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Cluster-Based Boosting
L. Dee Miller and Leen-Kiat Soh,Member, IEEE

Abstract—Boosting is an iterative process that improves the predictive accuracy for supervised (machine) learning algorithms.

Boosting operates by learning multiple functions with subsequent functions focusing on incorrect instances where the previous

functions predicted the wrong label. Despite considerable success, boosting still has difficulty on data sets with certain types of

problematic training data (e.g., label noise) and when complex functions overfit the training data. We propose a novel cluster-based

boosting (CBB) approach to address limitations in boosting for supervised learning systems. Our CBB approach partitions the training

data into clusters containing highly similar member data and integrates these clusters directly into the boosting process. CBB boosts

selectively (using a high learning rate, low learning rate, or not boosting) on each cluster based on both the additional structure provided

by the cluster and previous function accuracy on the member data. Selective boosting allows CBB to improve predictive accuracy on

problematic training data. In addition, boosting separately on clusters reduces function complexity to mitigate overfitting. We provide

comprehensive experimental results on 20 UCI benchmark data sets with three different kinds of supervised learning systems. These

results demonstrate the effectiveness of our CBB approach compared to a popular boosting algorithm, an algorithm that uses clusters

to improve boosting, and two algorithms that use selective boosting without clustering.

Index Terms—Artificial intelligence, machine learning, clustering algorithms

Ç

1 INTRODUCTION

BOOSTING is an iterative process used to improve the
predictive accuracy for functions that supervised learn-

ing (SL) systems learn using training data. More specifi-
cally, the boosting process learns multiple functions from
the same SL system. Boosting then predicts the label for
new data instances using a weighted vote over all the func-
tions. By combining multiple functions together, boosting
achieves a more refined decision boundary on the training
data than using a single function.

There exists a large body of previous work that demon-
strates the effectiveness of boosting. Theoretical results
have shown that boosting is resistant to overfitting—a com-
mon SL problem where the algorithm overspecializes on
nuances in the training data to the degree that predictive
accuracy on new data instances is reduced [1], [2], [3]. Fur-
thermore, empirical results on a wide variety of existing
data sets have shown that boosting generally achieves
higher predictive accuracy than using a single function
from the same SL system [4]. In addition to benchmark data
sets, boosting has also been used effectively on a wide range
of applications [5], [6] including engineering applications
[7]. Examples of boosting applied to engineering applica-
tions include using boosted functions to predicting concrete
strength [8] and in monitoring wind turbines [9].

Despite considerable success, conventional boosting such
as AdaBoost (hereafter boosting) is still not perfect. Boosting
has difficulty with certain types of problematic training data
including (1) training data with label noise—where the

labels of the instances provided are actually wrong—and
(2) training data with what we term troublesome areas—
where the relevant features of the instances are different
from the rest of the training data.

First, suppose the initial function failed to predict the
label correctly for certain instances, not because the initial
function learned was incorrect, but because these instances
were labeled wrong to begin with. However, boosting does
not realize that the labels were wrong and, thus, holds the
initial function responsible. As a result, boosting focuses
subsequent functions on learning how to “correctly” predict
these instances assuming that the wrong labels provided
are correct [10], [11]. Thus, this eventually leads to boosting
learning functions fitting the noise.

On the other hand, suppose that the labels provided are
not noisy, but there are areas of instances where their relevant
features are different from the rest of the training data. For exam-
ple, suppose in an area, say, A1, features F1 and F2 are the
relevant features used to determine the labels for the instan-
ces, whereas, in the rest of the training data features F2, F3,
and F4 are the relevant features. The initial function learned
on all the training data uses F2, F3, and F4 to predict
the labels for all data instances including area A1. By using
features irrelevant to area A1 (i.e., F3 and F4), the initial
function could struggle to predict correctly the labels for
instances in A1. To complicate matters, different instances
in area A1 might appear similar—because of the irrelevant
features F3 and F4—but still have different labels. We
refer to areas such as A1 as troublesome areas in this paper.
Because of these troublesome areas, boosting cannot rely on
the initial function to make a good decision about what
instances are correctly labeled and incorrectly labeled. This
is a problem because boosting focuses on instances that
were incorrectly labeled by the initial function. Using only
the incorrectly labeled instances, boosting has difficulty
learning accurate subsequent functions for troublesome
areas. Note that in real-world data sets, a number of factors
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could result in troublesome areas, including the presence of
(1) lower dimensional manifolds of relevant features [12],
(2) multiple views (i.e., groups) of relevant features [13],
and (3) instances collected from multiple tasks (i.e., distribu-
tions) with different sets of relevant features [14].

Furthermore, boosting can still have difficulty when
the SL system learns complex functions overfitting the
training data [15], [16]. Boosting uses all these functions
together when predicting the label for new instances. As
a result, overfitting in functions is effectively propagated
into boosting.

One explanation for why boosting has problems is the
way it learns subsequent functions. These functions are
trained focusing on all the incorrect instances in the train-
ing data where the initial function did not predict the cor-
rect label. This additional training forces subsequent
functions to accommodate highly dissimilar training data.
This can result in subsequent functions with an increased
complexity and likelihood of overfitting. At the same
time, the training process for these subsequent functions
tends to ignore problematic training data on which the
initial function predicted the correct label. This can result
in important information withheld from subsequent func-
tions such as the labels for correct instances that are
highly similar to the incorrect instances.

To address the limitations of boosting, we hereby pro-
pose a novel cluster-based boosting (CBB) approach that
incorporates clusters into the boosting process to improve
how boosting learns these subsequent functions. Our CBB
approach partitions the training data into clusters that con-
tain highly similar member data to break up and localize
the problematic training data. CBB then uses these clusters
integrated into boosting to improve the subsequent func-
tions as opposed to previous work that has used clusters
only for preprocessing [17]. First, CBB evaluates each cluster
separately to identify whether the problematic training data
should be used to learn subsequent functions. This allows
for more selective boosting to accommodate different types
of problematic training data. Next, CBB learns subsequent
functions separately on each cluster using only the member
data in that cluster. This allows for less complex subsequent
functions and helps to mitigate overfitting from being prop-
agated into boosting. Last, CBB learns subsequent functions
starting with all the cluster members—not just those
deemed incorrect by the initial function. This allows for
more inclusive boosting that can accommodate problematic
training data deemed correct.

We evaluate CBB using three studies. First, we compare
CBB to AdaBoost, the most popular boosting algorithm. Sec-
ond, we compare CBB to an existing algorithm, PruneBoost,
that uses clusters as a preprocessing step to improve boost-
ing [17]. We also evaluate the CBB clusters in more detail to
investigate tendencies and behaviors of CBB. Third, we
compare CBB to regularized boosting algorithms, Brown-
Boost and AdaBoostKL, which also use selective boosting.
All our studies are evaluated on 20 benchmark data sets
with a range of complexity for SL. These data sets also con-
tain varying amounts of label noise and troublesome areas.

The rest of this paper is organized as follows. Section 2
provides the background on boosting and related work on
using clustering and boosting and also regularized boosting.

Section 3 provides a more in-depth discussion on the boost-
ing problems and how our CBB approach addresses these
problems. Section 4 provides the experimental setup and dis-
cusses the results from our studies. Section 5 concludes and
discusses future work.

2 BACKGROUND AND RELATED WORK

In this section, we provide background on boosting and
margin theory. We then provide related work on using clus-
tering and boosting together and regularized boosting.

First, there are two main methods for boosting: boosting
by resampling and boosting by reweighting. Both methods
use a probability distribution over all the training data to
decide the training data for subsequent functions. Resam-
pling chooses a discrete subset of training data based on
the probabilities. Thus, instances with weights close to
zero are less likely to be included in the training data. On
the other hand, reweighting learns a function using the
probabilities directly. Both methods operate similarly: over
multiple iterations the probability for incorrect instances
goes up and the probability goes down for correct instan-
ces. On paper, an algorithm like AdaBoost can use either
method. In practice, resampling does not require SL sys-
tems that can handle weighted instances and may achieve
slightly higher accuracy [18]. Therefore, we use the boost-
ing by resampling approach when discussing boosting
problems (Section 3) and for all boosting algorithms used
in the results (Section 4).

Second, we provide a factory analogy to further explain
how boosting learns multiple functions as a basis for under-
standing the novelty of our cluster-based boosting. In this
analogy, picture the boosting process as an assembly line
connecting multiple stations in a factory where each station
has a separate operator. The assembly line in this analogy is
used to transport the training data from one station to
another. The stations in this analogy are where the SL system
learn the functions. The operators assignweights to the func-
tions at their stations and remove training data from the line.

Initially, the assembly line transports all the training data
to the first station. The first station learns the initial function
using all the training data. Before the line restarts, the opera-
tor records whether the function predicts the correct/incor-
rect label for the training data arriving at her station. Then,
she assigns the function a weight for the final decision based
on those predicted labels (higher percentage correct gives
larger weight). Last, she removes some instances with cor-
rect labels from the assembly line.

