
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department of

1-1-2001

The Impact of Software Evolution on Code
Coverage Information
Sebastian Elbaum
University of Nebraska-Lincoln, elbaum@cse.unl.edu

David Gable
University of Nebraska - Lincoln, dgable@cse.unl.edu

Gregg Rothermel
University of Nebraska-Lincoln, grother@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/cseconfwork
Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and Workshop Papers by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Elbaum, Sebastian; Gable, David; and Rothermel, Gregg, "The Impact of Software Evolution on Code Coverage Information" (2001).
CSE Conference and Workshop Papers. Paper 132.
http://digitalcommons.unl.edu/cseconfwork/132

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork/132?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages


The Impact of Software Evolution on Code Coverage Information

Sebastian Elbaum
Dept. of Computer

Science and Engineering
University of Nebraska-Lincoln

Lincoln, Nebraska
elbaum@cse.unl.edu

David Gable
Dept. of Computer

Science and Engineering
University of Nebraska-Lincoln

Lincoln, Nebraska
dgable@cse.unl.edu

Gregg Rothermel
Computer Science Dept.
Oregon State University

Corvallis, OR
grother@cs.orst.edu

Abstract

Many tools and techniques for addressing software
maintenance problems rely on code coverage information.
Often, this coverage information is gathered for a specific
version of a software system, and then used to perform anal-
yses on subsequent versions of that system without being
recalculated. As a software system evolves, however, mod-
ifications to the software alter the software’s behavior on
particular inputs, and code coverage information gathered
on earlier versions of a program may not accurately reflect
the coverage that would be obtained on later versions. This
discrepancy may affect the success of analyses dependent
on code coverage information. Despite the importance of
coverage information in various analyses, in our search of
the literature we find no studies specifically examining the
impact of software evolution on code coverage information.
Therefore, we conducted empirical studies to examine this
impact. The results of our studies suggest that even rela-
tively small modifications can greatly affect code coverage
information, and that the degree of impact of change on cov-
erage may be difficult to predict.

1 Introduction

Many software maintenance techniques and tools require
knowledge about the dynamic behavior of software. Pro-
gram profiling techniques [2, 15] provide such knowledge,
collecting code coverage information about such things as
the statements, branches, paths, or functions encountered or
taken during a program’s execution. Such code coverage
information supports maintenance-related activities such as
impact analysis [3, 8], dynamic slicing [1, 12, 14], assess-
ments of test adequacy [16, 19], selective regression test-
ing [10, 21, 25], predictions of fault likelihood [6], dynamic
code measurement [17], test suite minimization [22, 27],
and test case prioritization [4, 23, 26].

Often, code coverage information is collected for a ver-
sion of a program to aid in some maintenance or testing task
performed on that particular version. For example, the exe-
cution of test suite T on version Pi of program P generates
coverage information that could be used to determine the
statement coverage adequacy of T on Pi.

In many other cases, however, code coverage informa-
tion collected on a particular version Pi of program P is
used to aid in analyses or tasks performed on subsequent
versions of P . For example, most regression test selection
and test case prioritization techniques (e.g. [4, 10, 21, 23,
25, 26]) use test coverage information from Pi to help se-
lect or prioritize the tests that should be executed on some
later version Pi+j of Pi. Similarly, some techniques for re-
liability estimation [11] use coverage information from Pi

to assess the risk of executing certain components in Pi+j .
In many such cases, reuse of coverage data is essential.

It would make no sense, for example, to run all the tests
in T on Pi+1 in order to use that coverage information to
select the subset of T that must be run on Pi+1! In other
cases, it simply is not cost-effective to re-gather coverage
information (reapplying expensive profiling techniques and
re-executing the program many times) for each successive
version of an evolving program. Instead, coverage informa-
tion is gathered on some version of P , and re-used — with-
out being recalculated — on several subsequent versions.

Of course, as software evolves, modifications to that
software can alter that software’s behavior on particular in-
puts, and code coverage information calculated for a set of
inputs on a version Pi of P may not accurately reflect the
coverage that would be obtained if that set of inputs were
applied to subsequent versions. Thus, techniques that rely
on previously computed code coverage information may de-
pend for their success on the assumption that coverage in-
formation remains sufficiently stable as software evolves.

