2014

Unraveling Crystalline Structure of High-Pressure Phase of Silicon Carbonate

Rulong Zhou
Hefei University of Technology

Bingyan Qu
Hefei University of Technology

Jun Dai
University of Nebraska - Lincoln

Xiao Cheng Zeng
University of Nebraska - Lincoln, xzeng1@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/chemzeng
Part of the [Analytical Chemistry Commons](http://digitalcommons.unl.edu/chemzeng), [Materials Chemistry Commons](http://digitalcommons.unl.edu/chemzeng), and the [Physical Chemistry Commons](http://digitalcommons.unl.edu/chemzeng)

Zhou, Rulong; Qu, Bingyan; Dai, Jun; and Zeng, Xiao Cheng, "Unraveling Crystalline Structure of High-Pressure Phase of Silicon Carbonate" (2014). *Xiao Cheng Zeng Publications*. 134.
http://digitalcommons.unl.edu/chemzeng/134

This Article is brought to you for free and open access by the Published Research - Department of Chemistry at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Xiao Cheng Zeng Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Unraveling Crystalline Structure of High-Pressure Phase of Silicon Carbonate

Rulong Zhou, Bingyan Qu, Jun Dai, and Xiao Cheng Zeng

School of Science and Engineering of Materials, Hefei University of Technology, Hefei, Anhui 230009, China
Department of Chemistry and Nebraska Center for Materials and Nanoscience, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA

(Received 13 October 2013; revised manuscript received 25 November 2013; published 3 March 2014)

Although CO$_2$ and SiO$_2$ both belong to group-IV oxides, they exhibit remarkably different bonding characteristics and phase behavior at ambient conditions. At room temperature, CO$_2$ is a gas, whereas SiO$_2$ is a covalent solid with rich polymorphs. A recent successful synthesis of the silicon-carbonate solid from the reaction between CO$_2$ and SiO$_2$ under high pressure [M. Santoro et al., Proc. Natl. Acad. Sci. U.S.A. 108, 7689 (2011)] has resolved a long-standing puzzle regarding whether a Si$_x$C$_{1-x}$O$_2$ compound between CO$_2$ and SiO$_2$ exists in nature. Nevertheless, the detailed atomic structure of the Si$_x$C$_{1-x}$O$_2$ crystal is still unknown. Here, we report an extensive search for the high-pressure crystalline structures of the Si$_x$C$_{1-x}$O$_2$ compound with various stoichiometric ratios (SiO$_2$-CO$_2$) using an evolutionary algorithm. Based on the low-enthalpy structures obtained for each given stoichiometric ratio, several generic structural features and bonding characteristics of Si and C in the high-pressure phases are identified. The computed formation enthalpies show that the SiC$_2$O$_6$ compound with a multislab three-dimensional (3D) structure is energetically the most favorable at 20 GPa. Hence, a stable crystalline structure of the elusive Si$_x$C$_{1-x}$O$_2$ compound under high pressure is predicted and awaiting future experimental confirmation. The SiC$_2$O$_6$ crystal is an insulator with elastic constants comparable to typical hard solids, and it possesses nearly isotropic tensile strength as well as extremely low shear strength in the 2D plane, suggesting that the multislab 3D crystal is a promising solid lubricant. These valuable mechanical and electronic properties endow the SiC$_2$O$_6$ crystal for potential applications in tribology and nanoelectronic devices, or as a stable solid-state form for CO$_2$ sequestration.

DOI: 10.1103/PhysRevX.4.011030

Subject Areas: Materials Science

1. INTRODUCTION

Carbon dioxide is one of the most common molecules broadly present in the Universe. It is a dominant component of the atmosphere of Earth-like planets and exists in icy forms in outer planets and asteroids. The increase of the amount of CO$_2$ in the atmosphere of Earth is becoming a challenge to human life. At ambient conditions, CO$_2$ exists in a gas state, while under slightly higher pressure, it transforms into several possible molecular crystalline polymorphs such as dry ice (CO$_2$-I), CO$_2$-III, and CO$_2$-VII [1–3]. Under increasing pressure, the molecular crystal phases of CO$_2$ can transform into extended covalent solids with crystalline structures similar to silica (SiO$_2$), such as CO$_2$-V [4–11], CO$_2$-VI [12,13], coesitelike CO$_2$ (c-CO$_2$) [14,15], or amorphous silicalike a-CO$_2$ [16,17]. In most of these extended covalent solids, the carbon atoms are in tetrahedral coordination bonded with four oxygen atoms. These extended covalent CO$_2$ solids formed at high pressures exhibit unique properties, such as high hardness, high energy density, high thermal conductivity, high melting temperatures, etc. [4,5]. However, they can only stably exist under high pressure and will transform into the gas phase under ambient conditions, which strongly limits their applications.

