, three true antennomeres; (1) present (Figure 5G), antenna apparently consisting of four antennomeres.

The majority of authors consider Scarabaeoidea as having antennae two- (Passalidae), three- (Trogidae, Lucanidae, Pleocomidae, Geotrupidae, Bolboceratidae), and four-segmented (majority of other groups with few exceptions). During the course of our study, we preferred to consider four-segmented antennae of Scarabaeoidea as truly three-segmented with the basal antennomere secondarily subdivided by a membranous ring giving the antenna a four-segmented appearance. This question cannot be firmly solved before the study of antennal muscles and innervations is completed.

23. **Large membranous spot on apical antennomere:** (0) absent; (1) present, covering more than one third of surface.

Character state 1 is a synapomorphy of Ceratocanthidae + Hybosoridae. A similar-looking structure was observed in Scarabaeidae: Orphninae (Morón, 1991; Paulian & Lumaret, 1982; but not by Barbero & Palestrini, 1993).

24. **Antennomeres 2 and 3:** (0) separate (Figure 6G–J, L, M); (1) fused (Figure 6A, B, D, F).

Character state 1 is a synapomorphy of *Hybosorus* + *Phaeochrous*.

Figure 4. Larva of *Cyphopistes descarpentriesi*, anterior part of body, dorsal (A) and lateroventral (B). From Grebennikov et al. (2002).
25. **Direction of mandibular apex**: (0) medial; (1) anterior. Character state 1 is a synapomorphy for all Scarabaeoidea.

26. **Shape of molar part of mandible viewed from above**: (0) round; (1) straight. Character state 1 is an autapomorphy for Scarabaeoidea.

27. **Mandibles**: (0) symmetrical; (1) asymmetrical. Character state 1 is a synapomorphy of Scarabaeoidea, except Passalidae.

28. **Ventral mandibular process**: (0) absent; (1) present (Figure 7B, C, F). Character state 1 is a synapomorphy of all Scarabaeoidea, except Passalidae.

29. **Lateral joint of stipes and cardo**: (0) not protruding laterally; (1) markedly protruding laterally.

30. **Dorsal stridulatory teeth on stipes**: (0) absent; (1) present (Figure 8D, F, H, I). Character state 1 is a synapomorphy for Scarabaeoidea; secondarily reduced in some Ceratocanthidae (**Astaenomoechus**).

31. **Maxillary palpifer**: (0) absent or not developed, palpi clearly with three palpomeres; (1) present, palpi appear-
Larvae of Ceratocanthidae and Hybosoridae (Coleoptera: Scarabaeoidea)

Larvae of Ceratocanthidae and Hybosoridae (Coleoptera: Scarabaeoidea) ing with four palpomeres (Figure 8A–I).

Character state 1 is an autapomorphy of Scarabaeoidea.

32. Anteroventral longitudinal suture on prementum between palps: (0) absent; (1) present.

33. Number of dorsal pores on prementum: (0) nil; (1) two (Figure 8D, F); (2) four (Figure 8H, I).

34. Characteristic medial curvature of basal labial palpomere with medially directed apical palpomere: (0) absent; (1) present.

Character state 1 is an autapomorphy of Glaphyridae.

35. Oncylus: (0) absent; (1) present, well developed; (2) present, markedly reduced; (3) absent, substituted by numerous stout setae.

36. Number and size of labial palpomeres: (0) two, normal size (Figure 8F–I); (1) one, 1.5–2× longer than wide (Figs 8D, 5K); (2) one, as long as wide (additive).

37. Transverse line of dorsal sensilla on prementum: (0) absent; (1) present, pores (Figure 8F); (2) present, setae (Figure 8I).

38. Markedly developed sclerotized apodemes connecting the coxal base with the cranium: (0) absent; (1) present (Figure 4B).

39. Stridulatory organ on fore- and middle legs: (0) absent; (1) present, middle leg with field of microsculpture anteriorly and without large teeth (Figure 9G); (2) present, middle leg with a few large teeth (Figure 9E) (additive).

Ritcher (1966: 67) mistakenly indicated the presence of a larval stridulatory organ in Ceratocanthidae on meso- and metathoracic legs. When present, the stridulatory organ in Ceratocanthidae is always located on pro- and mesothoracic legs, as in all Hybosoridae larvae known to us. Besides Ceratocanthidae and Hybosoridae, the presence of stridulatory organs on fore- and middle legs has never been recorded in Scarabaeoidea and, consequently, this is a unique and unambiguous synapomorphy for these two families. The clade of “advanced” Ceratocanthidae consisting of Cyphopistes, Astaenomoecus, Paulianostes, Pterorthochaetes and Madrasostes lacks the stridulatory organs and it is considered as a secondary loss.

40. Tarsi and claws on hind legs: (0) similar to those on fore- and middle legs; (1) markedly reduced in size (Figure 9H).

41. Claw setae: (0) absent; (1) two; (2) four.

Character state 2 is a synapomorphy for Glaphyridae (additive).