Despite the importance of code coverage information,
and the frequency with which maintenance techniques de-
pend on its reuse, in our search of the research literature
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we find little data on the effects of program evolution on
coverage information. Rosenblum and Weyuker [20] con-
jecture that coverage information remains relatively stable
across program versions in practice, and this hypothesis is
supported in their study of regression test selection predic-
tors. Studies of techniques that rely on the relative stability
of coverage information [4, 23] have shown that those tech-
niques can succeed, suggesting indirectly that sufficient sta-
bility may exist. Beyond these informal or indirect reports,
however, we can find no previous research specifically ad-
dressing questions about the impact of software evolution
on code coverage information.

We are therefore conducting empirical studies investi-
gating code coverage and its stability in evolving software.
This paper reports the results of two such studies: a con-
trolled experiment and a case study. Our results indicate
that even small changes during the evolution of a program
can have a profound impact on coverage information, and
that this impact increases rapidly as the degree of change
increases. Furthermore, our results suggest that the im-
pact of evolution on coverage information may be difficult
to predict. These findings have consequences for certain
techniques that use code coverage information from earlier
software versions to perform tasks on subsequent versions.

In the next section of this paper we present our re-
search questions and measures, and discuss our empirical
approaches. Sections 3 and 4 present our two studies in
turn, describing their design and results. Finally, Section
5 discusses the overall implications of the results of both
studies, and discusses future work.

2 Empirical Studies

We are interested in the following research questions:

RQ1: How does program evolution affect code coverage
information?

RQ2: What impact can a code modification have on code
coverage information?

RQ3: Are certain granularities of code coverage informa-
tion more stable than others?

2.1 Measures

We can represent the execution of a test suite1 on a pro-
gram by a coverage matrix C(v). The number of rows c

in this matrix equals the number of program components
for which coverage is being tracked, and the number of
columns t equals the number of tests in the test suite. The

1Coverage information can be gathered for any set of inputs to a pro-
gram and used in analyses. Such sets of inputs might be test suites, but
they might also be samples drawn on operational profiles, or any other col-
lections of inputs of interest. For simplicity, in this paper, we use the term
“test suite” to describe any such set.

value of a cell in the matrix can be 1 or 0, depending on
whether a component was covered by a test or not.

For example, Table 1 depicts two versions of the function
computeTax (v0 and v1). The changes between versions
are shown in italics. Table 2 shows a test suite developed
to achieve statement coverage of version v0 of the function,
listing its coverage of statements in both versions, and Ta-
ble 3 presents the coverage matrices, C(v0) and C(v1), that
result from executing that test suite on the two versions.

To quantify differences in coverage information, and to
let us measure the effects of evolution on coverage, we se-
lected four metrics. Let C(vi) and C(vj) be coverage ma-
trices for versions i and j of a program, respectively.

� Matrix density (MD) measures the distribution of a test
suite across a set of components. MD is computed by
counting each 1 in C(vi), and then dividing by c � t

and multiplying by 100. For our sample program MD
is 62% for C(v1) and 48% for C(v2).

� Component coverage (CC) measures the percentage of
components executed by a test suite. CC is computed
by counting each component that was executed by at
least one test, and then dividing by c and multiplying
by 100. For our sample program CC is 100% for C(v0)
and 86% for C(v1).

� Change across components (CAC) measures the per-
centage of change in component coverage between
coverage matrices C(vi) and C(vj). CAC is computed
by counting the number of components that did not re-
ceive identical coverage on both versions (vector com-
parison), dividing it by c, and multiplying by 100. For
the two versions of our sample program, CAC is 71%.

� Change across tests (CAT) measures the percentage of
change in test suite execution between coverage ma-
trices C(vi) and C(vj). CAT is computed by count-
ing the number of inputs that did not execute the same
components on both versions, dividing it by t, and
multiplying by 100. For the two versions of our sample
program, CAT is 67%.

These metrics capture different aspects of code coverage
information. The first two metrics relate to individual cov-
erage matrices, and quantify the relationship of a test suite
to a set of components. The second two metrics relate to
changes in coverage between versions, and quantify the ex-
tent to which that coverage changes.