As an isoelectronic group-IV-oxide counterpart, SiO$_2$ is notably different from CO$_2$. At the ambient condition, SiO$_2$ exists only as a covalent solid with rich crystalline polymorphs such as quartz, cristobalite, coesite, etc. [18]. In all of these SiO$_2$ crystalline polymorphs, each Si atom is in tetrahedral coordination surrounded by four O atoms, forming a SiO$_4$ tetrahedral motif. Considering the structural similarity between the SiO$_2$ crystalline polymorphs and the nonmolecular crystalline polymorphs of CO$_2$ at high pressure, it is expected that the high-pressure crystalline phase of CO$_2$ can be stabilized to ambient conditions by doping with Si atoms. A pioneer theoretical study was performed by Aravindh et al. [19] to evaluate, using density-functional-theory calculations, whether it is possible to stabilize the carbon-based oxide compound at ambient conditions by mixing SiO$_2$ and CO$_2$ tetrahedral structures. The β-cristobalite-like structures with different

xzeng1@unl.edu

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
Si:C ratios were considered in their calculations. They predicted that the Si$_{x}$C$_{1-x}$O$_2$ compound may exist stably at ambient conditions at a certain composition x. However, the calculated formation energies for all the structures predicted are positive, indicating that the predicted structures are all metastable thus far. Recently, Santoro et al. [20] successfully synthesized a silicon-carbonate phase through the reaction between CO$_2$ and SiO$_2$ under high-pressure conditions, which demonstrates that it is possible to synthesize various crystalline phases of Si$_{x}$C$_{1-x}$O$_2$ compounds in the laboratory.

Although the solid phase of Si$_{x}$C$_{1-x}$O$_2$ is fabricated in the laboratory, the detailed atomic structure of the solids has not been discerned from the experiment. More recently, Morales-García et al. studied the structure and stability of the Si$_{x}$C$_{1-x}$O$_2$ compound based on first-principles calculations [21] and computed the relative energies of different metastable structures of various stoichiometries. Si$_{x}$C$_2$O$_6$ was predicted to be the most likely stoichiometry on the basis of an analogy with the UB$_2$O$_8$ structure (where U atoms are substituted by Si atoms, and B atoms are substituted by Si or C atoms). Their predicted structure of Si$_{1}$C$_{2}$O$_{6}$, however, is speculative due to the lack of a global search. Hence, a global structural search of low-enthalpy structures of the Si$_{x}$C$_{1-x}$O$_2$ compounds would aid in the ultimate determination of the solid structures from the experiment. Computed mechanical, thermal, and electronic properties of the highly stable Si$_{x}$C$_{1-x}$O$_2$ compound will also benefit future applications of the silicon-carbonate material. Toward this end, we have performed an extensive search for low-enthalpy structures of silicon carbonate with various stoichiometric SiO$_2$/CO$_2$ ratios using an ab initio evolutionary algorithm. We find that under 20-GPa hydrostatic pressure, sp^2 hybridization is more favored than sp and sp^3 hybridization for C atoms in highly stable silicon-carbonate solids regardless of the stoichiometric SiO$_2$/CO$_2$ ratio. Meanwhile, high coordination, especially the sixfold coordination, is more favored for Si atoms in these stable silicon-carbonate solids. For the SiO$_2$-rich solids, low-symmetry three-dimensional (3D) structures are energetically more favorable, in general, while in the CO$_2$-rich ones, multilayered 3D structures have lower enthalpy, in general. The calculated formation enthalpies indicate that only the Si$_{x}$C$_2$O$_6$ compound can be formed through the reaction between CO$_2$ and SiO$_2$ under 20-GPa pressure, and it can maintain its stability under the high pressure. The most stable crystalline structure of the SiC$_2$O$_6$ compound is predicted to be a slablike (layered) structure. We also compute the electronic structures, elastic modulus, tensile strength, and shear strength of the SiC$_2$O$_6$ crystal and assess its thermal stability through an ab initio molecular-dynamics (AIMD) simulation at various high temperatures. Our calculations suggest that the SiC$_2$O$_6$ crystal is an insulator with a wide indirect band gap, and its elastic constants are comparable to typical hard solids. It also possesses nearly isotropic tensile strength as well as extremely low shear strength. The crystal can maintain its stability under high temperatures up to 2300 K. These remarkable properties render a SiC$_2$O$_6$ solid with potential applications in nanoelectronic devices or as a high-quality solid lubricant under an extreme environment.

II. COMPUTATIONAL METHOD

The unbiased structural search for silicon-carbonate solids is performed using the USPEX package based on an evolutionary algorithm that has been proven to be reliable in identifying new high-pressure phases of a number of systems [22–25]. SiO$_2$/CO$_2$ ratios ranging from 4:1 $[(\text{SiO}_2)_4\text{(CO}_2)_1]$ to 1:3 $[(\text{SiO}_2)_1\text{(CO}_2)_3]$ are considered. Unit cells containing the number of atoms (up to 30 atoms) reflecting the chemical formulas for each given stoichiometric SiO$_2$/CO$_2$ ratio are adopted. The structural search is carried out for all solids under strong compression, i.e., under a high pressure of 20 GPa. This pressure is close to the reactive pressure of SiO$_2$ and CO$_2$ implemented in the experiment [20].