42. Location and length of claw setae: (0) located in basal part, not longer than 1.5× claw width; (1) located in apical part, not longer than 1.5× claw width; (2) located in apical part, markedly longer than 1.5× claw width (Figure 9F); (3) located in basal part, markedly longer than 1.5× claw width.
43. **Suture between trochanter and femur**: (0) present and complete; (1) anteriorly present, posteriorly absent (Figure 9D, E, G); (2) absent, trochanter and femur completely fused (additive).

44. **Stridulatory organ on middle and hind legs**: (0) absent; (1) present.

45. **Claw size**: (0) normal; (1) all claws markedly reduced; (2) claws absent (additive).

46. **Size of trochanter and femur on fore- and middle legs**: (0) normal; (1) markedly enlarged.

47. **Ventral part of femur on fore- and middle legs**: (0) normal; (1) markedly protruding anteriorly, attachment of tibiotarsus appears shifted dorsally.

48. **Tibiotarsus and femur**: (0) not fused; (1) fused. Character state 1 is autapomorphic for *Lethrus*, deactivated.

49. **Size of legs**: (0) normal; (1) markedly reduced.

50. **Shape of abdominal apex**: (0) conically narrowed into pygidium; (1) broadly rounded (Figure 3); (2) obliquely flattened; (3) narrowly rounded.

Figure 7. Larvae of Hybosoridae and Ceratocanthidae, mandibles, dorsal (A, D), ventral (B, C), lateral (E) and medial (F). A–D, *Phaeochrous emarginatus*; E, F, *Astaenomoechus* sp. (Ecuador). A, B, E, F, left mandible; C, D, right mandible.

51. **Urogomphi on tergum IX**: (0) present; (1) absent (Figure 3).

Character state 1 is an autapomorphy for Scarabaeoidea.

52. **Location of mesothoracic spiracles**: (0) anteriorly on mesothorax; (1) posteriorly on prothorax (Figure 4B).

Character state 1 is an autapomorphy for Scarabaeoidea.

53. **Metathoracic spiracles**: (0) absent; (1) present on mesothorax, nonfunctional and reduced (Figure 4B).

Character state 1 is an autapomorphy for Scarabaeoidea.

Type of spiracles: (0) annular-biforous; (1) cribriform (Figure 9C).

Biological characters

55. **Larval food provisioned by adults**: (0) absent; (1) present.

56. **Larval habitat**: (0) soil; (1) wood.

57. **Larval association with termites**: (0) absent; (1) present.

Larval morphological characters excluded from the analysis due to incompatibility with the outgroup, but used in the description of larvae of Ceratocanthidae and Hybosoridae

58. **Hypostomal rods on ventral cranial surface**: very short or not detectable (Figure 5F); short, not reaching posteriorly midlength of cranium (Figure 5D); long, extending posteriorly beyond two thirds length of cranium (Figure 5B).

59. **Transverse row of setae on front between mandibular articulation**: absent (Figure 5C, G–I); present (Figure 5A).

60. **Number of setae on apical antennomere**: five; six.

61. **Number of long setae on penultimate antennomere**: one (Figure 6I, J); two (Figure 6M).

62. **Number of setae on basal antennomere**: nil (Figure 5C, E, G–I); two or three (Figure 5A).

63. **Number of pores on basal antennomere**: three; four; five.

64. **Dorsal transverse keel on both mandibles**: present, distinct (Figure 7A, D); present, poorly detectable; absent.

65. **Beaklike structure on epipharynx**: absent; present (Figure 10G).

66. **Tormae**: united (Figure 10B); not united (Figure 10D, F, H).

67. **Longitudinal medial sclerite on epipharynx**: absent (Figure 10D, F, H); present, small (Figure 10I); present, large (Figure 10G).

68. **Number of setae on lacinia**: nine and less (Figure 8D); ten to fifteen (Figure 8I); fifteen and more (Figure 8H).

69. **Shape of apex of lacinia**: no points, rounded (Figure 8D–F); one point; two points; three points (Figure 10A).

70. **Length of apical maxillary palpomere compared with penultimate**: shorter (Figure 8H, I); subequal (Figure 10D, E); longer.

71. ** Apex of lacinia**: extending beyond two thirds of galea (Figure 10H); not extending beyond two thirds of galea (Figure 10D).

72. **Palida**: absent; present, disperse flattened short setae; present, one row of flattened stout setae.