2.2 Empirical Approaches

To investigate our research questions, we need to mea-
sure how coverage information is affected as a program
evolves. A program evolves as a result of changes (mod-
ifications, enhancements, adaptations). Hence, to study the
effects of program evolution on code coverage we require
programs with changes.
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Statement Version v0 Statement Version v1
s1 computeTax (float base, char marital status) f s1 computeTax (float base, char marital status) f
s2 if (base > 5000.0)f s2 if (base > 10000.0)f
s3 if (marital status == ’s’) s3 if (marital status == ’m’)
s4 tax = base * 10.0; s4 tax = base * 10.0;
s5 else s5 else
s6 tax = base * 15.0; s6 tax = base * 15.0;
s7 tax = tax + adjustment; g g s7 tax = tax + adjustment; g g

Table 1. Sample program versions v0 and v1.

Test Input Values Statements Covered
v0 v1

t1 base = 99999.0, 1,2,3,4,7 1,2,3,5,6,7
marital status = ’s’

t2 base = 5001.0, 1,2,3,5,6,7 1,2
marital status = ’m’

t3 base = 4999.0, 1,2 1,2
marital status = ’s’

Table 2. Test suite for sample program.

C(v0) C(v1)
t1 t2 t3 t1 t2 t3

s1 1 1 1 s1 1 1 1
s2 1 1 1 s2 1 1 1
s3 1 1 0 s3 1 0 0
s4 1 0 0 s4 0 0 0
s5 0 1 0 s5 1 0 0
s6 0 1 0 s6 1 0 0
s7 1 1 0 s7 1 0 0

Table 3. Coverage matrices for v0 and v1.

One empirical approach is to perform a case study on
an existing program that has several versions and exist-
ing test suites. The changes to such a program would be
“real”. However, under this approach, the circumstances
under which evolution and testing occur are not controlled.
For example, the changes may have different sizes and im-
plications, and there may be only one test suite per version.
Hence, it could be difficult to draw valid inferences about
causality or about the ability of results to generalize.

A second empirical approach is to perform a controlled
experiment in which changes are simulated. The advantage
of such an experiment is that the independent variables of
interest (number of changes, location of changes, and test
suite) can be manipulated to determine their impact on de-
pendent variables (MD, CC, CAC, CAT). This lets us apply
different values to the independent variables in a controlled
fashion, so that results are not likely to depend on unknown
or uncontrolled factors. The primary weakness of this ap-
proach, however, is the threat to external validity posed by
the change simulation.

Because each approach has different advantages and dis-
advantages, we employed both.

3 Study 1

We present our controlled experiment first.

3.1 Experiment Instrumentation

Subject Program and Tests. As a subject for this exper-
iment, we used a C program developed for the European
Space Agency, containing 6218 lines of executable code;
we refer to this program as Space. Space is an interpreter
for an array definition language (ADL). Space reads a file
of ADL statements, and checks the contents of the file for
adherence to the ADL grammar and consistency rules. If the
file is correct Space outputs a list of array elements, posi-
tions, and excitations; otherwise it prints error messages.

Initially, we constructed a pool or “universe” of tests for
Space in two phases. We began with 10,000 randomly
generated tests created by Vokolos and Frankl [24]. Then
we created new tests until each executable branch (outcome
of a decision statement) in the program was exercised by at
least 30 tests. This process yielded a pool of 13,585 tests.

To obtain sample test suites, we used the pool of tests,
and coverage information about those tests, to generate
1000 test suites that were branch-coverage-adequate for
Space. (Note that, because Space contains some code
that is unreachable, including some unreachable “debug-
ging” functions, there were branches in Space not exe-
cuted by any tests). For our experimentation, we randomly
selected 50 of these test suites.

Modeling the Effects of Changes. To study the impact of
changes on Space, we instrumented each if and while
statement in the program. The instrumentation consisted of
a call to a change-probability function. The inserted func-
tion used a probability distribution to determine whether or
not an instrumented branch should be changed.2 A negation
of the evaluated condition constituted a change. This pro-
cedure allowed us to generate different versions by creating
new change probability distributions.