Next, the assembly line transports the remaining training
data to the second station. The second station learns a subse-
quent function using only the training data on the assembly
line. Before the line restarts, the operator repeats the above
steps using only the training data arriving at the second
station. This process continues with the assembly line trans-
porting training data deemed incorrect by previous func-
tions to stations further down the line. The assembly line
stops at the last station or when no training data remains on
the line. After the line stops, the training phase for the
boosting process is finished.

Now, having built the assembly line, to use (or operation-
alize) it to predict the label for a new instance, the factory
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sends that new instance down the assembly line. At each
station, the assembly line uses the function to predict the
label for that new instance. At the end of the assembly line,
a single operator tabulates the weights for each prediction
and assigns the label with the highest weight.

2.1 Boosting Margin Theory

Margin theory is important in the general context of
boosting for two reasons: it (1) explains why boosting is
resistant to overfitting—a notorious problem in statistics
and machine learning and (2) explains how boosting can
refine the decision boundary to improve predictive accu-
racy. In margin theory, as discussed in Reyzin & Schapire
[1] and Gao & Zhou [3], the margin is the confidence in the
prediction of the multiple functions as measured using
the training data. As such, the margin on a single data
instance depends on the weighted votes for multiple func-
tions. In turn, the magnitude of the margin represents the
strength of agreement between those functions and the con-
fidence of the final decision boundary. Using these margins,
it is possible to prove that predictive accuracy continues to
increase with the number of boosting iterations [1] explain-
ing resistance to overfitting. Further extensions to margin
theory have examined how the margin distribution (includ-
ing margin average and variance) is connected to the pre-
dictive accuracy [3]. The authors show how, by learning
additional subsequent functions, boosting continues to
improve the margin resulting in a more refined decision
boundary (with higher predictive accuracy).

2.2 Clustering and Boosting Together

Here we provide related work on using clustering and
boosting together. To summarize, there are three separate
categories: (1) boosting to improve clustering reciprocal to
our work, (2) boosting and clustering to improve supervised
learning somewhat related to our work, and (3) clustering to
improve boosting similar to our work.

First, there has been considerable previous work on
using boosting to improve clustering. Such previous work
is reciprocal to our CBB since they use boosting to improve
unsupervised clustering as opposed to using clustering to
improve boosting. Frossynoitis et al. [19] uses an approach
that creates multiple sets of clusters using a basic clustering
algorithm and combines these sets into a final set of clusters
using a weighted vote. This approach leverages boosting by
focusing subsequent sets of clusters on instances poorly
clustered by previous sets (analogous to incorrect instances
in conventional boosting). Additional examples of using
boosting to improve clustering include Shigei et al. [20],
Okabe & Yamada [21], and Xiong et al. [22], and more.

Second, there has been a moderate amount of previous
work using clustering and boosting to improve supervised
learning. Such previous work is related to our CBB since
boosting and clustering are both used as separate compo-
nents to improve supervised learning. Wu and Nevitia [23]
use boosting and clustering to improve the splitting point
for decisions trees. This method employs an approach that
first uses boosting on weak classifiers to select the most dis-
criminative features and then uses clustering on training
data considering only these features. Li et al. [24] discuss a

similar approach with clustering and boosting to improve
neural networks.

Third, there has been relatively little previous work on
using clustering to improve boosting. We found that Kim
et al. [17] uses k-Means clustering to address a subproblem
in boosting: focusing on label noise. This approach starts
by using k-Means to partition the training data into clus-
ters. When two clusters are “close enough” based on a
specified Mahalanobis distance threshold, the member dis-
tances are deemed troublesome and are discarded from
the training data. Then, boosting is done selectively using
all the remaining training data. We refer to this algorithm
as PruneBoost and compare against it in the results. The
authors had to fine-tune the distance parameter based on
the individual data set, reducing flexibility. Furthermore,
the above approach does not consider either of the other
two subproblems for boosting directly, namely, subsequent
functions ignoring troublesome areas and subsequent func-
tions that are too complex.

2.3 Regularized Boosting

Although previous work on using clustering to improve
boosting is limited, there has been previous work on
using regularized boosting algorithms that attempt to
address the aforementioned boosting problems [25], [26],
[27], [28], [29]. In general, these algorithms regularize the
boosting process by using additional information—such
as the margin discussed in Section 2.1—to learn the sub-
sequent functions beyond whether the previous functions
predicted the correct label.

Regularized boosting uses the margin to identify training
data containing label noise. For an instance, the margin fac-
tors in (1) whether the previous functions predicted the cor-
rect label and (2) their confidence in that prediction. The
larger the negative margin, the more confident the previous
functions were in the predicted label that turned out to be
incorrect. To adjust for the possibility that the predicted
label was incorrect due to label noise, regularized boosting
tracks the margins over multiple boosting iterations. Instan-
ces with consistently large negative margins are deemed
likely to have label noise.

In particular, there are two regularized boosting algo-
rithms of note: BrownBoost [25] that uses Brownian motion
to model the label noise, and AdaBoostKL [26] that uses
Kullback-Leibler distance. To prevent overfitting, Brown-
Boost gives up on those instances with label noise and stops
learning subsequent functions early, while AdaBoostKL mis-
trusts those instances and assigns a smaller weight to subse-
quent functions learned using them.

Regularized boosting is similar in spirit to our proposed
CBB, but there are fundamental differences. First, regular-
ized boosting allows for selective boosting by removing
instances deemed to be noisy or reducing their impact. In
turn, such selective boosting allows for subsequent func-
tions that are less complex and prone to overfitting. How-
ever, regularized boosting algorithms operate on all the
training datawithout using the clustering described for CBB.
With all the training data lumped together, regularized
boosting could struggle to identify troublesome areas of the
training data. The clusters used for CBB, on the other hand,
have a better chance of encapsulating such areas and allow
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for even more selective boosting. Second, regularized boost-
ing uses only the margin based on the functions to evaluate
the instances. This requires extensive fine-tuning for regu-
larized boosting in order to identify instances with noisy
labels. This is because functions are not stable and vary on
the same data set. However, CBB evaluates instances taking
into account both the cluster structure and the functions
making CBB less dependent on the functions used.

3 METHODOLOGY

In this section, we first provide a more detailed discussion
on a potential problem with boosting. Then, we further dis-
cuss our cluster-based boosting solution. Finally, we discuss
in greater detail the approaches for CBB used in our results.

3.1 Boosting Problem Discussion

Here we provide further discussion on a potential problem
with boosting that we attempt to address in this paper. As
previously mentioned, the boosting process learns subsequent
functions focusing on the incorrect instances (where the previ-
ous functions predicted the wrong label). Since these sub-
sequent functions are customized on a relatively smaller
number of instances, they can often predict the correct
labels for previously incorrect instances. In turn, adding
these functions to the final, weighted vote allows boosting
to predict the correct labels for previously incorrect instan-
ces, thus, refining the overall decision boundary. Now,
while this current boosting process has been successful on
many data sets and applications ([4], [7], etc.), there are two
limitations that help explain poor results with label noise
and complex functions [11], [16].

3.1.1 Filtering in Subsequent Functions

The first limitation to current boosting is that focusing on
the incorrect instances leads to filtering when correct train-
ing data necessary for learning the actual decision boundary is
filtered out of the training data and, thus, is unavailable for
subsequent functions. Such filtering can result in subse-
quent functions that do not improve (and actually reduce)
the predictive accuracy for boosting. Such filtering is partic-
ularly problematic when the training data contains trouble-
some areas and/or label noise.

To help illustrate this phenomenon, Fig. 1 provides an
example of how filtering affects subsequent functions when
the training data contains troublesome areas. Troublesome
areas are difficult for the initial function to learn because of
different relevant features as opposed to label noise. These
areas result from a variety of factors found in real-world
data sets including manifolds, multiple views, and multiple
tasks. In Fig. 1, areas A1 and A2 are troublesome areas with
different relevant features from the rest of the training data.
The initial function uses the same relevant features to learn
all the training data. However, features that are relevant for
the rest of the training data are actually irrelevant for these
troublesome areas. When these irrelevant features are applied
to the troublesome areas, instances appear to be similar (i.e.,
in close proximity), but actually have different labels. As a
result, the initial function struggles to predict the correct
label for instances in these areas. On the other hand, areas
B1 and B2 are not troublesome areas because they use the

same relevant features as the rest of the training data. As a
result, the initial function easily predicts the correct label for
instances in these areas. Note that results for Fig. 1 are from
running AdaBoost using decision stumps on synthetic data.