Diagnosis of third-instar Hybosoridae and Ceratocanthidae larvae

Typical C-shaped scarabaeiform larva (Figure 3), body uniformly cylindrical, markedly elongate and slender, without dorsal expansions. Cranium protracted and hypognathous (Fig-

ure 4B), nearly symmetrical (Figure 5A–C, E–I), about 1.3 times wider than long. Stemmata absent. Frontoclypeal (= epis- tomal) suture absent (Figure 5E) or present, when present rela- tively straight (Figs 5, 8, 9) or markedly bent anteriorly (Figs 1, 2). Clypeolabral suture present (Figs 1, 2, 5, 7–9). Clypeus symmetrical and uniformly sclerotized (Figure 5A, C, E–G–I). Internal longitudinal endocarina at medial line of dorsal surface of cranium originating from occipital foramen, extending ante- riorly on frontal sclerite with its apex reaching level of antennal insertion (Figure 5A, C, E–G–I). Frontal arms of epicranial su- ture poorly visible (Figure 5A, C, E–G–I). Antenna with three true segments; basal one subdivided by membranous ring and thus antenna appearing four-segmented; sometimes two apical antennomeres fused with no visible separation (Figure 6A, B, D, E). Two apical antennomeres subequal in size (Figure 6G– J, L, M); basal subdivided antennomere markedly longer. An- tennal apex at about same level as those of maxillae, mandibles and labrum (Figure 5A–C, E–I). Penultimate (second) anten- nomere with conical sensorium (Figure 6C, F) ventrally and dis- tally (Figure 6B, D, E, G–J, L, M). Apical antennomere conical, with markedly developed hyaline sensory part apically covering not less than 30% of segment surface (Figure 6A, B, D, E, G–J, L–M). Mandibles (Figure 7A–F) asymmetrical, each with ven- tral process and molar part; that on left mandible notably elong- ate and medially protracted. Median parts of mandibles with- out brushes of small hairs dorsally and ventrally, except a group
of about three to four flat apparently cuticular strips of distal edge of mola on medial surface (Figure 7F). Stridulatory area on ventral surface of mandibles absent (Figure 7B, C). Apices of mandibles with larger ventral and smaller and shorter dorsal tooth (Figure 7A–F). Galea and lacinia separate (Figure 8D, F, H, I). Stipps dorsally with eight to fifteen stridulatory teeth arranged in an oblique line (Figure 8D, F, H, I), rarely (Astae-nomoecus) without. Maxillary palp consists of three true segments and basal palpifer. Labial palp one- or two-segmented (Figs 6K, 8D–I). Hypopharyngeal sclerite (= onculus) poorly defined or absent (Figure 8D, F, H, I). Labrum slightly to markedly asymmetrical (Figure 10A–I), slightly to markedly enlarged and apically protracted; with variable number of apical projections (might be called “serration”), its dorsal surface with some irregular ridges and microsculpture (Figure 6E). Ventral surface (= epipharynx) variable, with or without oblique carina on each side and beaklike process (Figure 10A–D, F–I). Tormae joined (Figure 10B, C, G) or not joined mesally (Figure 10A, D, F, H, I). Base of each foreleg connected with ventral side of cranium by markedly sclerotized ridge (Figure 4B). Meso-, metathoracic and six basal abdominal segments each subdivided into three folds (Figs 3, 9A, B). Defined thoracic and abdominal sclerites absent. Legs not reduced in length (Figure 3). Stridulatory organs absent or present on fore- and middle legs (Figure 9D, E, G). Legs consist of coxa, trochanter, femur, tibiotarsus and claw. Hind tarsungulus about half length of those on fore- and middle leg (Figure 9H). Junction between trochanter and femur marked by suture anteriorly (Figure 9E, G) and ventrally; no trace of junction visible dorsally and posteriorly (Figure 9D) and, consequently, trochanter and femur partly fused. Anus transverse (Figure 3). Raster with or without palida. Functional cribiform spiracles present on posterior part of lateral side of prothorax and anterior part of lateral side of abdominal segments I–VIII (Figure 4B). Spiracles on prothorax markedly larger than those on abdomen. Spiracle closing apparatus not found. Mesothorax in posterior part of lateral side with trachea approaching wall of body from inside and attached to it by means of remnant of spiracle (Figure 4B). This remnant forms a narrow strip of sclerotization without opening (see also Edmonds & Halffter, 1978).

Key to genera of third-instar Ceratocanthidae and Hybosoridae larvae

1. Antennomeres 2 (bearing sensorium) and 3 separate, not fused (Figure 6G–J, L, M); basal antennomere (subdivided by membranous ring) without setae; hypostomal rods on ventral surface of cranium absent (Figure 5F) or short (Figure 5D), not extending beyond two thirds of cranial length; lacinia with less than fourteen tormae (Figure 8D, F, I); middle tarsi and tibiae without stridulatory teeth or with field of pointed microsculpture covering most of anterior surface, but without line of seven to nine large teeth (Figure 9G)……………………………………3

2 Combined apical antennomere with markedly narrowed base and widened apex (Figure 6D, E); lacinia with one large and two smaller apices (Figure 8A); two joined apical antennomeres with ten long setae (Figure 6D, E); tormae united (Figure 10B); short and flattened setae of palida pointed towards apex (Figure 9A)……………………………………Hybosorus

2′ Combined apical antennomere with about same width at base and top (Figure 6A, B); lacinia with one large central and one smaller apex; two joined apical antennomeres with fourteen long setae (Figure 6A, B); tormae not united (Figure 10A); short and flattened setae of palida widened towards apex (Figure 9B)…………………………Phaeochrous

3 Labial palp two-segmented (Figure 8D, H, G); labium normally with four dorsal pores (Figure 8I; except Madrasostes with two dorsal pores, Figure 8F)……………….4