To understand the impact of the amount of change on
code coverage information, we investigated five levels of

2Note that each instrumented branch was associated with a probability
of being changed. This probability was generated randomly before compi-
lation and checked at execution time by the change-probability function.
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change: 1%, 2%, 5%, 10% and 15%. For example, at
the 1% change level, approximately six of the 513 instru-
mented branches of Space had a non-zero probability of
being changed. We generated 30 versions for each change
level, each with a randomly defined change probability.

Types of Code Coverage Information. One of our re-
search questions concerns differences in types of code cov-
erage information. For this experiment, we selected two
types of coverage: statement coverage, which tracks the
statements executed by each test, and function coverage,
which tracks the functions executed by each test. In both
cases, we track not frequency of execution, but just whether
the component was or was not executed. To measure cover-
age, we used the Aristotle analysis system [9].

Additional Infrastructure. Some branch modifications
caused Space to crash. One option for handling this was
to discard tests that caused crashes; however, this could dis-
card valuable coverage information, causing us to underes-
timate the effects of changes. Moreover, in practice, such
tests would not be discarded. A second option was to mod-
ify Space to capture termination signals and record cover-
age data before failing. We chose this second option. Sim-
ilarly, we inserted traps into Space to halt execution on
modifications that lead to infinite loops. (In practice, such
loops would be terminated by human intervention, our traps
simulate this.)

3.2 Experiment Design

To put Space and its modifications through all de-
sired experimental conditions we selected a factorial design,
considering all combinations of versions, test suites, and
change levels. In more formal terms, our design constitutes
a completely randomized factorial design with three treat-
ments: (T1) versions, with 30 levels (excluding the base-
line), (T2) test suites, with 50 levels, and (T3) change level,
with five levels. Given this design, we generated 7500 ob-
servations (excluding the 50 observations for the baseline)
at the statement level and 7500 observations at the function
level.3 Each observation contained the four metrics pre-
sented in Section 2.1, for each level of the three factors.

3.3 Results and Analysis

First, we examine the data graphically. Box plots for
each metric at the baseline and the five change levels are
presented in Figure 1.4 The column of graphs on the left

3To address our third research question, we joined both data sets adding
a new treatment for coverage type (T4 with 2 levels).

4Box-plots summarize the distribution of a variable by using three com-
ponents: (1) a central line to indicate central tendency or location, (2) a box
to indicate variability around this central tendency, (3) whiskers around the
box to indicate the range of the variable. In our case, we choose the means,
standard errors and standard deviations as these three components.

depicts results for statement coverage; the column on the
right depicts results for function coverage; the four graphs
in each column depict results for each of the four metrics
(MD, CC, CAC, CAT), respectively. The x-axes represents
the baseline and five change levels. The y-axes represents
the values measured for each metric. Each individual box
plot (other than the plots for baselines) indicates the dis-
tribution of the 1500 observations (50 test suites times 30
versions) for one change level, for a given metric and cov-
erage type. (Plots for baselines, where no change levels are
involved, represent 50 observations.)

As the plots indicate, MD (matrix density) decreased as
change level increased. Both statement and function cov-
erage presented the same trend. However, MD based on
function coverage information exhibited a greater rate of
decrease and greater deviation (as indicated by the size of
the box plots). CC (component coverage) also decreased
as change level increased. As expected, CC at the func-
tion level was higher at lower change levels, but at higher
change levels it rapidly decreased to values similar to CC
at the statement level. (Recall from Section 3.1 that Space
contains some unreachable code and functions, this explains
why CC is not 100% for either type of coverage, even for
the baseline version.)

It is interesting to note that the mean CC decreases more
than 10% if even 1% of the branches are affected by a
change. That decreased percentage rose to 20% when 2%
of the branches were affected by a change. In other words,
a minor change can have a profound effect on the cover-
age structure as captured by the CC measure. It is also
worth noting that the MD and CC metrics seem to stabilize
as change levels increase (but at smaller values). Finally,
the expected CC at lower change levels is more difficult to
predict than at higher change levels. This is evident in the
large deviation present in the box plots at lower change lev-
els, which means that the impact on CC at lower levels is
conditioned on other factors (e.g., the type of change that is
made). For higher change levels, there is more certainty that
CC will decrease significantly, independent of other factors.