All low-enthalpy crystalline phases derived from the structural search are reoptimized at a higher level of theory using the VASP 5.3 package [26]. Here, the Perdew-Burke-Enzerhof (PBE) [27] exchange-correlation functional within the generalized gradient approximation is adopted. An all-electron plane-wave basis set with an energy cutoff of 520 eV is used along with the projector-augmented-wave pseudopotential. In addition, the phonon spectra of the lowest-enthalpy structures for each given stoichiometric SiO$_2$/CO$_2$ ratio are calculated using the VASP/PHONOPY [28] package to ensure that the solid structures are truly stable (without showing imaginary phonon frequencies).

III. RESULTS AND DISCUSSION

A. Low-enthalpy structures under 20 GPa

1. **(SiO$_2$)$_4$(CO$_2$)$_1$**

For the stoichiometric ratio SiO$_2$:CO$_2$ = 4:1, two stable low-enthalpy structures are obtained. Both structures are monoclinic crystals with Cm (space group 8) and C2 (space group 5) symmetry, respectively. For convenience, we name the two solids 4/1-I and 4/1-II, respectively. [See Fig. 1 for atomic structures.]

In the 4/1-I structure, each C atom is bonded with four O atoms, forming a common sp^3-hybridized local structure. Among the four C-O bonds, one is shorter (1.33 Å) and one is longer (1.45 Å) than the other two (1.40 and 1.40 Å), resulting in two sets of bond angles, i.e., approximately 99° or 115°. Each Si atom is bonded with six O atoms, forming an octahedron where the Si lies in the center while the six O atoms are located at vertices, respectively. There are two types of octahedron that are oriented in different directions. Among O atoms, 20% of them are in the twofold...
2. \((\text{SiO}_2)_3(\text{CO}_2)_1\)

For the stoichiometric ratio \(\text{SiO}_2:\text{CO}_2 = 3:1\), four low-enthalpy structures are identified and named 3/1-I to 3/1-IV, respectively [see Fig. 1], according to their ranking in relative energies. All four solids are monoclinic crystals with \(Pm(6), Cm(8), P2/m(10)\), and \(Pm(6)\) space-group symmetries, respectively.

In 3/1-I, the C atoms are in the \(sp^2\) hybridization and each C is bonded with three O atoms. Among the three C-O bonds, one is 1.31 Å and the other two are 1.26 Å. The three bond angles are close to the ideal angle 120°. Each Si atom in 3/1-I is also in sixfold coordination and bonded with six O atoms. Two types of Si-centered octahedrons are also seen in 3/1-I, and they are aligned almost vertically. For O atoms, 50% of them are in twofold coordination while the other 50% are in threefold coordination.

The 3/2-II structure is very different from those of 3/1-I and 4/1. The total energy is 69 meV/atom higher than 3/1-I. In 3/1-II, carbon atoms are in the same \(sp^2\) hybridization as in 3/1-I. The bond lengths of two C-O bonds are 1.27 Å, and that of the third one is 1.26 Å, close to those in 3/1-I. The three bond angles are also close to the ideal angle 120°. The major difference between 3/1-II and 3/1-I is the bonding of Si atoms [see Fig. 1]. Apparently, there are two distinctive bonding types for Si atoms. Besides the sixfold-coordinated Si atoms, 33.3% of Si atoms are in the fivefold coordination [highlighted in green in Fig. 1]. Among the sixfold-coordinated Si atoms, there are still two different types of octahedron formed. Thus, in 3/1-II, Si atoms as well as the bonded O atoms form three types of polyhedron, two differently aligned octahedrons, and one hexahedron. For O atoms, 50% are in twofold coordination while another 50% are in threefold coordination. The lower stability of 3/1-II compared to 3/1-I is likely due to the presence of fivefold-coordinated Si atoms.