3′ Labial palp one-segmented (Figs 6K, 8D); labium always with two dorsal pores (Figure 8D)…………………………9

4 Claw with two setae; labium with four dorsal pores (Figure 8I); stridulatory teeth on fore coxa and middle tarsus and femur present as fields of fine tubercles (Figure 9G)……………………………………5

4′ Claw without setae; labium with two dorsal pores (Figure 8D, F); fore coxa and middle tarsus without stridulatory teeth……Madrasostes

5 Apical antennomere with five long setae (except Ceratocanthus with six long setae); epipharynx with markedly developed beaklike structures (Figure 10G)……………………………………6

5′ Apical antennomere with six long setae; epipharynx without beaklike structure (Figure 10C)……………………………………7

6 Dorsal transverse keel on both mandibles absent ……….……….7′ Dorsal transverse keel present on both mandibles (like Figure 7A, D)……..Ceratocanthus

7 Claw setae markedly longer than basal width of claw (like Figure 9F); fore- and middle legs without stridulatory apparatus………Cryptogenius

7′ Claw setae shorter than basal width of claw (Figure 9G); fore- (like Figure 9D) and middle (Figure 9G) legs with stridulatory apparatus…….5

8 Two short claw setae, one in middle and another in api-
Diversity and geographical distribution

As currently defined (Howden & Gill, 2000: 323), the genus *Germarostes* consists of two subgenera *Germarostes* s.str. and *Haroldostes* Paulian, 1982 with forty-three and twenty-five species, respectively, distributed from Argentina and Chile to the U.S.A. and Canada. Some of the *Germarostes* species were previously referred under the generic name *Cloeotus* Germar, 1843. As presently defined, the genus *Cloeotus* consists of three species (*C. latebrosus* Germar, 1843, *C. petrovitzi* Paulian, 1982, and *C. semicostatus* Germar, 1843) from Brazil and Colombia (Howden & Gill, 2000: 232).

Material

Germarostes macleayi (Perty, 1830). See Costa et al. (1988). We could not examine larvae of this species. However, the description provided by Costa et al. (1988) is detailed enough for this species to be included in the analysis. It must be stressed that *Germarostes macleayi* is very similar to *Germarostes globosus* and that the former may be a synonym of the other (Woodruff, 1973).

Cyphopistes Gestro, 1899

Larval diagnosis

Cyphopistes without divergent apodemes connecting frontoclypeal suture with anterior clypeal angles; frontoclypeal suture between dorsal mandibular articulation present; hypostomal rods on ventral cranial surface short, not reaching posteriorly midlength of cranium; transverse row of setae on front between mandibular articulation absent; antennal sensorium medium-sized, conical; antennomeres 2 and 3 separate; apical antennomere with five long setae, penultimate antennomere with one long seta, basal antennomere without setae and with five pores; dorsal transverse keel on both mandibles present, distinct; beaklike structure on epipharynx present; tormae united; longitudinal medial sclerite on epipharynx present, large; number of setae on lacinia ten to fifteen; apex of lacinia extending beyond two thirds of lacinia with one point; apical maxillary palpomere longer than penultimate; apex of lacinia beyond two thirds of lacinia; apical maxillary palpomere present, large; number of setae on lacinia five to six; apex of lacinia not extending beyond two thirds of galea; stridulatory teeth on stipes; palpomere present, long; palpomere with two pores; oncylus present, marked; labium with one palpomere as long as wide; trans-
verse line of dorsal sensilla on prementum present, consists of pores; sound-producing organ on fore- and middle legs absent; claw without setae; palida absent. See also Grebennikov et al. (2002).

Diversity and geographical distribution

This genus consists of about ten species distributed from eastern India (Assam) to Queensland and possibly New Caledonia (Ballerio, 2000a)

Material

Cyphistes descarpentriesi Paulian, 1977. Head width L3 = 1.24 mm (n = 1); see also Grebennikov et al. (2002). 30 L3. 1.vii.1974, Cape Pallarenda, Townsville, Queensland, larvae and pupae in galleries of *Mastotermes darwiniensis* Froggatt, 1897 nest in dead acacia tree. J. A. L. Watson leg. (ANIC). Remark: adults, pupae and larvae were collected together in the same galleries, see also Grebennikov et al. (2002).

Paulianostes Ballerio, 2000

Larval diagnosis

Clypeus with two divergent apodemes connecting frontoclypeal suture with anterior clypeal angles (Figure 2); frontoclypeal suture between dorsal mandibular articulation present and markedly bent anteriorly; hypostomal rods on ventral cranial surface very short or not detectable; transverse row of setae on front between mandibular articulation absent; antennal sensorium medium-sized, conical; antennomeres 2 and 3 separate; apical antennomere with six long setae, penultimate antennomere with two long setae, basal antennomere without setae and with five pores; dorsal transverse keel on both mandibles absent; beaklike structure on epipharynx present; tormae united; longitudinal medial sclerite on epipharynx present, large; number of setae on lacinia ten to fifteen; apex of lacinia with one point; apical maxillary palpmere longer than penultimate; apex of lacinia extending beyond two thirds of galea; stridulatory teeth on stipes dorsally present; prementum dorsally with four pores; onculus present, well developed; labium with two palpomeres; transverse line of dorsal sensilla on prementum present, consists of pores; sound-producing organ on fore- and middle legs absent; claw with two setae located in apical part, each not longer than 1.5× claw width; palida absent.