The change metrics, CAC (change across components)
and CAT (change across tests), display an opposite trend.
These metrics reflect the degree of change in coverage infor-
mation as program change level increases. CAC using func-
tion coverage information seems to be impacted the most by
changes in the program: a 1% change in the program has an
average impact of over 60% on CAC based on function cov-
erage information. The same tendencies can be observed in
CAT; however, the CAT values presented more variability
than the CAC values at lower levels of change. Also, for
change levels above 5%, the CAT average was over 90%
for both statement and function coverage.

To corroborate the trends observed in the graphs, we
tested for differences across change levels between the
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Figure 1. Box plots showing the distribution of coverage measures observed in Study 1.

means of all metrics. The appropriate procedure for this
type of test involving several means is an analysis of vari-
ance (ANOVA) [13]. The ANOVA calculations were per-
formed using STATICA, a commercial package that facili-
tates this type of statistical analysis.

The null hypothesis states that the means at all change
levels are the same for each of the metrics. Since there are
four metrics, we performed 4 analyses of variance compar-
ing all the change levels. Table 4 summarizes the results of
these analyses, at both the statement and function coverage
levels. The summary includes the degrees of freedom of

each effect and the p-value of each metric. For our exper-
iments, a p-value less than 0.05 indicates that the effect is
significant (so we should reject the null hypothesis).

We consider five effects: (1) change level, (2) version,
(3) test suite, (4) interaction between change level and ver-
sion, and (5) interaction between change level and test
suite. Although we are investigating primarily the impact
of changes on coverage, understanding these other effects
can help us judge whether other factors affect our results.

Where statement coverage information is concerned
(columns three through six in Table 4), the means of all
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Degrees of p values for metrics at statement level p values for metrics at function level
Effect Freedom MD CC CAC CAT MD CC CAC CAT

Change Level 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Version 29 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Test Suite 49 0.014 1.000 1.000 0.405 0.000 1.000 0.998 0.746
Change Level * Version 116 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Change Level * Test Suite 245 0.000 0.962 1.000 0.000 0.000 0.945 0.984 0.001
Error 7100
Total 7544

Table 4. Anova analysis of the four metrics at the statement and function levels.

statement level function level
Change MD CC CAC CAT MD CC CAC CAT
Level Mean Grp Mean Grp Mean Grp Mean Grp Mean Grp Mean Grp Mean Grp Mean Grp

0 24.51 A 76.56 A 0.00 A 0.00 A 40.79 A 90.37 A 0.00 A 0.00 A
1 18.41 B 61.61 B 48.97 B 47.24 B 29.33 B 78.48 B 62.19 B 53.29 B
2 15.15 C 48.04 C 58.81 C 72.67 C 22.34 C 63.64 C 72.68 C 74.92 C
5 11.62 D 24.39 D 65.33 D 94.49 D 14.76 D 33.19 D 79.25 D 92.48 D
10 9.15 E 14.85 E 67.81 E 97.79 F 10.75 E 19.09 E 82.26 E 96.19 E
15 7.05 F 11.41 F 69.86 F 97.99 F 7.94 F 13.83 F 84.48 F 97.15 F

Table 5. Bonferroni analysis of the four metrics at the statement level and function levels.

metrics were affected by change level, version, and the com-
bination of both. This is intuitively plausible: the amount
and location of the change affects all the coverage metrics.
The interaction between change level and versions is signif-
icant, indicating that further per-contrast analysis is neces-
sary to understand the interaction. The test suite has a sig-
nificant effect only on MD, which is reasonable given that
all the test suites were branch coverage adequate. A simi-
lar scenario occurs for the interaction between test suite and
change level, although their combination also affects CAT.
The sensitivity to changes of MD and CAT may have been
the cause for obtaining significance on all effects.

Where function coverage is concerned (rightmost four
columns), the results are similar to those for statement cov-
erage. The same effects are significant across all metrics:
change level, version, and the interaction of both.

For all metrics, the null hypothesis was rejected for the
change level effect (not all means for all change levels are
the same). To determine which change levels actually dif-
fered, we performed a Bonferroni analysis [13] (see Table
5). For each metric, the table presents the mean, and a
grouping letter to represent the Bonferroni results (change
levels with the same letter are not significantly different).