3/1-III is 75 meV/atom higher in energy than 3/1-I. The major difference between the structure of 3/1-III and 3/1-I is that the C atoms in 3/1-III are in twofold coordination and each is bonded with two O atoms. Hence, the C atoms are in the \(sp\) hybridization. The bond length of C-O is 1.16 Å, nearly the same as that in a \(\text{CO}_3\) molecule. The bonding characteristics of Si atoms are very similar to those in 3/1-I. The Si-O structural feature in 3/1-III is also very

FIG. 1 (color online). Low-enthalpy structures of the (a) \((\text{SiO}_2)_4(\text{CO}_2)_1\), (b) \((\text{SiO}_2)_3(\text{CO}_2)_1\), and (c) \((\text{SiO}_2)_2(\text{CO}_2)_1\) compounds, respectively. Atoms in gold, grey, and red colors are Si, C, and O, respectively.
The central layer. Each C atom is in the crystal with high symmetry \([R-3(148)]\). There are three another by C atoms. Only 25% of O atoms are in twofold coordination. Octahedrons of the second type are separated from one another by C atoms. Only 25% of O atoms are in twofold coordination, and another 50% are in fivefold coordination. There are also two types of octahedron aligned in different coordination. Three layers of octahedrons formed by Si and the surrounding O atoms are present in each slab. For O atoms, 75% are in twofold coordination, a percentage much higher than those in 3/1-I, so, starting from the stoichiometric ratio \(\text{SiO}_2:\text{CO}_2 = 3:1\), fourfold coordination is no longer favored for C.

3. \(\text{SiO}_2\text{CO}_2\)

For the stoichiometric ratio \(\text{SiO}_2:\text{CO}_2 = 2:1\), we obtain three low-enthalpy solids with dramatically different structures [Fig. 1]. The lowest-enthalpy structure (2/1-I) is a triclinic crystal with P-1(2) space-group symmetry. The C atoms are in threefold coordination. The bond lengths of the three C-O bonds for each C atom are 1.26, 1.28, and 1.30 Å, respectively. There are two sets of Si atoms similar to those in 3/1-II: 50% of the Si atoms are in sixfold coordination, and another 50% are in fivefold coordination. There are also two types of octahedron aligned in different orientations, both formed by the first set of Si atoms. The percentages of twofold-coordinated O atoms and threefold-coordinated O atoms are 66.7% and 33.3%, respectively.

The second low-lying structure (2/1-II) is a multislab 3D structure and nearly degenerate in energy as 2/1-I (only 1 meV/atom in energy difference). 2/1-II is a trigonal crystal with high symmetry \([R-3(148)]\). There are three slabs in one unit cell. In each slab, the C atoms are located in the top and bottom layers and the Si atoms are located in the central layer. Each C atom is in the \(sp^2\) hybridization. The C-O bond is 1.29 Å. All the Si atoms are in sixfold coordination. Three layers of octahedrons formed by Si and the surrounding O atoms are present in each slab. For O atoms, 50% are in twofold coordination and the other 50% in threefold coordination, as in 2/1-I.

The third structure (2/1-III) is a monoclinic crystal with \(P2_1(4)\) space-group symmetry. It is 30 meV/atom higher in energy than 2/1-I. Similarly to 3/1-III, all the C atoms in 2/1-III are in twofold coordination. For the two O atoms bonded with a C atom, one is also bonded with a Si atom while the other is not. The bond lengths of the two C-O bonds are 1.18 and 1.16 Å, respectively. The O-C-O angle is 163°, differing from that (180°) in 3/1-III. The Si-O frame in 2/1-III is very close to that in 3/1-III. For O atoms, 16.7% are in single coordination, 33.3% in twofold coordination, and 50% in threefold coordination.

4. \(\text{SiO}_2\text{CO}_2\)

For the stoichiometric ratio \(\text{SiO}_2:\text{CO}_2 = 1:1\), four stable low-enthalpy crystalline structures are found. The lowest-enthalpy structure (1/1-I) is a triclinic crystal belonging to the P-1(2) space group. The second structure (1/1-II) is a monoclinic crystal belonging to the \(P2_1(4)\) space group, and its total energy is very close to 1/1-I. The third structure (1/1-III) is also a monoclinic crystal with \(P2_1/m(11)\) space-group symmetry. The last one (1/1-IV) is a tetragonal crystal belonging to the I-4(82) space group. All the Si and C atoms in 1/1-IV form tetrahedral structures, and are all bonded with O atoms.

As shown in Fig. 2, each C atom in 1/1-I is bonded with three O atoms, manifesting typical \(sp^2\) hybridization. The bond lengths of three C-O bonds are 1.26, 1.27, and 1.30 Å, as in the most stable structures with other stoichiometric ratios. All the Si atoms are in sixfold coordination and bonded with only O atoms. Contrary to most other stable structures with different stoichiometric ratios, in the 1/1-I structure, only one type of octahedron formed by Si and the surrounding O atoms is seen. For O atoms, 75% are in twofold coordination while 25% are in threefold coordination. With this stoichiometric ratio, the number of twofold-coordinated O atoms is more than that of the threefold-coordinated ones in the most stable structure. Hence, C atoms will play a more important role in making more stable structures.

The structure of 1/1-II is very close to 1/1-I, except the relative orientation of the \(sp^2\) planes of C atoms. In 1/1-I, the two C \(sp^2\) planes in one unit cell are parallel with each other, while in 1/1-II, they are normal to each other. The Si-O frames in both structures are almost the same. Hence, 1/1-II and 1/1-I are very close in total energies.