Diversity and geographical distribution

The genus *Paulianostes* was erected recently by Ballerio (2000a) and comprises three described species occurring in the Oriental region.

Material

Paulianostes acromialis (Pascoe, 1860). Head width L3 = 1.30 mm (n = 1). 1 L3. 24.xi.1987, Malaysia, Pahang, Bukit Fraser, Jeriau Falls. L. Bartolozzi leg. in a nest of *Hospitalitermes* sp. prope medioflavus (ABC). Remark: our species identification is based on the fact that one of the collected larvae was reared in a laboratory to adults representing *Paulianostes acromialis* (L. Bartolozzi, personal communication).

Ceratocanthus White, 1842

Larval diagnosis

Clypeus without divergent apodemes connecting frontoclypeal suture with anterior clypeal angles; frontoclypeal suture between dorsal mandibular articulation straight, present; hypostomal rods on ventral cranial surface short, not reaching posteriorly midlength of cranium; transverse row of setae on front between mandibular articulation absent; antennal sensorium medium-sized, conical; antennomeres 2 and 3 separate; apical antennomere with six long setae, penultimate antennomere with two long setae, basal antennomere without setae and with five pores; dorsal transverse keel on both mandibles absent; beaklike structure on epipharynx present; tormae united; longitudinal medial sclerite on epipharynx present, large; number of setae on lacinia ten to fifteen; apex of lacinia with one point; apical maxillary palpmere longer than penultimate; apex of lacinia extending beyond two thirds of galea; stridulatory teeth on stipes dorsally present; prementum dorsally with four pores; onculus present, well developed; labium with two palpomeres; transverse line of dorsal sensilla on prementum present, consists of pores; sound-producing organ on fore- and middle legs present, middle leg with field of microsculpture anteriorly and without large teeth; claw with two setae located in apical part, each not longer than 1.5× claw width; palida present, one row of flattened setae.

Diversity and geographical distribution

The genus *Ceratocanthus* (= *Acanthocerus* Macleay, 1819; = *Sphaeromorphus* Germar, 1843; = *Gymnoropterus* Gestro, 1899) consists of fifty-four species distributed from Argentina to the U.S.A. (Ballerio, 2000c; Howden & Gill, 2000).

Material

Pterorthochaetes Gestro, 1899

Larval diagnosis

Clypeus without divergent apodemes connecting frontoclypeal suture with anterior clypeal angles; frontoclypeal suture between dorsal mandibular articulation present and markedly bent anteriorly; hypostomal rods on ventral cranial surface short, not reaching posteriorly midlength of cranium; transverse row of setae on front between mandibular articulation present and markedly bent anteriorly; hypostomal rods on ventral cranial surface very short or not detectable; transverse row of setae on front between mandibular articulation absent; antennal sensorium medium-sized, conical; antennomeres 2 and 3 separate; apical antennomere with six long setae, penultimate antennomere with two long setae, basal antennomere without setae and with five pores; dorsal transverse keel on both mandibles present, distinct; beaklike structure on epipharynx present; tormae not united; longitudinal medial sclerite on epipharynx absent; lacinia not extending beyond two thirds of galea; stridulatory teeth on stipes dorsally present; prementum dorsally with two pores; onyculus present, well developed; labium with two palpomeres; transverse line of dorsal sensilla on prementum present, consists of pores; sound-producing organ on fore- and middle legs absent; claw without setae; palida present, disperse flattened short setae.

Diversity and geographical distribution

This genus consists of about twenty-eight species distributed from India and southern Japan to New Guinea.

Material

Pterorthochaetes insularis Gestro, 1899. Head width L3 = 1.65 mm (n = 1). 3 L3. 17.–19. iv.1999, Malaysia, Perak, near Kuala Woh, A. Ballerio leg., det. (ABC). *Remark:* adults and mature larvae of this species were collected together in a termite nest, inside a dead log. Other Ceratocanthidae adults collected in the same nest were *Pterorthochaetes insularis*, an undescribed small species of *Pterorthochaetes* and *Cyphopisthes* sp. Due to the large size of larvae and to the fact that they are different from the described larvae of *Cyphopisthes* and *Pterorthochaetes*, we suppose that they belong to *Madrasostes variolosum*.

Madrasostes sculpturatum Paulian, 1989. Head width L3 = 1.68 mm (n = 1). 2 L3. January 1999, Malaysia, Perak, Gunung Korbu, P. Cechovski leg., A. Ballerio det. (ABC, VGV). *Remark:* adults, teneral adults, pupae and mature larvae were collected together (P. Cechovski, personal communication) and, therefore, we suppose they belong to the same species.