Fig. 1a shows the decision boundary for the initial func-
tion (the vertical dash line, with “�”on one side and “þ” on
the other, f1) using all the training data. In this case, the f1
function predicts a label (þ) for instances to the right of the
line and (�) for instances to the left. To improve clarity, the
function’s predicted label for each instance (circle) is given
in squares surrounding each area. The line shown for f1
provides the highest possible accuracy on the training data.
Unfortunately, f1 cannot use this line to learn how to label
the troublesome areas, A1 and A2. That is, it cannot separate
instances in each area with different labels without severely
reducing accuracy. Instead, f1 predicts the same label for all
instances in each troublesome area (- for A1 and þ for A2).
Now, since f1 still predicts correctly the label for some
instances in each troublesome area (A1 and A2), it leads to
filtering in subsequent functions as shown next. Fig. 1b
shows the decision boundary for the subsequent function
(f2). When the training data is resampled based on weights,
the incorrect instances are chosen multiple times, while
greyed-out correct instances are not chosen. The f2 function
predicts a label (þ) for instances above the line and (�) for
instances below the line achieving even higher weighted
accuracy than f1.

At first glance, this seems to be working just fine, and
that the boosting process has successfully come up with a
f1 � f2 sequence that first labels 12 out of 16 instances cor-
rectly using f1 and then labels the four remaining instances
correctly usingf2. Unfortunately, the training data provided
to f2 is filtered and misleading because it contains instances
with only a single label in A2. As a result, f2 fails to learn
properly about the troublesome areas, A1 and A2.

Fig. 1c shows the weighted vote from both functions
used by the boosting process to predict the final label.
The f2 function gets a larger weight because it achieved
higher accuracy than f1 on the training data used. The
final decision boundary predicts the correct label for all
the instances in areas B1 and B2, but is wrong on half the
instances in the troublesome areas (those denoted with ‘)
achieving accuracy no higher than the initial function
(12/16). The boosting process has difficulty because

Fig. 1. Example of how filtering affects subsequent functions given trou-
blesome (A1 and A2) and normal (B1 and B2) areas. The acc denote the
weighted accuracy for initial and subsequent functions (f1 and f2). A
þ/� symbol in a circle denotes the actual label of the circle, which is an
instance, a surrounding square with a þ/� symbol, on the other hand,
denotes the predicted label that the function has produced for instances
enclosed in the square. Furthermore, the grey circles are unused correct
instances, and the ‘ symbol denotes a wrong predicted label. (a) After
learning the initial function, (b) after learning a subsequent function, and
(c) boosting prediction.
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neither function actually learns about the troublesome
areas. The initial function cannot learn these areas with-
out severely reducing accuracy and the subsequent func-
tion cannot learn these areas because it is only given
filtered and misleading instances.

To illustrate further, Fig. 2 provides an example of how
filtering affects subsequent functions when the training
data contains label noise. Again, the results for Fig. 2 are
from running AdaBoost using decision stumps on synthetic
data. Fig. 2 contains three instances with label noise where
the labels provided are wrong.

Fig. 2a shows the decision boundary for the initial func-
tion (f3) using all the training data. This function predicts
(þ) for instances above the line and (�) for instances as
shown in the below the line (surrounding squares) achiev-
ing the highest possible accuracy on the training data, while
avoiding learning the label noise. However, the boosting
process treats these instances as being incorrect and learns a
subsequent function focusing on them leading to filtering as
shown next.

Fig. 2b shows the decision boundary for the subse-
quent function (f4). Again, when the training data is
resampled based on weights, the incorrect instances are
chosen multiple times, while greyed-out correct instances
are not chosen. In this way, the training data provided is
filtered with actual training data being removed in favor
of label noise. This results in a decision boundary “shifted
down” where f4 function predicts a label (þ) for instances
above the line and (�) for instances below the line. The
subsequent function now predicts the correct label for all
the previously incorrect instances achieving an even
higher weighted accuracy than f3.

Fig. 2c shows the weighted vote used by the boosting
process to predict the final label. As a result of learning the
label noise, f4 gets a larger weight. However, by using fil-
tered training data, the decision boundary for f4 has moved
away from that found by f3, which predicts the correct label
for all the actual (non-noisy) instances. As a result, the final
decision boundary predicts the wrong labels for 4/16 of the
actual training data. In other words, one would have been
better off not using boosting at all.

Our solution to deal with filtering for subsequent func-
tions (with troublesome areas and/or label noise) is to pro-
vide additional structure connecting or capturing the
relationships between the correct and incorrect instances in
the training data. In this way, boosting can leverage all the

training data (not just the filtered incorrect instances) when
learning subsequent functions.

3.1.2 Overfitting in Subsequent Functions

The second (and related) limitation is that the boosting pro-
cess learns subsequent functions using all the incorrect
instances. Forcing subsequent functions to learn all the
incorrect instances can increase function complexity result-
ing in subsequent functions overfitting on the training data
[6]. Since the boosting process uses a weighted vote over
these functions as the final decision, overfitting in subse-
quent functions is propagated into the final decision bound-
ary. Functions that overfit increase the accuracy on training
data at the cost of predictive accuracy [6]. Such complex
functions overfitting on the training data can actually
reduce the final decision boundary accuracy.

Fig. 3 provides an example of how forcing a subsequent
function to learn all the incorrect instances can increase its
complexity. In Fig. 3, there are 10 separate areas of instan-
ces. In each of these 10 areas, the previous functions (not
shown) predicted the correct labels for 3/4 instances leaving
a single incorrect instance in each area. The decision bound-
ary required for a subsequent function (f5) to learn to label
all the incorrect instances correctly is shown. Specifically,
this f5 function predicts a label (þ) for instances above the
line and (�) for instances below the line (surrounding
squares) achieving perfect accuracy on the previously incor-
rect instances from all areas (10/10 correct). However, f5
requires a more complex and convoluted decision boundary
than the functions in Figs. 1 and 2. The chance of f5 overfit-
ting is further increased because it only has access to a lim-
ited amount of the training data and those instances are
widely separated. As shown in Figs. 1 and 2, when the
incorrect instances are not representative of their areas, the
predictive accuracy of the subsequent function tends to suf-
fer contributing to overfitting.

Overall, learning subsequent functions on widely sepa-
rated instances requires functionswith additional complexity.
These complex functions achieve high accuracy on the train-
ing data, but reduced predictive accuracy when those
instances are not representative—resulting in the function
overfitting. This overfitting is propagated into the final deci-
sion since that function contributes to the weighted vote. Fur-
thermore, functions with higher training accuracy get a larger
weight. In this way, a function that overfits and achieves high
training accuracy contributes more to the final decision than

Fig. 2. Example of how filtering affects subsequent functions given areas
with label noise (C3-C4). The square instances are those with label
noise. The acc denote the weighted accuracy for initial and subsequent
functions (f3 and f4). The þ/� symbols denote the actual labels, the sur-
rounding squares denote the predicted labels for the functions, the grey
circles are unused correct instances, and the ‘ symbol are a wrong pre-
dicted label. (a) After learning the initial function, (b) after learning a sub-
sequent function, and (c) boosting prediction.

Fig. 3. Example of increased complexity for a subsequent function
learned on all the incorrect instances (f5Þ. The þ/� symbols denote the
actual labels of the incorrect instances, the surrounding squares denote
the predicted labels for the function, and the grey circles denote the
unused correct instances.
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another function. Unfortunately, simply restricting function
complexity (e.g., through regularization [6]) is not an effective
solution because such functions still have trouble accommo-
dating all the difficult and widely separated training data
(due to the same filtering discussed previously and shown in
Figs. 1 and 2). These simple functions are likely to have low
accuracy and contradictory predictions making their useful-
ness to the final decision suspect.

Our solution to deal with function complexity is to break
up the difficult and widely separated training data and
learn a separate function with unrestricted complexity on
each area. In this way, we reduce the likelihood of overfit-
ting without restricting function complexity.

As a final note, some might argue that previous sec-
tions have solutions in direct opposition, namely, that the
solution to Section 3.1.1 looks at the training data
together, while the solution to Section 3.1.2 looks at that
data separately. Instead, our solutions focus on different
aspects of the training data: Section 3.1.2 tries to break up
the training data into different areas, while Section 3.1.1
looks at both the correct and incorrect data in the same
area. This allows for a more comprehensive, combined
solution to the boosting problem, without the need to bal-
ance individual solutions against one another.

3.2 Cluster-Based Boosting Solution

Here we further discuss our cluster-based boosting solu-
tion. The main strategy for CBB is to incorporate clusters
created on the training data directly into the boosting pro-
cess using these clusters and the initial function to learn
the subsequent functions. First, the clusters created pro-
vide additional structure for the subsequent functions
since these clusters include both correct and incorrect
instances from previous functions. This structure helps to
mitigate the filtering problem in subsequent functions pre-
viously discussed in Section 3.1.1. Next, these clusters are
designed to break up the training data into different areas
since each cluster encapsulates only instances with a high
degree of similarity. These separate areas help to mitigate
overfitting in subsequent functions as in Section 3.1.2.

3.2.1 Cluster Creation

Our CBB solution is based on unsupervised clustering that
tries to decompose or partition the training data into clus-
ters where the member instances in a cluster are similar to
each other and as different as possible from members in
other clusters [30]. There are many different strategies for
creating clusters on the training data. Probably the most
popular strategy for clustering is k-Means (centroid-based)
that assigns training data to the cluster to minimize the dis-
tance between each member and the cluster center [31]. The
CBB solution uses k-Means in this paper to establish that
clustering can improve boosting in a general way. In the
future work, we discuss further how other clustering strate-
gies can be used with the CBB solution.