In 1/1-III, the C atoms are also in threefold coordination and the Si atoms are in sixfold coordination, as in 1/1-I and 1/1-II. However, because 50% of O atoms are in threefold coordination, a percentage much higher than those in 1/1-I and 1/1-II, I-III is energetically less favorable than 1/1-I and 1/1-II.

Last, in 1/1-IV, all C and Si atoms are in fourfold coordination [see Fig. 2]. All the O atoms are in twofold coordination, and each O is bonded with one C and one Si atom. 1/1-IV is 154 meV/atom higher in energy than 1/1-I. A similar tetrahedral structure to 1/1-IV has been previously studied by Aravind et al. [19]. It was shown that the tetrahedral structure of silicon carbonate is not energetically favorable even under 20 GPa, which is the reason.
why Aravindh et al. [19] found that their formation enthalpies are always positive. Besides 1/1-IV, another structure is also found in which all C atoms are in fourfold coordination. In that structure, the Si atoms are in sixfold coordination, as in 1/1-I to 1/1-III. Note that the total enthalpy of the second tetrahedral structure is 18 meV/atom lower than 1/1-IV. Thus, under high pressure, the sixfold coordination seems more preferred by Si atoms than the fourfold coordination.

5. \(\text{SiO}_2 \text{CO}_2 \)

As discussed above, for the silicon carbonate with either richer SiO\(_2\) composition or equal composition of SiO\(_2\) and CO\(_2\), almost all the lowest-enthalpy stable structures are 3D structures with low space-group symmetries [except \(\text{SiO}_2 \text{CO}_2 \), for which the layered structure and the 3D structure are almost degenerate in energy]. However, the situation changes when the CO\(_2\) component is richer. For the stoichiometric ratio SiO\(_2\):CO\(_2\) = 1:2, the lowest-enthalpy structure is a trigonal multilayered structure (1/2-I) with the P-3(147) space group [see Fig. 2]. In 1/2-I, each slab contains three atomic layers, where the top and bottom layers are composed of C \(sp^2\) planes and the central layer is composed of Si octahedrons. Each Si atom is bonded with three O atoms in both the top and bottom layers. In 1/2-I, the C, Si, and O atoms are in threefold, sixfold, and twofold coordination, respectively.

The second structure (1/2-II) obtained is also a multislab structure. There are three slabs in one unit cell. In each slab, the atomic structure is the same as that in 1/2-I. The main difference between the two solids is that the relative position between neighboring slabs is different. However, 1/2-II is energetically much less favorable (57 meV/atom higher in energy) than 1/2-I. As shown in Fig. 2, in 1/2-II, each C atom in the bottom layer of the top slab is exactly in registry with that in the top layer of the bottom slab, while in 1/2-I, the C atoms in the bottom layer of the top slab and those in the top layer of the bottom slab are out of registry. Surprisingly, such a small structural difference results in a significant difference in the total enthalpy (57 meV/atom higher in energy than 1/2-I).

The lowest-enthalpy 3D structure for SiO\(_2\)/CO\(_2\) = 1:3 is a monoclinic crystal with C2(5) space-group symmetry (1/2-III). It is 132 meV/atom higher in energy than 1/2-I. In 1/2-III, all the C atoms are in the \(sp^2\) hybridization, the Si atoms are in sixfold coordination, and all the O atoms are in twofold coordination.

6. \(\text{SiO}_2 \text{CO}_2 \)

For the stoichiometric ratio SiO\(_2\):CO\(_2\) = 1:3, C atoms in the lowest-enthalpy structure 1/3-I are in the \(sp\)
hybridization [see Fig. 2]. The structure of 1/3-I can be viewed as inserting CO₂ molecules into the space between two slabs in 1/2-I or in 1/2-II. With the added CO₂, the symmetry of 1/3-I [P-1(2)] becomes dramatically lower than that of 1/2-I. The second low-enthalpy structure (1/3-II) is almost degenerate in energy as 1/3-I but possesses no sp-hybridized C atoms. 1/3-II is only 1 meV/atom higher in energy than 1/3-I under 20 GPa. 1/3-II is a triclinic crystal without high symmetry. In 1/3-II, all C atoms are in threefold coordination, all Si atoms are in sixfold coordination, and all O atoms are in twofold coordination.

In summary, under 20-GPa hydrostatic pressure, the s²p² hybridization is energetically more favorable than the sp and sp³ hybridization for C atoms in stable silicon carbonate regardless of the stoichiometric ratio SiO₂/CO₂. Coordination higher than fourfold, especially the sixfold coordination, is more favored for Si atoms. The Si atoms are not bonded with C atoms directly but connected with C atoms via the O atoms. In SiO₂-rich compounds or compounds with equal composition of SiO₂ and CO₂, 3D low-symmetry structures are normally more preferred energetically, while in CO₂-rich compounds, multislab structures typically have lower enthalpy. Except for (SiO₂)₀(CO₂)₀, no CO₂ molecule exists in the low-enthalpy structures; in other words, silicon-carbonate compounds are generally formed.