Astaenomoechus Martínez & Pereira, 1959

Larval diagnosis

Clypeus without divergent apodemes connecting frontoclypeal suture with anterior clypeal angles; frontoclypeal suture between dorsal mandibular articulation present; hypostomal rods on ventral cranial surface very short or not detectable; transverse row of setae on front between mandibular articulation absent; antennal sensorium medium-sized, conical; antennomeres 2 and 3 separate; apical antennomere with six long setae, penultimate antennomere with two long setae, basal antennomere without setae and with five pores; dorsal transverse keel on both mandibles present, distinct; beaklike structure on epipharynx present; tormae not united; longitudinal medial sclerite on epipharynx absent; lacinia not extending beyond two thirds of galea; stridulatory teeth on stipes dorsally present; prementum dorsally with two pores; onyculus present, well developed; labium with two palpomeres; transverse line of dorsal sensilla on prementum present, consists of pores; sound-producing organ on fore- and middle legs absent; claw without setae; palida present, disperse flattened short setae.
dorsal transverse keel on both mandibles present, poorly detectable or absent; beaklike structure on epipharynx absent; tormae not united; longitudinal medial sclerite on epipharynx absent; lacinia with nine and less setae; apex of lacinia without points, rounded; apical maxillary palpmere subequal to penultimate; apex of lacinia not extending beyond two thirds of galea; stridulatory teeth on stipes dorsally absent; prementum dorsally with two pores; oncylus present, well developed; labium with two palpomere 1.5–2× longer than wide or as long as wide; transverse line of dorsal sensilla on prementum present, consists of pores; sound-producing organ on fore- and middle legs absent; claw with two setae each located in apical part and each not longer than 1.5× claw width; palida absent.

Diversity and geographical distribution

The genus Astaenomoechus consists of about eleven species distributed from Mexico to Argentina (Howden & Gill, 2000).

Material

Astaenomoechus sp. 01. Head width L3 = 1.40 mm (n = 1); L2 = 1.00 mm (n = 1). 3 A, 2 P, about 15 L2–3. 06.vi. 1905, Pucay, W. Ecuador. (BMNH).

Hybosorus Macleay, 1819

Larval diagnosis

Clypeus without divergent apodemes connecting frontoclypeal suture with anterior clypeal angles; frontoclypeal suture between dorsal mandibular articulation straight, present; hypostomal rods on ventral cranial surface long, extending posteriorly beyond two thirds length of cranium; transverse row of setae on front between mandibular articulation present; antennal sensorium markedly reduced in size, conical; antennomeres 2 and 3 fused; two joined apical antennomeres with fourteen long setae, basal antennomere with two to three setae and five pores; dorsal transverse keel on both mandibles present, distinct; beaklike structure on epipharynx present; tormae not united; longitudinal medial sclerite on epipharynx absent; lacinia with more than fifteen setae; apex of lacinia with two points; apical maxillary palpmere longer than penultimate; apex of lacinia extending beyond two thirds of galea; stridulatory teeth on stipes dorsally present; prementum dorsally with four pores; oncylus present, well developed; labium with two palpmeres; transverse line of dorsal sensilla on prementum present, consists of setae; sound-producing organ on fore- and middle legs present, middle leg with a few large teeth anteriorly; claw with two setae located in apical part each markedly longer than 1.5× claw width; palida present, one row of flattened setae.

Diversity and geographical distribution

This genus consists of five species and is distributed in North, Central America, and the Caribbean region, Africa, Asia and Europe.

Material

Phaeochrous Castelnau, 1840

Larval diagnosis

Clypeus without divergent apodemes connecting frontoclypeal suture with anterior clypeal angles; frontoclypeal suture between dorsal mandibular articulation straight, hypostomal rods on ventral cranial surface long, extending posteriorly beyond two thirds length of cranium; transverse row of setae on front between mandibular articulation present; antennal sensorium markedly reduced in size, conical; antennomeres 2 and 3 fused; two joined apical antennomeres with fourteen long setae, basal antennomere with two to three setae and five pores; dorsal transverse keel on both mandibles present, distinct; beaklike structure on epipharynx present; tormae not united; longitudinal medial sclerite on epipharynx absent; lacinia with more than fifteen setae; apex of lacinia with two points; apical maxillary palpmere longer than penultimate; apex of lacinia extending beyond two thirds of galea; stridulatory teeth on stipes dorsally present; prementum dorsally with four pores; oncylus present, well developed; labium with two palpmeres; transverse line of dorsal sensilla on prementum present, consists of setae; sound-producing organ on fore- and middle legs present, middle leg with a few large teeth anteriorly; claw with two setae located in apical part each markedly longer than 1.5× claw width; palida present, one row of flattened setae.

Diversity and geographical distribution

This genus consists of forty-three species distributed in Africa, Asia, and Oceania.
Material

Phaeochrous emarginatus Laporte, 1840. Head width L3 about = 2.30 mm \((n = 1);\) single specimen slightly damaged. 3 L3. India: Dehra Dun, U.P.G.#3082, adult reared, ex soil in forest. (NMNH).