The goal for k-Means clustering is to assign each
instance to the cluster that minimizes the following objec-
tive function [31]: Xk

c¼1

X
xi2pc

jjxi �mcjj2 (1)

where xi is the instance, pc is the cluster, mc is the cluster
centroid, and norm squared is the distance between the
member instance and the cluster center. (For k-Means, dis-
tance and similarity are inversely proportional with zero
distance corresponding to perfect similarity.) This objective
function is difficult to solve precisely and k-Means cluster-
ing usually employs an iterative method where cluster
assignments are updated until the distance between the
members is minimized [31]. As expected for clustering, min-
imizing this objective function results in compact clusters
whose centroids are as close as possible to members, but as
far as possible from other centroids.

The principal advantage for k-Means clustering is that
clusters are created based on instance similarity without
using the instance labels.

First, by finding compact clusters on the training data,
k-Means more easily identifies areas with similar instances
than SL functions, whose primary motivation is finding a
decision boundary that maximizes accuracy. As shown in
Fig. 1, to maximize accuracy on the training data, f1 predicts
the same label for widely separated areas (e.g., A1 and B2).
On the other hand, k-Means with four clusters will encapsu-
late each area within a cluster.

Second, by creating the clusters independently of the
labels, k-Means provides additional structure—cluster
membership—on the training data when the labels are fac-
tored in. Suppose that each area in Fig. 1 is encapsulated in
a separate cluster. When we evaluate the member labels, we
observe that clusters for B1 and B2 have the same (homoge-
nous) labels whereas A1 and A2 have multiple, different
(heterogeneous) labels. The homogenous clusters are rela-
tively easy for a function since it can predict the same label
for all members. On the other hand, heterogeneous clusters
are more difficult since the function must learn a decision
boundary that can separate members with different labels
in close proximity.

Overall, both homogenous and heterogeneous clusters
provide additional structure on the training data that can
be useful for the boosting process. As previously shown,
learning a subsequent function on label noise (in an other-
wise homogenous cluster) leads to filtering and reduced
predictive accuracy. Alternatively, learning a subsequent
function directly on a troublesome area (in a heteroge-
neous cluster) actually reduces filtering and function
complexity since the function can focus exclusively on the
troublesome instances and does not have to learn widely
separated instances. As discussed in Section 3.2.2, the
CBB solution leverages this additional structure to selec-
tively learn subsequent functions.

The principal limitation for k-Means clustering is that
the number of clusters used (the k) must be specified
beforehand. Our CBB solution addresses the limitation in
k-Means clustering by using a modified version called
X-Means that learns the appropriate number of clusters
automatically [32]. X-Means starts with the set of clusters
from a small k and then dynamically increases k as long
as it lowers the Bayesian Information Criterion (BIC) [33]
in the new set of clusters:

BICðpcÞ ¼ xj j ln ŝ2 þ k ln xj j (2)
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where x is all the training data in cluster pc and ŝ2 is the
same as the inner summation in (1). The value of k when
BIC is minimal is thus considered the optimal number of
clusters for the data set. Note that the BIC metric rewards
sets of clusters containing similar members, while penaliz-
ing clusters that are too small. In this way, the BIC encour-
ages cluster compactness while discouraging clusters too
small to encapsulate meaningful areas.

3.2.2 Learning Subsequent Functions

As alluded to earlier, CBB uses a modified boosting process
that learns subsequent functions selectively on the clusters.
CBB consider four different cluster types based on two inde-
pendent factors: cluster membership (heterogeneous and
homogenous) and previous function accuracy (prospering
and struggling). As described in Section 3.2.1, clusters are cre-
ated independently of the previous functions. Evaluating the
member labels gives an estimate for howdifficult thosemem-
bers will be for subsequent functions. For example, members
that are similar and yet have different (heterogeneous) labels
could indicate a difficult decision boundary (e.g., from trou-
blesome areas) requiring high-eta boosting. This estimate is
useful for selective boosting early onwhen the previous func-
tions are prone to misusing the training data as described in
Section 3.1.1. However, previous function accuracymeasured
on the cluster members also gives a useful estimate for selec-
tive boosting.Whereas the clustermembership is static, based
on clusters and labels, the previous function accuracy dynami-
cally reflects mastery of the functions on the training data.
Considering the previous example of members that are simi-
lar and yet have different labels, this estimate is useful for
checking whether the initial function could actually learn the
complex decision boundary. This estimate is also useful later
on during boosting to avoid overfitting (Section 3.1.2). There-
fore, taken together, the cluster membership and previous
function accuracy provide CBB with a more representative
view on how the functions are doing than using only cluster
membership. In turn, this providesmore options for selective
boosting as described below and summarized in Table 1.
Note that these cluster types are given in a descending order
of difficulty for the functions.

� Heterogeneous struggling. The cluster contains mem-
bers with different labels and previous functions strug-
gle to predict the correct labels. Since such a cluster
generally contains troublesome training data and pre-
vious functions have been struggling, CBB uses
boosting with a high learning rate (high-eta boosting)
on this type—learning subsequent functions focusing
on incorrect members until accuracy improves.

� Heterogeneous prospering. The cluster contains mem-
bers with different labels, but previous functions are
still able to predict the correct label for most of the
members. Since such data is difficult and (based on
margin theory, Section 2.1), boosting can still make
improvements by refining the final decision bound-
ary, CBB uses boosting with a low learning rate
(low-eta boosting) on this type—learning fewer sub-
sequent functions focusing on incorrect members.

� Homogenous struggling. The cluster contains members
with predominately a single label, but the previous
functions struggle to predict the correct labels. This
type can happen when the previous functions sacri-
fice these members focusing instead on learning
other areas of the training data to achieve the highest
accuracy. Since this type is easy for a function to pre-
dict (simply by predicting the majority label), CBB
learns a single, subsequent function on all members
without boosting on incorrect members.

� Homogenous prospering. The cluster contains members
with predominately a single label and the previous
functions already predict the correct label for most of
the members. CBB does not learn any subsequent
functions on this type to prevent those functions from
learning the label noise as discussed in Section 3.1.

Referring back to Figs. 1 and 2, we show how CBB utilizes
these cluster types for selective boosting. For Fig. 1, A1 and
A2 are the most difficult HES type since each contains mem-
ber data with different labels and f1 is struggling on them.
B1 and B2 are the least difficult HOP type since each contains
data with the same label and f1 is doing well. On this data
set, CBB refines the decision boundary by high-eta boosting
on A1 and A2, while leaving B1 and B2 alone. If a more
complex function is used, that gets additional instances in
A1-A2 correct, these clusters could be HEP instead resulting
in low-eta boosting (B1 and B2 would be unchanged). For
Fig. 2, all the clusters are considered to be HOP and left
alone allowing CBB to avoid fitting label noise. Using a
more complex function does not change these clusters.

The four cluster types are computed using two separate
metrics. First, the localized estimate (LE) metric is used to
decide whether a cluster is struggling or prospering:

LEðpcÞ ¼ prospering if accðF;pcÞ � 1� d1
struggling otherwise

�
(3)

where acc F;pcð Þ is the accuracy of the previous functions
evaluated only on the cluster members and d1 is a tunable
parameter on the range 0:1 � d1 � 0:3. This range is sensible
because (1) a smaller d1 (<0.1) would render the typing too
strict such that almost all clusters would fall into the strug-
gling category and (2) a larger d1 (>0.3) would probably
allow too many “borderline struggling” clusters to be con-
sidered prospering.1 Second, the minority label estimate

TABLE 1
Summary of Properties for the Cluster Types in CBB

Type Cluster Structure Prev. Functions Boosting Action

HES Heterogeneous Struggling High Learn Rate
HEP Heterogeneous Prospering Low Learn Rate
HOS Homogeneous Struggling Single Function
HOP Homogeneous Prospering Nothing

The Type is used in the CBB approach in Section 3.3. Structure is described in
Section 3.1, while previous functions and boosting action are described in the
bullets in Section 3.2.

1. In general, this parameter uses a range to accommodate accuracy
variations based on the type of function used. More complex func-
tions, say, from neural networks, need a higher threshold for prosper-
ing since they generally return a higher accuracy than functions from
decision trees. In machine learning parlance, functions with higher
built-in regularization, such as decision trees, should have lower
threshold values for prospering.
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(MLE) is used to decide whether a cluster is homogenous or
heterogeneous:

MLEðpcÞ ¼ homogenous if minorityðpcÞ < d2
heterogeneous otherwise

�
(4)

where minorityðpcÞ is the minority label percentage on the
cluster members and d2 is a tunable parameter on the range
0:2 � d2 � 0:4.2 This parameter uses a range to accommo-
date data sets with varying label distributions. Data sets
with a larger skew towards the majority label need a corre-
spondingly smaller threshold.