B. Formation enthalpies

To assess stabilities of the low-enthalpy SiₓCₙ₋ₓO₂ compounds with respect to solid-state CO₂ and SiO₂ at 20 GPa, we have computed the formation enthalpies based on the definition ΔH = Hₓ−Cₙ₋ₓ−O₂ − xH₂O₂ − (1−x)H₂O₂. The reference structures of CO₂ and SiO₂ under 20 GPa are also determined through an extensive structural search. It turns out that the lowest-enthalpy structure of CO₂ under 20 GPa is a crystalline structure with I-42d symmetry [7–9], where C atoms are in tetrahedral coordination, and the lowest-enthalpy structure of SiO₂ is the stishovite [29] structure with P₄₁/mmm symmetry, where Si atoms are in sixfold coordination. The formation enthalpies as a function of the composition of SiO₂ are shown in Fig. 3. Apparently, except for x = 0.333, i.e., (SiO₂)₀(CO₂)₀, the formation enthalpies with other compositions are all positive. For x = 0.333, only the lowest-enthalpy structure, i.e., 1/2-I [Fig. 3], gives rise to negative formation enthalpy. Hence, only the structure 1/2-I is most viable and may be synthesized through a reaction of SiO₂ and CO₂ under 20 GPa at low temperature. Note that our predicted stochiometry for the lowest-formation-enthalpy structure is the same as that of Morales-García [21], although the predicted structure differs from theirs. For all other low-enthalpy structures predicted above, although they are less likely to be formed under 20 GPa and low temperature, it is still conceptually important to know the family of metastable crystal structures and their total energies. Note that the energies of all structures are calculated at zero temperature. The positive formation energies of the structures mean that these structures are unlikely to be formed at low temperature. At higher temperatures, however, some of these metastable structures may be formed. In the experiment, several reaction paths between CO₂ and SiO₂ are examined at pressure and temperature of 18–26 GPa and 296–980 K [20]. As such, the silicon carbonate observed in the experiments may be not only the lowest-formation-enthalpy structure 1/2-I, but it may also include other low-enthalpy structures with different stoichiometric SiO₂/CO₂ ratios.

For comparison with experiments, we compute the infrared (IR) and x-ray-diffraction (XRD) spectra for the lowest-enthalpy structure with each stoichiometric ratio using the CASTEP [30,31] and Reflex modules implemented in Materials Studio 6.1, respectively. For the CASTEP calculation, a PBE [27] functional and norm-conserving pseudopotentials [32] are adopted. The simulated IR and XRD spectra are displayed in Fig. 4. In the experimental XRD, there are two sharp peaks located within the range of 6°–8° for the silicate-CO₂ mixture at room temperature. The two peaks are broadened when the temperature increases and almost vanish at 723 K. So, it is believed that a reaction between CO₂ and SiO₂ occurs at the high temperature. This means that the possible crystalline structures formed after the reaction may exhibit

![Graph](image-url)
Bragg peaks in the XRD spectra near the two sharp peaks of the silicalite-CO$_2$ mixture; i.e., both are located in the range of 6°–8°. From the simulated XRD spectra, we see clearly that for most predicted structures, there are one or several peaks in the range of 6°–8°. A sum of the XRD spectra from all or several of these structures will lead to broad peaks in this range. So, a mixture of these crystalline structures may be present in the final product, although the amount may be very small.

For the IR spectra, the peaks at approximately 1500 and \sim1600 cm$^{-1}$ detected in the experiment are due to silicon carbonate. The peaks at 1500 cm$^{-1}$ are thought to be due to the vibration mode of the CO$_3$ group in which all the C-O bonds are single bonds. In most of the predicted structures, C atoms are in sp^2 hybridization and are bonded with three O atoms, forming three single C-O bonds. The IR spectra of these structures appear to be consistent with the experimental measurement. In the simulated IR spectra, except for the 4/1-I structure, all other structures give rise to peaks near either 1500 or 1600 cm$^{-1}$ or both. Through an analysis of the vibration corresponding to both modes, it is confirmed that the peaks near 1500 and 1600 cm$^{-1}$ are due to the stretching vibration mode of C in the CO$_3$ group for 3/1-I, 2/1-I, 1/1-I, and 1/2-I structures. For the 1/3-I structure, the two peaks around 1500 cm$^{-1}$ stem from a vibration mode of C atoms, too, although the C atoms in 1/3-I are not in planar threefold coordination but in nearly linear and twofold coordination. For the structure of 4/1-I, the C atoms are all in tetrahedral coordination, and the vibration frequencies of C atoms are lower. Again, the simulated IR spectra are consistent with the experimental ones, suggesting that a mixture of these low-enthalpy structures may be present in the final product of the reaction between CO$_2$ and SiO$_2$.