Although the averages for all metrics seem to grow
closer as change level increases, we found that only in one
case (comparing CAT at the 10% and 15% levels for state-
ment coverage) are the metrics not significantly different.

Finally, we performed an analysis to compare the metrics
means between types of coverage information (see Table 6).

The ANOVA indicated that, when compared at each change
level, statement and function coverage information gener-
ated significantly different metrics. As expected, most of
the comparisons indicated that function coverage informa-
tion tends to have higher values across all change levels for
MD and CC. This is intuitively plausible when we consider
that it is common for a change that alters statement coverage
not to modify the functional control flow.

The interpretation of the change metrics was not as intu-
itive. For CAC, the analysis indicated that function cover-
age information was more susceptible to changes in the pro-
gram than was statement level information. That means that
although CC may have remained similar between versions,
the functions that were covered were different. CAT on the
other hand shows different results depending on the change
level. At the 1% and 2% levels, function coverage informa-
tion follows the same trend as CAC. This trend, however, is
reversed at higher change levels, possibly reflecting differ-
ent thresholds on maximum change.

3.4 Threats to Validity

Internal. The infrastructure required to execute this study
involves many tools. Although many of the tools were used
and tested in previous experiments, some new tools were
written to gather, filter and process coverage information.
We manually verified results and ran the study repeatedly to
obtain confidence in the new tools’ correctness.

The instrumentation of the subjects constitutes a threat
in itself. We performed several checks on the code to en-
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Metrics baseline 1% 2% 5% 10% 15%
st f st f st f st f st f st f

MD 24.514 40.794 18.413 29.332 15.151 22.336 11.619 14.760 9.155 10.754 7.047 7.940
CC 76.560 90.367 61.608 78.477 48.038 63.636 24.393 33.186 14.849 19.099 11.413 13.828

CAC - - 48.975 62.198 58.810 72.682 65.327 79.253 67.807 82.258 69.862 84.476
CAT - - 47.238 53.291 72.670 74.921 94.495 92.483 97.792 96.192 97.998 97.149

Table 6. Metrics means for different types of coverage information across different change levels.

sure that we had introduced only the code needed to capture
the necessary data. This process became more complicated
than expected when the program began behaving unreliably
(crashing or entering infinite loops). Additional control in-
strumentation was inserted to manage this problem.

Construct. We controlled the independent variables by
using different versions, test suites and change levels. How-
ever, we found that there was significant interaction be-
tween test suite and change level for some metrics that could
be attributed only to the sensitivity to change of those met-
rics, which indicates that they may not be very robust.

Our dependent variables capture most of the information
in any coverage matrix; however, there are types of cover-
age matrices we did not consider (e.g., for class coverage).
Nevertheless, we believe that the coverage information and
metrics used appropriately reflect the notion of coverage.

External. In this controlled study, the definition of a
change is the negation of a branch and the location of the
change (and the probability of changing) is determined by
a probability function. Both of these items — the definition
and the location/probability of a change — may not repre-
sent the effects of the universe of changes possible during
program evolution. On the other hand, many other types of
changes (e.g., changes to variable assignments, additional
control flow structures, etc.) result in effects on branch con-
ditions, and these effects may be modeled by changes to
those conditions. Thus, our changes constitute a simplifica-
tion of the results of many other type of changes.

Also, modifications might not just alter control flow, they
might add new elements to it. In this study, we omitted that
type of modification so as to preserve the ability to compare
coverage information across versions. However, additions
to the control flow structure would be expected to have an
even greater impact on the decay of coverage information,
which further supports our conclusions.

The study was conducted on one program (Space), and
factors specific to that program such as its structure, archi-
tecture, and size may have had an impact on the results. Al-
though the study of additional subjects would be useful, we
believe that we limited the impact of this threat by using 30
versions per level. Since the version generation involved a
random based change probability distribution, the program
structure was randomly affected, which reduces the threat.

4 Study 2

In our first study, the major threats to validity were exter-
nal. Specifically, the conclusions that could be drawn from
the results may have been limited by the representativeness
of the subject and the manner in which changes were intro-
duced to generate different versions.