Last, CBB computes the weighted vote for a function
using the method adapted from Opelt et al. [34]:

vote ftð Þ ¼ h ln
1� "t
"t

� �
(5)

where ft is the function, h is the learning rate used to control
the update of the weights for the incorrect instances, and "t
is the weighted error on the member data. As usual for
boosting, this vote is also used as the basis for updating
instance weights in the boosting probability distribution.

3.3 Cluster-Based Boosting Approach

We now discuss our approach for the CBB solution with
pseudocode provided in Fig. 4. First, the training data is bro-
ken into sets of clusters with varying kwhere each set of clus-
ters minimizes the objective function from (1) (Lines 1-7).
During this process, CBB computes the BIC for the set of

clusters (Line 5). Second, CBB chooses the set of clusters with
the lowest BIC (Line 8). Third, CBB learns the initial function
using all the training data (Line 9).

After clustering, CBB performs selective boosting based
on the cluster type (Lines 10-20). The cluster type (cf.,
Table 1) is computed using the localized estimate metric
from (3) and the minority label (MLE) metric from (4). If the
cluster is Heterogeneous Struggling (HES), high-eta boost-
ing has a learning rate on the high end for AdaBoost (h ¼ 1)
(Lines 11-13). Otherwise, if the cluster is Heterogeneous
Prospering (HEP), low-eta boosting has a learning rate on
the low end for AdaBoost (h ¼ 0:5) (Lines 14-17). Otherwise,
if the cluster is Homogeneous Struggling (HES), a single
function is learned without boosting (Lines 18-20). No func-
tions are learned if the cluster is Homogeneous Prospering
(HEP) to avoid learning label noise.

After selective boosting, the set of functions is assigned
the weighted vote based on (5) and used to predict the
labels for a new instance. There are two different ways that
these subsequent functions can be used: restricted and unre-
stricted. Both of course would count the initial function in
the voting. Restricted only counts the subsequent functions
learned on the cluster to which the new instance would be
assigned and disregards votes from other clusters. Unre-
stricted counts the votes from subsequent functions learned
from all the clusters. We use restricted CBB in the rest of
this paper because it is more consistent with the proposed
selective boosting on each cluster.

4 IMPLEMENTATION AND RESULTS

In this section, we start by describing the experimental setup
including the data sets, supervised learning systems, and
the cross-validation process used to evaluate the predictive
accuracy. We then discuss the results for three studies used
to establish the effectiveness of our proposed cluster-based
boosting in Sections 4.1-4.4. To summarize, the first study
compares CBB to the most popular boosting algorithm: Ada-
Boost [4]. The second study compares CBB to an existing
algorithm that uses clusters to improve boosting: Prune-
Boost [17]. In Section 4.3, we discuss the clusters created by
CBB in more detail to better understand tendencies and
behaviors of CBB. The third study compares CBB to two reg-
ularized boosting algorithms that use selective boosting
without clusters: BrownBoost [25] and AdaBoostKL [26].

For all studies, we use 20 different benchmark data sets
from the UCI machine learning repository [35]. Based on
previously reported results [35], these benchmark data sets
have a range of difficulty for the SL systems. These data sets
also contain varying amounts of label noise and trouble-
some areas. Additionally, all of these data sets have binary
labels. We chose to use binary data sets to demonstrate the
benefits of using CBB on the most common supervised
learning task. The only change required to the CBB
approach to support nonbinary labels would be updating k
(Line 1, Fig. 4) to the number of labels andm � k.

Next, we consider three widely studied SL systems in the
results below: multi-layer perceptrons (MLP), support vec-
tor machines (SVM), decision trees (TREE). We chose these
three SL systems because they use very different methods
for learning and, thus, produce functions with varying

Fig. 4 CBB approach pseudocode.

2. The difference in range for d1 and d2 is actually the same given
that the maximum training accuracy is 100 precent and the maximum
minority label is 50 precent, respectively for LE and MLE, so both are
off by 10 precent: 90 precent is the upperbound in LE and 40 precent
in MLE.
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complexity allowing us to assess and analyze our
approaches more comprehensively. Briefly, MLPs itera-
tively update the weights on a complex network of intercon-
nected nodes until the network predicts the correct labels
for the training data. SVMs use a kernel to map the training
data into a high-dimensional feature space where the train-
ing data with different labels are linearly separable. TREEs
recursively identify the feature that best splits the training
data into groups where instances in the same group have
the same label.

Note that none of these SL systems are intrinsically
superior to the others in terms of predictive accuracy. In
general terms, MLPs functions are probably the most
complex, followed by SVMs, followed by TREEs. Func-
tion complexity can increase predictive accuracy. On the
other hand, TREEs with post-pruning are probably the
most resistant to overfitting, followed by SVMs with soft
margins, followed by MLPs. Overfitting can reduce pre-
dictive accuracy. Interested readers should consult [6] for
more details on these SL systems.

We use the Java implementations for all SL systems from
the Weka library with parameters based on Hall et al. [36].
We also use the Weka implementation for both AdaBoost
and k-Means clustering with m ¼ 10 (Fig. 4, Line 1). The
PruneBoost implementation is based on the pseudocode in
Kim et al. [17] using the same k-Means clustering as CBB.

Finally, we use 10-fold cross-validation to measure the
predictive accuracy for the results reported below. The pur-
pose of cross-validation is to reduce variance in the predic-
tive accuracy [37]. In 10-fold cross-validation, the instances
in the data set are randomly divided into 10 separate folds
of approximately equal size. Next, cross-validation uses an
iterative process to measure the predictive accuracy. During
the first iteration, the instances in the first fold are used as
the test data, while all instances in the remaining folds are
used as the training data. Cross-validation then runs each
pair of algorithms in the study on the training data and
evaluates their predictive accuracy on the test data. This
iterative process is repeated 10 times with each fold used, in
turn, as the test data, while the remaining folds are used as
the training data. The final predictive accuracy reported is
measured by averaging the accuracy on all 10 validation
folds. Additionally, the statistical significance reported is
measured by using a paired t-test on the folds for both
algorithms as recommended in Raeder et al. [37].

4.1 CBB versus AdaBoost: Is Cluster-Based Better?

Here we compare CBB to AdaBoost [4], which is the most
popular boosting algorithm in existence to investigate the
impact of using clusters in boosting. The CBB parameters
for the localized estimate metric (d1 in (3)) and the minority
label estimate metric (d2 in (4)) are fine-tuned on each data
set. In the interest of fairness, both are run on exactly the
same training and test data. The same SL system configura-
tion is used for both algorithms.

Table 2 provides the predictive accuracy for CBB and
AdaBoost on the benchmark data sets using all three SL sys-
tems. As shown, CBB has an advantage using all SL systems
with a more pronounced advantage using SVM and TREE. On
several data sets, this advantage is statistically significant
using a t-test on the validation folds.

In general, CBB achieves superior predictive accuracy
on seven data sets using MLP (3 sig.), 11 data sets using
SVM (2 sig.), and 11 data sets using TREE (4 sig.) com-
pared to AdaBoost, which achieves superior accuracy on
five data sets using MLP, one data sets using SVM, and six
data sets for TREE (3 sig.). Furthermore, there are 12 data
sets where CBB achieves higher accuracy for two or three
of the SL systems, but only two data sets where AdaBoost
achieves the same.

To better explain our results, we examine the source of
the improved accuracy for CBB. After both CBB and
AdaBoost finish predicting the labels for all the new instan-
ces, we break these new instances down by CBB cluster
type and compute the accuracy for each type.3 We found
that the source of the improved accuracy for CBB is gener-
ally the result of predictions on HES and HEP clusters:
seven versus three using MLP on HES, six versus three
using SVM on HEP, and nine versus four using TREE on
HEP. CBB also achieves improved accuracy using SVM on
HOP: six versus three. Taken together, these results support
the effectiveness of our CBB selective boosting both in
deciding when to boost on the clusters (HES and HEP) to
address troublesome areas and when to refrain from boost-
ing (HOP) to address label noise.

In summary, CBB leverages selective boosting on the
clusters to achieve superior predictive accuracy compared
to AdaBoost. These results on multiple, different types of
clusters support our previous claim (cf., Section 3.2) that
CBB helps address problems resulting from boosting on all
the training data.