Anaides Westwood, 1846

Larval diagnosis

Clypeus without divergent apomorphies connecting fronto-ocypal suture with anterior clypeal angles; fronto-ocypal suture between dorsal mandibular articulation straight, present; hyposomal rods on ventral cranial surface short, not reaching posteriorly midlength of cranium; transverse row of setae on front between mandibular articulation absent; antenna sensorium medium-sized, conical; antennomeres 2 and 3 separate; apical antennomere with six long setae, penultimate antennomere with two long setae, basal antennomere without setae and with two pores; dorsal transverse keel on both mandibles present, distinct; beaklike structure on epipharynx present; tormae united; longitudinal medial sclerite on epipharynx present, small; lacinia with ten to fifteen setae; apex of lacinia with one pore; apical maxillary palpomere longer than penultimate; apex of lacinia extending beyond two thirds of galea; stridulatory teeth on stipes dorsally present; prementum dorsally with four pores; onculus present, well developed; labium with two palpomeres; transverse line of dorsal sensilla on prementum present, consists of setae; sound-producing organ on fore- and middle legs present, middle leg with field of microsculpture anteriorly and without large teeth; claw with two setae located in apical part each not longer than 1.5× claw width; palida present, one row of flattened setae.

Diversity and geographical distribution

This genus consists of thirteen species distributed in the Central, South America and Caribbean region.

Material

Anaides simplicicollis Bates, 1887. Head width L3 = 2.30 mm \((n = 1);\) single specimen slightly damaged. 1 L3. 15.viii.1932, Rio Durazno 1700 m, W.-Abharg, Irazu, Costa Rica. (NMNH). **Remark:** the identification of this larva is based on the fact that it is nearly identical to the second studied larval specimen of *Anaides* (see below). Moreover, the vial with this larva bears an identification label without the specialist’s name, which we consider trustworthy.

Anaides sp. Head width L3 or L2 = 1.53 mm \((n = 1);\) single specimen slightly damaged. 1 L3. 19.viii.1938, Laredo Tx., Mexico, A.H. Lewis leg., A. Böving det. (NMNH). **Remark:** *Anaides laticollis* Harold, 1863 is the only species of this genus recorded from Mexico.

Discussion

Monophyly of Ceratocanthidae + Hybosoridae

The phylogenetic analysis yielded nineteen equally parsimonious cladograms represented by the strict consensus tree (Figure 2). The analysis strongly supports the monophyly of Ceratocanthidae and Hybosoridae with four unambiguous and unique synapomorphies: dorsal medial endocarina on cranium extending anteriorly into frontal sclerite (character 13/2); presence of large membranous spot on apical antennomere (character 23/1); labium dorsally with four pores (character 33/2; two of four pores are lost secondarily in derived members of this clade) and fore- and middle legs have a stridulatory organ (character 39/1; reduced secondarily in derived members of this clade). The last feature is unique within Scarabaeoidea and, to our knowledge, has not been recorded in Coleoptera larvae previously. Thus, it provides strong support for the Ceratocanthidae + Hybosoridae monophyly.

Paraphyly of Hybosoridae in respect to Ceratocanthidae

The major result of this study is the discovery that the family Hybosoridae is paraphyletic with respect to Ceratocanthidae. Previously, Nikolajev (1999) suggested this possibility, but without a formal cladistic analysis. The clade formed by the two hybosorid genera *Hybosorus* and *Phaeochrous* is the sister group of the remaining (Hybosoridae + Ceratocanthidae) (Figure 2) and is supported as a monophyly by two unambiguous synapomorphies: two apical antennomeres completely joined (character 24/1) and the presence of seven to nine large sound-producing teeth on the middle leg anteriorly (character 39/2). The group of derived ceratocanthid genera *Paulianostes*, *Pterorthochaetes*, *Madrassostes*, *Astaenomoechus* and *Cyphopisthes* form a rather poorly resolved clade due to the presence of two derived and conflicting character states. They are character state 36/1–2 (one-segmented labial palp observed in *Paulianostes*, *Astaenomoechus* and *Cyphopisthes*) and character state 39/0 (absence of claw setae observed in *Pterorthochaetes*, *Madrassostes* and *Cyphopisthes*). These character states are only once (one-segmented labial palp) or never (claws without setae) observed within Scar-
Larvae of Ceratocanthidae and Hybosoridae (Coleoptera: Scarabaeoidea)

abaeoidea and this conflict implies that at least one of them evolved twice in these four genera. Such ambiguity resulted in an unresolved polytomy of the genera *Paulianostes*, *Pterorthochaetes* and *Madrasostes* (Figure 2). The remaining genera *Cryptogetus*, *Anaides*, *Germarostes*, *Ceratocanthus* and *Chaetodus* occupy an intermediate position on the cladogram between *Hybosorus* + *Phaeochrous* and the clade of more derived Ceratocanthidae. Resolution of this part of the tree is low, and this topology suggests that the differences between “primitive” “Ceratocanthidae” and “derived” “Hybosoridae” might not be significant, at least based on larval morphology. The hypothesis of Ceratocanthidae being an advanced clade within Hybosoridae does not contradict the fossil data revised by Krell (2000). The former family is known from Miocene, whereas the latter was first recorded from Lower Cretaceous (Krell, 2000: fig. 1).