FIG. 4 (color online). The simulated (a) XRD spectra and (b) IR spectra of the most stable structure for each stoichiometric ratio.

C. Properties of the most stable structure 1/2-I

1. Electronic properties

The structure 1/2-I of a silicon-carbonate compound is predicted to be the most stable. Here, we focus only on the electronic and mechanical properties of 1/2-I. For practical applications, it is important to examine whether the structure is stable under 1-atm pressure. To this end, we calculate the phonon spectra of 1/2-I under 1 atm, as shown in Fig. 5. Clearly, there are no imaginary frequencies in the entire Brillouin zone. The structure 1/2-I can still maintain its stability if the high-pressure condition is changed to the ambient condition.

As discussed above, the structure 1/2-I is a slablike (layered) structure. The van der Waals interaction between any two slabs is weak, which would not influence the electronic properties significantly unless it is metallic. Here, we focus on the electronic properties of one single slab of 1/2-I to understand how the chemical bonds of Si-O and C-O in the slab influence the properties. The band structures as well as the projected density of states are shown in Fig. 5. Clearly, 1/2-I is an insulator with an indirect band gap. The value between the conduction-band minimum and the valence-band maximum is 4.5 eV. The direct gap at the Γ point is 4.9 eV. It is known that the PBE functional tends to underestimate band gaps of nonmetal materials. Hence, the real band gap of 1/2-I is expected to be larger. To obtain more reasonable band structures, we use the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional [33,34]. The newly computed indirect band gap and the direct gap at the Γ point are 6.4 and 6.8 eV, respectively. The top of the valance band is not located at the Γ point, as with most materials, but at the $M(0,1/2,0)$ and $K(-1/3,2/3,0)$ points. It is very similar to that of hexagonal boron-nitride (h-BN). On the other hand, the bottom of the conduction band is located at the Γ point, unlike the h-BN. The unique band structure of 1/2-I is strongly dependent on the crystal structure and the bonding among C, Si, and O elements. From the projected density of states, we learn that the states near the tops of valance bands are mainly contributed by the p_z and p_y orbitals of O, which are the main contribution to the covalent bonds of C-O and Si-O. The lowest two conduction bands originate mainly from the p_z orbitals of C and O. Si has a slight contribution to the states in the energy window (-4–6 eV).

To examine the bonding characteristic of C-O and Si-O bonds in the 1/2-I structure, we calculate the electron-localization function (ELF). The 3D isosurface of the ELF and the projected ELF on the xy plane are shown in Figs. 5(c) and 5(d), respectively. The xy plane represents the lower CO$_3$ layer. It is obvious that a small percentage of electrons is localized at the center of each C-O bond, indicating that covalent bonds are formed between C and O. Each C atom is bonded with three O atoms, and all the CO$_3$ planar units are in the upper and lower layers of a slab, respectively, and are also connected by the central Si layer.
[Fig. 3]. Each C atom possesses one lone pair of electrons distributed along the z direction. Besides the electrons at the center of each C-O bond, other electrons are localized around O atoms. As seen in Fig. 5(c), some electrons around O are distributed along the z direction. So, the electrons localized at the centers of Si-O bonds cannot be clearly distinguished because the ELF of the Si-O bond and that of the lone-pair electrons of O are connected. As shown by the plotted density of states, the two lowest conduction bands are mainly contributed by the p_z orbitals of C and O. Thus, the lowest two conduction bands are contributed mainly by the lone-pair electrons of O and C while the top valence bands are contributed mainly by the electrons that participate in the C-O bonds.

2. Mechanical properties

As discussed above, 1/2-I has a multilayered structure, and it is also an insulator with a wide indirect band gap. With these properties, 1/2-I may be used in nanosized metal-insulator-semiconductor (MIS) devices as an intermediate insulator layer. Because of the multilayered structure, 1/2-I may also be used as a solid lubricant as the graphite. However, these potential applications demand that the 1/2-I solid possess good mechanical properties. To this end, we have computed the elastic constants, the tensile strength along the 2D plane, and the shear strength in the 2D plane, respectively, using the VASP package.

The calculated elastic constants of 1/2-I are $C_{11} = 251.6$ GPa, $C_{33} = 22.2$ GPa, $C_{12} = 12.2$ GPa, $C_{13} = C_{23} = 2.3$ GPa, $C_{44} = C_{55} = 2.5$ GPa, and $C_{66} = 119.7$ GPa, respectively. The bulk and shear moduli are 62.1 and 61.1 GPa, respectively. The Young’s moduli along the x and y directions are both 245.8 GPa. The values of C_{11} and C_{22} and the Young’s moduli along the x and y directions are greater than those of silicon and α quartz. Considering that a vacuum slab is used in the supercell of 1/2-I, the actual value of C_{11} may be greater than 600 GPa, comparable to many hard solids.