We have established that CBB achieves generally superior
predictive accuracy to AdaBoost on benchmark data sets.
However, real-world applications must consider additional

TABLE 2
Predictive Accuracy for CBB and AdaBoost

Data set

MLP SVM TREE

CBB Boost CBB Boost CBB Boost

blood 0.79 0.78 0.77 0.77 0.78 0.77
bupa 0.71� 0.65 0.72 0.67 0.70 0.67
car 1.00 1.00 0.99 0.99 0.96 0.99���

contraceptive 0.72��� 0.69 0.69 0.69 0.70��� 0.67
credit 0.86� 0.84 0.86��� 0.82 0.86 0.84
diagnostic 0.97 0.97 0.98 0.96 0.95 0.96
ecoli 0.99 0.98 0.99 0.99 0.99 0.98
ionosphere 0.91 0.92 0.91� 0.88 0.90 0.93�

mammography 0.82 0.82 0.81 0.80 0.82��� 0.79
monks-1 1.00 1.00 1.00 1.00 0.99 1.00
monks-2 1.00 1.00 1.00 1.00 0.68��� 0.56
monks-3 1.00 1.00 1.00 1.00 1.00 1.00
parkinsons 0.91 0.94 0.91 0.88 0.92 0.90
pima 0.77 0.77 0.77 0.77 0.75 0.71
prognostic 0.78 0.76 0.77 0.73 0.77 0.82
sonar 0.82 0.83 0.82 0.84 0.80� 0.73
spect 0.81 0.81 0.82 0.81 0.82 0.82
tic 0.97 0.98 1.00 0.99 0.94 0.96���

vertebral 0.83 0.84 0.85 0.82 0.82 0.82
yeast 0.66 0.65 0.66 0.64 0.68��� 0.61
summ. 7(3) 5(0) 11(2) 1(0) 11(4) 6(3)

Grey cells denote higher accuracy with �’s denoting significantly higher (t-test
with � for p � 0.1, �� for p � 0.05, ��� for p � 0.01)

3. This does not alter the predicted labels in any way.
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factors such as the impact of class imbalance. The initial
results for CBB with class imbalance are promising. We con-
sidered the four benchmark data sets with class imbalance
where the minority label is found in 25 percent or less of the
training data (spect 21 percent, blood 24 percent, prognostic
24 percent, and parkinsons 25 percent). CBB achieved higher
predictive accuracy using two or more SL systems for all
except spect, where it achieved higher accuracy only using
SVM. While promising, these results still required fine-tun-
ing the minority label estimate for those data sets. Addition-
ally, automatically setting CBB parameters could result in
scalability issues for CBB on large data sets. These issues will
be investigated in our future work.

4.2 CBB versus PruneBoost: When to Use
Clusters?

Here we compare CBB to PruneBoost that also uses clusters
to improve boosting [17]. As previously, both are run on the
exact same training data, test data, and SL system. For fair-
ness, the distance threshold for PruneBoost is also fine-
tuned on each of the benchmark data sets. As in [17], Prune-
Boost uses with k ¼ 20 for all data sets.

Table 3 provides the predictive accuracy for CBB and Pru-
neBoost on the benchmark data sets using all three SL sys-
tems. As shown,CBB has a pronounced advantage using all three
SL systems. In general, CBB achieves superior predictive
accuracy on nine data sets using MLP (3 sig.), 12 data sets
using SVM (5 sig.), and 10 data sets using TREE (3 sig.). Pru-
neBoost achieves superior accuracy on only four data sets for
MLP, one data set for SVM, and five data sets for TREE (2
sig.). Furthermore, there are 11 data sets where CBB achieves
higher accuracy on two or three of the SL systems consid-
ered, but only two data sets where PruneBoost does.

To explain the difference in performance, we examine
which instances are removed from the training data by Pru-
neBoost. To do so, after both CBB and PruneBoost finish
predicting the labels for all the new instances, we break
these new instances down by CBB cluster type and look at
the number of instances PruneBoost removes from each
type. PruneBoost removes some training data whose labels
do not match the majority from the relative easy clusters:
homogeneous struggling (HOS) and homogeneous prosper-
ing (HOP). In an otherwise homogenous cluster, instances
whose labels do not match the majority are more likely to be
noise. As previously discussed, removing these instances
before boosting can improve the predictive accuracy for
boosting. However, the training data PruneBoost removes
from a more difficult cluster type gives a very different pic-
ture. As shown in Table 4, with a distance threshold of 0.1,
PruneBoost removes relatively more training data instances
from the most difficult HES clusters. By aggressively prun-
ing instances from these clusters, PruneBoost removes criti-
cal information about troublesome areas that are already
difficult for boosting to learn. As a result, PruneBoost has a
difficult time predicting the correct label for new instances
in these clusters.

In summary, CBB selective boosting on the clusters
achieves superior predictive accuracy compared to Prune-
Boost. CBB uses selective boosting separately on the clus-
ters, but factors in all the member instances. In this way,
CBB does not risk removing critical information from clus-
ters that can damage the boosting process.

4.3 CBB Clusters: What Types are Used?

Here we investigate the clusters that CBB creates on the
training data in greater detail. First, the number of clus-
ters that CBB creates is the same regardless of the SL
system, but the cluster types vary depending on the SL

TABLE 3
Predictive Accuracy for CBB and PruneBoost

Data set

MLP SVM TREE

CBB Prune CBB Prune CBB Prune

blood 0.79 0.78 D2 0.77 0.77 D2 0.78 0.77 D2
bupa 0.71��� 0.61 D1 0.72��� 0.62 D1 0.70 0.67 D1
car 1.00 1.00 D1 0.99 0.99 D1 0.96 0.98��� D1
contra. 0.72��� 0.64 D1 0.69��� 0.63 D1 0.70��� 0.64 D1
credit 0.86 0.84 D2 0.86��� 0.82 D1 0.86 0.84 D2
diagnostic 0.97 0.98 D1 0.98 0.97 D1 0.95 0.95 D1
ecoli 0.99 0.98 D2 0.99 0.98 D1 0.99 0.99 D1
ionosphere 0.91 0.91 D1 0.91� 0.88 D1 0.90 0.93 D1
mamm. 0.82��� 0.80 D1 0.81 0.81 D1 0.82�� 0.80 D1
monks-1 1.00 1.00 D1 1.00 1.00 D1 0.99 1.00 D1
monks-2 1.00 1.00 D1 1.00 1.00 D1 0.68�� 0.59 D1
monks-3 1.00 1.00 D1 1.00 1.00 D1 1.00 1.00 D1
parkinsons 0.91 0.91 D1 0.91 0.88 D1 0.92� 0.89 D1
pima 0.77 0.76 D1 0.77 0.76 D1 0.75 0.73 D1
prognostic 0.78 0.78 D3 0.77 0.77 D3 0.77 0.77 D3
sonar 0.82 0.84 D1 0.82 0.84 D1 0.80 0.83 D1
spect 0.81 0.83 D1 0.82 0.79 D1 0.82 0.81 D1
tic 0.97 0.98 D1 1.00 0.99 D1 0.94 0.97��� D1
vertebral 0.83 0.82 D2 0.85 0.81 D2 0.82 0.82 D2
yeast 0.66 0.63 D1 0.66�� 0.61 D1 0.68�� 0.62 D1
summ. 9(3) 4(0) N/A 12(5) 1(0) N/A 10(5) 5(2) N/A

Grey cells denote higher accuracy with �’s denoting significantly higher (t-test
with � for p � 0.1, �� for p � 0.05, ��� for p � 0.01). The Ds denote fine-tuned
distance threshold for PruneBoost (D1 ¼ 0.1, D2 ¼ 0.2, D3 ¼ 0.3).

TABLE 4
Instances Removed for PruneBoost

by Cluster Type

Data set HES HEP HOS HOP

blood 117.1 0 71.6 14.6
bupa 149.8 0 0 0
car 0 0 0 0
contraceptive 443.5 0 0 0
credit 7.3 4.2 0 11.1
diagnostic 8.2 51.2 7.3 171
ecoli 0 0 0 0.9
ionosphere 0 8.7 0 0
mammography 126.9 0 260 12.3
monks-1 0 0 0 0
monks-2 0 0 0 0
monks-3 0 0 0 0
parkinsons 36 20.5 15.3 7.3
pima 212.2 0 119 20.2
prognostic 0.7 0 2.1 0
sonar 0 74.4 0 0
spect 50.8 0 0 2.5
tic 0 0 0 0
vertebral 87.7 4.1 0.9 0.2
yeast 409.2 0 8.8 0

Grey cells denote the cluster type with the largest number of
instances removed (averaged over validation folds).
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system (cf., Section 3.3). Second, the number of clusters
reported is not always an integer. CBB creates a separate
set of clusters for each validation fold and the results are
averaged together.

Tables 5, 6 and 7 provide the number of clusters and clus-
ter types for CBB on the benchmark data sets using MLP
(Table 5), SVM (Table 6), and TREE (Table 7). The number

of clusters is reported along with the percentage breakdown
for all four cluster types (cf., Section 3.2.2).

First, the data sets vary considerably in terms of the pre-
dominant or favored cluster type used. In fact, there are one
or more data sets that favors each cluster type in all three
tables. Additionally, based on the number of clusters and
percentage breakdown, the majority of the data sets use
clusters with multiple types. These results make sense given
that the benchmark data sets have a high degree of diversity
(cf., Section 4 and [35]). In other words, CBB found clusters
with different types not only between data sets, but on the
same data set.