Taxonomic position of the genera Paulianostes and Cryptogetus

Our results indicate that the “ceratocanthid” genera *Paulianostes* and *Cyphopistes* are not closely related, and support recent separation of two species from the former genus into the newly erected genus *Paulianostes* (Ballerio, 2000a). Our analysis also indicates that the aberrant genus *Cryptogetus* from the Amazon Basin, whose phylogenetic affinities were discussed on a number of occasions (Krikken, 1975; Scholtz et al., 1987; Ide et al., 1990), does belong to the Ceratocanthidae–Hybosoridae clade.

Sister group of Ceratocanthidae + Hybosoridae

Two genera of the family Glaphyridae, *Amphicoma* and *Lichnanthe*, are linked on the cladogram (Figure 2) with five unambiguous larval synapomorphies and appear as an adelphaxon to Ceratocanthidae + Hybosoridae. This sister group relationship is supported by three derived characters, of which two appear as unambiguous synapomorphies on the cladogram (membranous subdivision of the basal antennomere: character 22/1 and markedly developed sclerotized apodemes connecting fore coxae with the cranium: character 38/1). Both of these characters, however, are known in Scarabaeoidea outside of the sampled taxa (for example, larvae of the family Scarabaeidae have them both) and therefore do not provide strong support to Glaphyridae as the sister group to Ceratocanthidae + Hybosoridae if more scarabaeoid taxa are included in the analysis. A third character (12/0), the presence of a frontoclypeal suture between dorsal mandibular articulation, appears as a synapomorphy, because larvae of the out-group (*Agyrtidae*; the genus *Necrophilus*) lack this suture. Polarization of this character is uncertain; it is plausible to assume that the loss of this suture once in *Necrophilus* and a second time in Geotrupidae and Bolboceratidae happened independently twice and the presence of this suture is indeed a synapomorphy. Therefore, the present analysis provides no strong evidence that Glaphyridae are indeed a sister group to Ceratocanthidae + Hybosoridae.

Concluding remarks

A few points of the present study should be emphasized. Two scarabaeoid families, Hybosoridae and Ceratocanthidae, form a well-supported monophyletic group based on both larval and adult morphological characters, but the sister group of this clade remains uncertain. Larval morphology suggests that Hybosoridae could be paraphyletic with respect to Ceratocanthidae, supporting the hypothesis of Nikolajev (1999). It is highly desirable to study larvae of more taxa from the “hybosorid–ceratocanthid” clade, particularly in many respects the intermediate “hybosorid” genus *Liparochrus* Erichson, 1847 from Australia and Papua New Guinea, morphologically modified “hybosorid” genera from the South American tribe Cryptogetini, and even more strangely shaped South American genera of presumably myrmecophilous or termiotophilous “ceratocanthids”, currently placed in two separate subfamilies within the Ceratocanthidae: Scarabatermitinae and Ivieiolinae (Howden, 1971, 1973, 2001; Howden & Gill, 1988a, b, 1995, 2000).

Acknowledgements

We are grateful to the curators of the museums mentioned above and the private collectors who provided the larvae for this study. David Hawks (California, U.S.A.) shared some unpublished information on Scarabaeoidea phylogeny based on DNA data. Luca Bartolozzi (Firenze, Italy) sent us larvae of *Paulianostes acromialis*. Georgy V. Nikolajev (Almaty, Kazakhstan) critically read the manuscript before submission. Diana L. Lipscomb (Washington DC, U.S.A.) commented on the character coding. This project was facilitated by Visiting Fellowships to the first author from the Canadian Museum of Nature (Ottawa, Canada), the Field Museum of Natural History (Chicago, U.S.A.), the Ernst Mayr Fellowship (Cambridge, U.S.A.), as well as by the Alexander von Humboldt Foundation Fellowship (Bonn, Germany).

References

Archangelsky, M. (1998a) Phylogeny of Hydrophiloidea (Coleop-

Gardner, J.C.M. (1935) Immature stages of Indian Coleoptera (16) (Scarabaeidae). Indian Forest Research (N.S., Entomology), 1, 1–33.

Iwata, R., Araya, K., & Johky, Y. (1992) The community of arthropods with spherical postures, including Madrasostes kazumai (Coleoptera: Ceratocanthidae), found from the abandoned part of a nest of Coptotermes formosanus (Isoptera: Rhinotermitidae) in Tokara-Nakanoshima island, Japan. Sociobiology, 20, 233–244.

Nikolajev, G.V. (1995b) Novie dannie po sistematike podsemeystva Ochodaeinae [New data on the systematics of the subfamily Ochodaeinae (Coleoptera: Scarabaeidae)]. Zoologicheskiy Zhurnal, 74, 72–82.