Our second study addresses some of these validity ques-
tions by examining the effects of evolution on a large appli-
cation, across several actual versions, using its own set of
test suites, and including a wider range of types of changes
(e.g.,addition and deletion of code) . The study utilizes the
same set of metrics as the previous study, and attempts to
answer the first two research questions.

4.1 Experiment Instrumentation

Subject Program and Tests. As a subject program, we
used Bash, a C program developed as part of the GNU
Project [7, 18]. Bash, which stands for “Bourne again
Shell”, is GNU’s shell, which adds functionality to the
Bourne shell. Functionality from the Korn and C shells,
as well as new functionality, have been added to each new
version of Bash. For our study, we used the seven most re-
cent public release versions of Bash (versions 2.0 through
2.04). Table 7 describes these versions. For each version,
column 2 lists the number of lines of code in that version,
column 3 lists the number of functions in that version, and
column 4 lists the total number of functions in common be-
tween that version and the succeeding versions. It is evident
from this table that the lines of code (LOC) and number of
functions increased as Bash evolved.

Table 8 quantifies the degree of change between ver-
sions, listing the number of functions changed from each
version listed in the first column to each later version listed
along the top.

Each of the Bash versions has an associated test suite.
Each test suite is composed of tests that focus on different
program functionalities. Table 9 presents a short description
of the test suites, including the number of tests and statistics
summarizing test size in terms of the number of lines (note
that each line is made of one or more Unix commands).

Types of Code Coverage Information. Due to the size
of Bash, in this study we measured only function coverage.
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Version LOC # of # of common
functions functions

2.0 70,622 1503 1352
2.01 72,462 1549 1403
2.01.1 72,605 1550 1404
2.02 82,331 1693 1617
2.02.1 82,358 1693 1617
2.03 83,855 1735 1656
2.04 90,279 1927 -

Table 7. Bash versions.

Version # of functions changed for
2.01 2.01.1 2.02 2.02.1 2.03 2.04

2.0 219 236 336 338 389 465
2.01 37 202 205 281 407
2.01.1 183 186 266 400
2.02 12 141 344
2.02.1 135 340
2.03 261

Table 8. Bash evolution.

We used the CLIC tool [5] to obtain this coverage informa-
tion. Because comparisons of data involving differing num-
bers of functions could obscure the analysis of differences
in coverage (e.g., conflating differences due to numbers of
functions with differences due to changes in coverage) we
considered only functions present in all versions.

4.2 Experiment Design

We ran each test suite on its corresponding version and
all posterior versions. For example, we ran the test suite
corresponding to version 2.0 on all versions, and ran the
test suite for version 2.03 on versions 2.03 and 2.04. Using
this approach, we were able to generate coverage informa-
tion for several test suites on multiple versions, making our
results less dependent on a particular test suite’s qualities.

4.3 Results and Analysis

The results of the case study are synthesized in Figure
2, which depicts four graphs, one for each metric. The x
axes represent the versions, in succession from left to right.
The y axes represent the values measured for each met-
ric. Within each graph, each test suite is represented by a
line that joins the metric values measured for that test suite
across the various Bash versions.

As the graphs show, MD tended to decrease as a test suite
was applied to posterior versions. That tendency was evi-
dent over all test suites. Note that between relatively similar
versions, the rate of change was almost null (e.g., between
version 2.01 and 2.01.1).

CC exhibited greater differences among test suites. The
test suite associated with version 2.0 seemed to be the weak-

Number of lines in each test
Test Suite tests Mean Std. Dev. Max. Min
2.0 23 90.783 118.123 372 1
2.01 34 126.265 123.210 454 1
2.01.1 34 126.265 123.210 454 1
2.02 38 148.105 126.406 460 5
2.02.1 38 148.105 126.406 460 5
2.03 39 148.538 129.441 462 5

Table 9. Bash test suites.

est, providing a maximum of 23.8% CC, while the test suite
corresponding to version 2.01 had a CC value of 32.3%. In
spite of these differences among test suites, the tendency
was the same: the further a test suite was applied, the
smaller CC became.

CAC showed the expected increasing tendency, with re-
sults independent of the test suite we employed. It is inter-
esting to observe that among the most similar versions, the
metric showed limited change. For example, when the test
suite for version 2.01 was executed on versions 2.01 and
2.01.1, CAC between those coverage matrices was 0.06%.