Second, although percentages vary, we observe patterns
in the favored cluster types across SL systems for different
data sets. As an example, contraceptive-ionosphere favor
HOP clusters in Tables 5, 6 and 7 while sonar, tic, and verte-
bral favor HEP. As previously discussed (Lines 1–7 in
Fig. 4), CBB creates the clusters using an unsupervised clus-
tering algorithm that operates independently of the SL sys-
tem. Then, CBB uses the SL system to help compute the
cluster type using the localized estimate metric (3) and
minority label metric (4). Now, these SL systems produce
functions with varying complexity (cf., Section 4) and prop-
erties. The presence of these patterns, despite functions
with varying complexity, suggests that selective boosting
on the set of clusters is effective across multiple SL systems
and on data sets that favor each cluster type.

4.4 CBB versus Regularized Boosting

Here we compare CBB with two regularized boosting algo-
rithms: BrownBoost [25] and AdaBoostKL [26] described in
Section 2.3. We fine-tune both the t parameter for Brown-
Boost and the b parameter for AdaBoostKL. For both param-
eters, we consider values of 0.25, 0.5, and 0.75 based on the

TABLE 7
Number of Clusters and Types for CBB with TREE

Data set

Parameters Cluster Type

d1 d2 Clusters HES HEP HOS HOP

blood 0.1 0.3 6.3 29% 0% 56% 16%
bupa 0.3 0.2 4 0% 100% 0% 0%
car 0.1 0.2 6.7 10% 69% 0% 21%
contraceptive 0.3 0.2 6.1 5% 95% 0% 0%
credit 0.1 0.4 3.8 5% 0% 42% 53%
diagnostic 0.1 0.2 5.3 0% 25% 0% 75%
ecoli 0.1 0.2 2.9 0% 10% 0% 90%
ionosphere 0.1 0.3 3.4 0% 18% 0% 82%
mammography 0.1 0.2 5.2 29% 0% 63% 8%
monks-1 0.2 0.4 3.1 0% 97% 0% 3%
monks-2 0.1 0.4 3.1 0% 0% 100% 0%
monks-3 0.1 0.2 3.1 0% 100% 0% 0%
parkinsons 0.2 0.2 3.5 0% 51% 0% 49%
pima 0.1 0.4 5.3 60% 2% 32% 6%
prognostic 0.1 0.3 3 7% 23% 10% 60%
sonar 0.1 0.2 3 0% 100% 0% 0%
spect 0.2 0.2 3.4 9% 29% 3% 59%
tic 0.2 0.2 3.7 0% 97% 0% 3%
vertebral 0.3 0.2 3.3 0% 61% 0% 39%
yeast 0.3 0.3 6.8 13% 59% 0% 28%

Parameters denote the fine-tuned parameters for CBB. Clusters denote the
average number of clusters used. Cluster type denotes the percentage of cluster
type for each data set. Grey cells denote the favored cluster type.

TABLE 5
Number of Clusters and Types for CBB with MLP

Data set

Parameters Cluster Type

d1 d2 Clusters HES HEP HOS HOP

blood 0.1 0.2 6.3 51% 0% 33% 16%
bupa 0.1 0.2 4 100% 0% 0% 0%
car 0.1 0.2 6.7 0% 79% 0% 21%
contraceptive 0.3 0.4 6.1 7% 33% 2% 59%
credit 0.1 0.3 3.8 16% 5% 11% 68%
diagnostic 0.1 0.4 5.3 2% 0% 2% 96%
ecoli 0.1 0.2 2.9 0% 10% 0% 90%
ionosphere 0.1 0.2 3.4 0% 35% 0% 65%
mammography 0.2 0.2 5.2 29% 0% 4% 67%
monks-1 0.1 0.2 3.1 0% 100% 0% 0%
monks-2 0.1 0.2 3.1 0% 100% 0% 0%
monks-3 0.1 0.2 3.1 0% 100% 0% 0%
parkinsons 0.1 0.2 3.5 23% 29% 9% 40%
pima 0.2 0.2 5.3 70% 11% 0% 19%
prognostic 0.2 0.4 3 0% 0% 3% 97%
sonar 0.1 0.2 3 0% 100% 0% 0%
spect 0.1 0.4 3.4 9% 0% 26% 65%
tic 0.1 0.2 3.7 0% 97% 0% 3%
vertebral 0.1 0.3 3.7 0% 81% 0% 19%

Parameters denote the fine-tuned parameters for CBB. Clusters denote the
average number of clusters used. Cluster type denotes the percentage of cluster
type for each data set. Grey cells denote the favored cluster type.

TABLE 6
Number of Clusters and Types for CBB with SVM

Data set

Parameters Cluster Type

d1 d2 Clusters HES HEP HOS HOP

blood 0.2 0.3 6.3 29% 0% 21% 51%
bupa 0.3 0.2 4 40% 60% 0% 0%
car 0.1 0.2 6.7 0% 79% 0% 21%
contraceptive 0.3 0.4 6.1 13% 26% 7% 54%
credit 0.2 0.3 3.8 0% 21% 0% 79%
diagnostic 0.1 0.4 5.3 0% 2% 0% 98%
ecoli 0.1 0.2 2.9 0% 10% 0% 90%
ionosphere 0.1 0.2 3.4 0% 35% 0% 65%
mammography 0.1 0.3 5.2 21% 0% 77% 2%
monks-1 0.1 0.2 3.1 0% 100% 0% 0%
monks-2 0.1 0.2 3.1 0% 100% 0% 0%
monks-3 0.1 0.2 3.1 0% 100% 0% 0%
parkinsons 0.1 0.2 3.5 23% 29% 3% 46%
pima 0.3 0.2 5.3 21% 60% 0% 19%
prognostic 0.2 0.2 3 0% 60% 0% 40%
sonar 0.1 0.2 3 0% 100% 0% 0%
spect 0.1 0.3 3.4 24% 3% 3% 71%
tic 0.1 0.2 3.7 0% 97% 0% 3%
vertebral 0.3 0.2 3.3 0% 61% 0% 39%
yeast 0.3 0.3 6.8 68% 4% 0% 28%

Parameters denote the fine-tuned parameters for CBB. Clusters denote the
average number of clusters used. Cluster type denotes the percentage of cluster
type for each data set. Grey cells denote the favored cluster type.
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range given in Schapire & Freund [4]. The best results for
each data set are reported in this section.

For completeness, we also provide results for all three
using radial basis functions (RBF) considered in Sun
et al. [26]. RBFs use a network of interconnected nodes
similar to MLPs, but both the update procedure and the
nodes used are radically different.

Tables 8 and 9 provide the predictive accuracy for CBB
compared to BrownBoost and AdaBoostKL. As shown in
Table 8, CBB has a pronounced advantage compared
BrownBoost using all four SL systems. CBB achieves supe-
rior predictive accuracy on 12 data sets using MLP (5 sig.),
11 data sets using SVM (4 sig.), 15 data sets using TREE (7
sig.), and 11 using RBF (5 sig.). As shown in Table 9, CBB
has the advantage using MLP, SVM, and RBF, while Ada-
BoostKL has the advantage using TREE. CBB achieves
superior predictive accuracy on seven data sets using
MLP (3 sig.), 11 data sets using SVM (1 sig.), four data sets
using TREE (0 sig.), and 13 using RBF (5 sig.). On the other
hand, AdaBoostKL achieves superior accuracy on three
data sets using MLP, three data sets using SVM (1 sig.),
nine data sets using TREE (4 sig.), and two data sets using
RBF (1 sig.).

The above results show that CBB has a performance
advantage over both AdaBoostKL and BrownBoost. During
our investigation, we found three specific reasons explain-
ing this advantage.

First, we found that the number of functions learned by
BrownBoost was much lower than that used by conven-
tional AdaBoost (recall that CBB uses AdaBoost). When
averaged across all data sets, the number learned was 3
versus 7.75 using MLP, 3.53 versus 8.35 using SVM, 1.75
versus 9.56 using TREE, and 4.32 versus 9.29 using RBF.
Furthermore, on many data sets, AdaBoost used the full

allotment of boosting iterations, while BrownBoost stopped
after the initial function. Based on these results, BrownBoost
seems to be stopping too early—consistent with Warmuth
et al. [27] who also reported that BrownBoost stopped early.

Second, we found that the sum of the weights learned by
AdaBoostKL for the subsequent function was sometimes
lower than the weight for the initial function. The number
of data sets where the subsequent functions had sufficient
weight to contribute was nine using MLP, 11 using SVM, 17
using TREE, and only two using RBF. This means that the
subsequent functions played no part predicting the label
since the initial function had the dominant vote. Based on
these results, AdaBoostKL may be reducing the weights for
subsequent functions too aggressively for the subsequent
functions to impact the final vote.

Third, we also found a direct link for AdaBoostKL
between performance (see Table 9) and the number of data
sets where subsequent functions were used. AdaBoostKL
used subsequent functions most often for TREE where it
achieved the best accuracy compared to CBB. On the other
hand, subsequent functions were used least often for RBF
where AdaBoostKL achieved, by far, the worst accuracy
compared to CBB. Indeed, AdaBoostKL is aggressively selec-
tive and subsequent functions contribute little; but when the
initial function has low accuracy (TREE), AdaBoostKL is
more willing to use the subsequent functions.