Hardness is an important parameter for solid materials but is difficult to compute accurately. There are several empirical formulas for the estimation of the hardness of covalent-bonding crystals, e.g., the formulas of Gao et al. [35] and of Šimůnek and Vackář [36]. However, neither can be used to estimate the hardness of multilayered materials. Recently, Chen et al. [37] proposed a simple way to estimate the hardness of materials based on their elastic moduli. Using this formula, we estimate the hardness of 1/2-I to be about 20.5 GPa. We note here that Chen’s formula is mainly tested for 3D crystals and not yet for materials with a multilayered structure. Thus, the estimated hardness of 1/2-I may not be so reliable. Note also that the latest version of USPEX has a module for computing the hardness of materials. The calculated hardness of 1/2-I based on USPEX (4.8 GPa) is much lower than that estimated from the bulk and shear moduli. Such a low value of hardness is most likely due to the weak van der Waals interaction between adjacent slabs. For multislab structures, the strength of a single slab is more relevant. The estimated hardness from the empirical formulas may not describe this property properly.

Another way to estimate the hardness is by computing the ideal strength, regardless of whether the structure is a covalent or multislab solid. Toward this end, we examine...
Density-functional-theory solid lubricant. Stability of the local temperature can be very high. We examine the thermal nanosized MIS devices or as a solid lubricant, as the typical factor for applications of the \((001) \) plane. Thus, the 3D structure using an AIMD simulation, a method implemented in the VASP package. Specifically, in the AIMD simulations, a \(2 \times 2 \times 2 \) supercell containing 72 atoms is used. The canonical ensemble is selected for the simulation. Various temperatures up to 2500 K are considered. At each temperature, the simulation typically runs for 2 ps with a time step of 2 fs. As shown in Fig. 7, the simulation indicates that the structure is intact until 2400 K. Above 2400 K, the structure is transformed into disordered structures, i.e., begins to melt. Although the AIMD simulation does not give an exact melting point, the temperature at which a structural transition occurs is high enough to show that the 1/2-I structure can be stable below 2300 K.

IV. CONCLUSION

We have performed an extensive search for the most stable structures of the Si\(_x\)C\(_{1-x}\)O\(_2\) compound under 20-GPa hydrostatic pressure using an evolutionary algorithm. The lowest-enthalpy structure and a number of metastable structures for each given composition are predicted [38]. Based on the low-enthalpy structures, we analyze the chemical-bonding characteristics of C, O, and Si. We find that sp\(^2\) hybridization is prevalently favored for C, and the sixfold coordination is generally favored for Si in the low-enthalpy structures. The structural features can be very sensitive to the stoichiometric SiO\(_2\)/CO\(_2\) ratio. When the crystal is rich in SiO\(_2\), low-symmetry 3D structures are energetically favored, and when the crystal is rich in CO\(_2\), high-symmetry multislab (or multilayered) structures typically have lower enthalpies and thus are more stable. The calculated formation enthalpies show that the unique 1/2-I structure, a multislab structure for Si\(_x\)C\(_{1-x}\)O\(_2\) (or Si\(_{0.333}\)C\(_{0.667}\)O\(_2\)) with P-3 (147) space-group symmetry, is not only the lowest-enthalpy structure without any imaginary phonon modes, but more importantly is energetically favorable with respect to phase-separated SiO\(_2\) and CO\(_2\) solids. We also find that the 1/2-I structure possesses a number of valuable properties: It is an insulator with a wide indirect band gap, and it has low shear strength along the slab plane (easy-sliding plane) and excellent thermal stability. With these remarkable properties, the 1/2-I structures may find applications in nanosized MIS devices and as a high-quality solid lubricant or a stable solid-state form for CO\(_2\) sequestration. Finally, we note in passing that the structures found in experiments are amorphous or disordered but not crystalline. This is likely because the reaction occurs in the micropores of the SiO\(_2\) silicate with short heating time. Very small ordered structures may form in the local area around the micropores, but the entire matrix may hardly transform into an ordered structure due to the short heating time. It is also possible that multiple crystalline structures coexist due to the closeness in formation enthalpy for some structures (see Figs. 1 and 2). In any event, a longer heating time or repeated heating or annealing may be needed to yield a single-crystalline structure.
ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (Grant No. 11104056) and the Natural Science Foundation of Anhui Province (Grant No. 11040606Q33). X. C. Z. is supported by ARL (Grant No. W911NF1020099), the NSF (Grant No. DMR-0820521), the Nebraska Research Initiative, the University of Nebraska Holland Computing Center, and a grant from USTC for (1000plan) Qianren-B summer research.