CAT presented a more extreme picture. Its values were
always either close to 0% or exactly 100%. The values were
zero only when the target versions were very similar. When
the comparison was performed between other versions, all
the tests presented a different execution distribution so CAT
was 100%. We found this result a bit disturbing until we re-
alized that the tests for Bash are quite comprehensive (they
each cover a large number of the common functions) and
unless a change is localized, it will impact the majority of
the tests. We observe that this was not the case for the test
suite associated with version 2.02 when it is executed be-
tween versions 2.02 and 2.02.1, where the change was min-
imum and CAT was 5.2%.

5 Summary and Conclusions

We have presented the results of two studies examining
the effects of evolution on code coverage information, and
measuring those effects along four dimensions. We used
two approaches in obtaining these results. Our first study,
a controlled experiment, provided a flexible platform with
which to vary independent variables of interest in a con-
trolled manner and observe the effects of that variance. Our
second study, a case study using “real” modifications, did
not offer flexibility or control; however, because the subject
studied may be representative of typical evolving systems,
the second study helped address threats to external valid-
ity. Together, the relatively consistent results observed in
the two studies increase the confidence we can have in our
assessments.

As we have discussed, these studies, like any other, have
certain limits to their validity (e.g., the representativeness
of the selected programs). Keeping these in mind, in this
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Figure 2. Graphs showing Bash coverage information observed in Study 2.

section we now compare the results of these studies further,
and discuss some of their implications.

First, our overall results were consistent across both
studies: even small changes during the evolution of a pro-
gram can have a profound impact on coverage information,
and this impact increases rapidly as the degree of change in-
creases. For example, in our first study we discovered that
even when only 1% of the branches in a program were af-
fected by changes, mean coverage of program statements
was reduced by 16%, and mean coverage of functions was
reduced by 10%. A similar reduction in function cover-
age was also observed for all applicable Bash test suites
on four of the six pairs of successive Bash versions exam-
ined. This outcome stands in contrast to suggestions in the
literature [20] that coverage information remains relatively
stable across program versions in practice.

Not surprisingly, both studies also illustrate that the
greater the change, the greater the impact on the quality
of the coverage information, under all metrics. Of more
surprise, however, is the amount of deterioration observed
for only relatively small increases in change. Furthermore,
our first study suggests that the impact of changes on cover-
age information can be difficult to predict; this is indicated
by the wide range in the values of the various metrics fol-

lowing modifications. These results occurred for coverage
measured at the statement and function levels.

Comparisons of the results of the two studies in light of
the types of test suites used in each one, however, also sug-
gest that the amount of deterioriation in the coverage be-
havior of individual tests is in part a function of test design.
Larger, coarser granularity tests (tests that execute a large
proportion of a system’s components) as the ones used in
the second study, are likely to exhibit much more extreme
degradation in coverage information than smaller granular-
ity tests, at a given level of change.

These results suggest, at a minimum, that assumptions
about the stability of coverage information across program
versions should be questioned, and that analysis, testing and
maintenance techniques that rely on such stability may need
to be re-evaluated or reconsidered. This does not imply that
all techniques that rely on coverage information are suspect;
rather, it implies that the manner in which coverage infor-
mation is relied on may be important.

To illustrate, consider regression test selection tech-
niques. The technique of Rothermel and Harrold [21]
avoids the difficulties caused by decay of coverage informa-
tion due to its specific algorithm. Informally, this technique
relies on coverage information only up to the initial point at
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which the execution of a test reaches modified statements,
selecting all test cases that reach that point (a formal proof
is provided in [21].) On the other hand, techniques such as
that presented by Hartmann and Robson [10], which rely
on a coverage matrix such as that depicted in Table 3 and a
change matrix listing which program components are mod-
ified to select one test case through each modified program
statement, may fail to ensure selection of a test through each
component in the modified program.

Clearly, further study of the effects of evolution on cov-
erage information is needed, including studies of the sort we
have reported here. Future studies could also compare dif-
ferent types of coverage granularity information, and most
important, the performance of the techniques that use cov-
erage information themselves, applied across a variety of
evolving programs. The results of this initial research pro-
vide a beginning and motivation for such studies.
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