In summary, CBB simplifies the boosting process by
breaking up the training data into clusters containing similar
instances. Selective boosting can then be usedmore precisely
on the instances in the same cluster. This allows CBB selec-
tive boosting to more easily distinguish between (1) instan-
ces difficult for the initial function and (2) instances that
genuinely have label noise. On the other hand, BrownBoost’s
conservative behavior of stopping early makes sense since

TABLE 8
Predictive Accuracy for CBB and BrownBoost

Set

MLP SVM TREE RBF

CBB BB CBB BB CBB BB CBB BB

blood 0.80� 0.78 0.78 0.77 0.78 0.76 0.78 0.78
bupa 0.70 0.67 0.72 0.69 0.67 0.64 0.69 0.69
car 1.00 1.00 0.99 0.99 0.96��� 0.94 0.97��� 0.95
cont. 0.72��� 0.69 0.69 0.69 0.70 0.69 0.68 0.70�

credit 0.87 0.86 0.87�� 0.85 0.86 0.86 0.86 0.86
diag. 0.97��� 0.95 0.98 0.98 0.95 0.94 0.98 0.97
ecoli 0.99 0.98 0.99 0.99 0.99 0.99 0.98 0.98
iono. 0.91 0.89 0.91 0.89 0.89 0.89 0.94 0.93
mamm. 0.82 0.82 0.82 0.81 0.82 0.82 0.81 0.82
mks-1 1.00 1.00 1.00 1.00 0.99��� 0.91 0.96��� 0.87
mks-2 1.00 1.00 1.00 1.00 0.68�� 0.59 0.71 0.78
mks-3 1.00 1.00 1.00 1.00 1.00 0.99 1.00��� 0.97
park. 0.92� 0.88 0.94��� 0.86 0.90��� 0.83 0.90�� 0.82
pima 0.77 0.77 0.77 0.76 0.75 0.72 0.77 0.75
prog. 0.80�� 0.74 0.77 0.78 0.79 0.74 0.80 0.78
sonar 0.81 0.79 0.82 0.79 0.79�� 0.69 0.83�� 0.76
spect 0.81 0.80 0.82�� 0.78 0.84��� 0.77 0.85 0.82
tic 0.97 0.97 1.00��� 0.97 0.94��� 0.84 0.97 0.96
vert. 0.82 0.83 0.82 0.83 0.83 0.84 0.83 0.84
yeast 0.65 0.64 0.66 0.65 0.66 0.64 0.64 0.68��

summ. 12(5) 1(0) 11(4) 2(0) 15(7) 1(0) 11(5) 5(2)

Grey cells denote higher accuracy with �’s denoting significantly higher (t-test
with � for p � 0.1, �� for p � 0.05, ��� for p � 0.01).

TABLE 9
Predictive Accuracy for CBB and AdaBoostKL

Set

MLP SVM TREE RBF

CBB KL CBB KL CBB KL CBB KL

blood 0.80� 0.78 0.78 0.77 0.78 0.77 0.78 0.78
bupa 0.70��� 0.59 0.72 0.66 0.67 0.72 0.69� 0.62
car 1.00 1.00 0.99 0.99 0.96 0.98�� 0.97��� 0.95
cont. 0.72��� 0.69 0.69 0.68 0.70 0.70 0.68 0.68
credit 0.87 0.86 0.87 0.86 0.86 0.87 0.86 0.86
diag. 0.97 0.97 0.98 0.98 0.95 0.96 0.98 0.98
ecoli 0.99 0.99 0.99 0.98 0.99 0.99 0.98 0.98
iono. 0.91 0.92 0.91 0.89 0.89 0.94�� 0.94 0.93
mamm. 0.82 0.82 0.82 0.81 0.82 0.83 0.81 0.83�

mks-1 1.00 1.00 1.00 1.00 0.99 0.99 0.96� 0.89
mks-2 1.00 1.00 1.00 1.00 0.68 0.67 0.71 0.63
mks-3 1.00 1.00 1.00 1.00 1.00 0.99 1.00��� 0.97
park. 0.92 0.90 0.94�� 0.89 0.90 0.90 0.90�� 0.84
pima 0.77 0.77 0.77 0.77 0.75 0.75 0.77 0.76
prog. 0.80 0.79 0.77 0.80 0.79 0.79 0.80 0.75
sonar 0.81 0.85 0.82 0.85�� 0.79 0.81 0.83 0.78
spect 0.81 0.83 0.82 0.81 0.84 0.82 0.85 0.82
tic 0.97 0.97 1.00 0.99 0.94 0.96�� 0.97 0.96
vert. 0.82 0.85 0.82 0.85 0.83 0.85� 0.83 0.78
yeast 0.65 0.64 0.66 0.64 0.66 0.66 0.64 0.65
summ. 7(3) 3(0) 11(1) 3(1) 4(0) 9(4) 13(5) 2(1)

Grey cells denote higher accuracy with �’s denoting significantly higher (t-test
with � for p � 0.1, �� for p � 0.05, ��� for p � 0.01).
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BrownBoost considers all the highly diverse training data
together. BrownBoost cannot boost aggressively on all the
training data without the risk of excluding instances that do
not have label noise.

Although CBB is more selective on when to use boosting,
it promotes subsequent functions on clusters where it
decides to use boosting. As described in Section 3.2, CBB
uses boosting only on clusters containing difficult training
data. This reduces the weight for the initial function giving
subsequent functions more say in the final vote. This allows
CBB to better leverage the boosting process even using SL
systems where the initial function has high accuracy (RBF).
AdaBoostKL cannot do this as well since it relies on the ini-
tial function to get a good sense of the level of label noise
and how aggressively selective boosting should be used.
When the initial function has high accuracy, AdaBoostKL
has extremely high mistrust for subsequent functions. How-
ever, while both continue learning subsequent functions
(rather than stopping as BrownBoost does), CBB is not that
picky with the subsequent functions once it starts boosting,
whereas AdaBoostKL is very selective using only subse-
quent functions that overcome its mistrust. This explains
why AdaBoostKL’s performance using other SL systems
was actually quite close to CBB.

5 CONCLUSIONS AND FUTURE WORK

We propose a novel cluster-based boosting approach to
address limitations in boosting on supervised learning algo-
rithms. Our CBB approach partitions the training data into
clusters containing highly similar member data and integra-
tes these clusters directly into the boosting process.

Our CBB approach attempts to address two specific limi-
tations for current boosting both resulting from boosting
focusing on incorrect training data: (1) filtering for subse-
quent functions when the training data contains troublesome
areas and/or label noise and (2) overfitting in subsequent
functions that are forced to learn on all the incorrect instan-
ces. These limitations are addressed as follows:

� CBB mitigates filtering for subsequent functions by
using the appropriate amount of boosting for each
cluster, for example, using a high learning rate on
clusters with troublesome areas and not boosting at
all on clusters with label noise.

� CBB mitigates overfitting in subsequent functions
since they required to learn only the similar member
data (correct and incorrect) in a single cluster.

We demonstrate the effectiveness of CBB through exten-
sive empirical results on 20 UCI benchmark data sets with
three different kinds of supervised learning system (multi-
layer perceptrons, support vector machines, and decision
trees). First, we show that CBB achieves superior predictive
accuracy to AdaBoost [4], the most popular boosting algo-
rithm. Second, we show that CBB achieves superior predic-
tive accuracy to PruneBoost [17], another algorithm that uses
clusters to improve boosting. Finally, we show that CBB
achieves superior predictive accuracy to two algorithms that
use selective boostingwithout clusters.

Now that we have established the feasibility and effec-
tiveness of CBB, we intend to continue our investigation
down several avenues.

Initially, as discussed in Section 3.2.1, there are many dif-
ferent strategies for computing clusters. Here, we use the
centroid-based k-Means because of its proven effectiveness
and popularity. However, there is no best clustering algo-
rithm on all data sets [31]. We intend to investigate other
clustering algorithms (e.g., spectral clustering). These may
allow CBB to better encapsulate clusters with different types
when the clusters are not spherically shaped.

Next, the clusters are currently created using all the fea-
tures. This works well on benchmark data sets containing
relatively few irrelevant features. However, on real-world
data sets with numerous, irrelevant features, the clusters
may be distorted to the point that they become no longer
useful for selective boosting, and thus reducing the effec-
tiveness of CBB. We intend to investigate both applying fea-
ture selection before clustering and using semi-supervised
[31] during CBB to address this possible limitation.

Finally, at this point, the CBB parameters for the localized
estimatemetric (d1 in (3)) and theminority label estimatemet-
ric (d2 in (4)) need to be fine-tuned on each data set. In particu-
lar, the minority label metric must be carefully set on
unbalanced data sets to avoid predisposing CBB towards cer-
tain cluster types. Fine-tuning these parameters adds com-
plexity to the final solution leading to scalability issues on big
data. We intend to investigate how to automatically set these
parameters based on the data set structure and properties.
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