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An Inverse Problem: Trappers Drove Hares to Eat Lynx

Bo Deng1

Abstract: The Canadian lynx and snowshoe hare pelt data by the Hudson’s Bay Company do
not fit the classical predator-prey theory. Rather than following the peak density of the hares,
the peak density of the lynx leads it, creating the hares-eat-lynx (HEL) paradox. Although
trappers were suspected to be a cause, no mathematical models in the literature have demon-
strated the HEL effect. In this paper we consider various multitrophic models with interactions
in vegetation-hare-lynx, hare-lynx-coyote, hare-lynx-trapper, and hare-lynx-coyote-trapper, and
use Newton’s gradient search method to best fit each model to the data and then select the one
with the least error as the benchmark model for the data. We will conclude from the bench-
mark model and its sensitivity analysis the following: (a) the trappers as a participant rather
than an observer of the system changed the observed; (b) the lynx and hare populations in the
wild follow the lynx-eats-hares (LEH) cycle but the harvested animals follow the HEL cycle; (c)
the benchmark fit is more sensitive to changes in all lynx-trapper interactions than the respective
hare-trapper interactions; (d) trappers did not interfere each other’s trapping activities a cen-
tury ago; (e) the Hudson’s Bay Company’s hare pelt number was severely fewer than it should
be. These results together dispel a long-held hypothesis that the pelt data is a proxy of the hare
and lynx populations in the wild. It also shows that theoretical ecology must move beyond the
classical Lotka-Volterra paradigm into a contemporary framework in which Holling’s predation
theory is central to population modeling. It also demonstrates to the ecologists that we do not have
to collect data from all dimensions in order to gain a good understanding of complex systems, but
instead we can systematically fit models to empirical data of any dimensions with identifiable
uncertainties and a complete understanding of parameter sensitivities to the best fit.

Key Words: Canadian lynx and snowshoe hare, population modeling, ecological and economical mod-
eling, Holling’s disc function, dimensional analysis, least square fit, Newton’s gradient search method,
the line search method, global minimizer, parameter sensitivity to least error, benchmark model

“I find the whole oscillation most mysterious.” —The closing words of a 60-
page mathematical analysis of the Hudson’s Bay Company’s hare and lynx fur
data by Egbert R. Leigh, Jr. in 1968.

1. Introduction. The Hudson’s Bay Company’s fur trade data ([8, 25]) for the Canadian lynx and
snowshoe hares is the oldest, the longest, and the most well-known data set in ecology. It has been
extremely controversial and remains enigmatic to this day. Every book on introductory ecology must
pay tribute to it, most (e.g. [26]) would cite it as an example to support the classical predator-prey
theory by Lotka ([23]) and Volterra ([39]), but only a few (e.g. [2]) would point it out correctly that it
does not. Unlike the classical theory which predicts the peak density of the predator follows that of the
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prey, the peak volume of the hare’s pelt on average follows that of the lynx’s. This shocking paradox
was discovered by Leigh ([22]) and made widely known by Gilpin with an article provocatively titled
Do hares eat lynx? ([11]). The net phase difference is more than two years with the lynx pelt data
phase-advanced by one year on average from the hare pelt ([22, 11, 3]) but the lynx’s field population
phase-lagged by one year from the hare’s population ([17, 28, 35, 15]). Data aggregation cannot be the
problem because pelts from different boreal regions of Canada were shown to be spatially synchronized
in time ([1]). Data mismatch in volume cannot be the problem either as we will show that the amplitudes
of the pelt series do not effect the phase of their oscillation. So could it be the trading practice by the
native trappers, or the bookkeeping practices by the Hudson’s Bay Company, or both that shifted the
lynx phase by two years? This is highly unlikely for two reasons: statistical averaging over large
data set usually erase peculiarities and the absence of evidence for sloppy or idiosyncratic practices by
the company is probably the absence of such systematic practices. The phase divergence in opposite
directions is so ‘mysterious’ ([22]) that it prompted a recent statistical study ([42]) to suggest that the
pelt data is the result of ‘intrinsic self-regulation’ of each hare and lynx.

Although trappers were suspected to play a role for the hares-eat-lynx (HEL) paradox ([9, 40, 41]),
all statistical and mathematical studies in the literature (e.g. [3, 33, 34, 35, 1, 10, 18, 37, 42, 38]) have
made a tactical assumption that the pelt numbers is a direct, i.e. proportional, proxy of the populations
in the wild, effectively rendering trappers role nonessential. Fig.2 of [35] was cited as an empirical
basis for this assumption but the opposite can be equally inferred. Even at the conceptual level this
proxy assumption is incredibly simplistic for obvious reasons. Just to name a few: trappers were not
field ecologists but resource exploiters who were economically vested in if not entirely depended on
the animals for survival — taking out the animals in large quantity irreplaceably for food and trade;
and like a natural predator they adjusted their efforts in pursuit of the preys ([9, 40, 41]). These facts
alone suggest that the trappers were too deeply embedded in the system to be excluded from any
mathematical model aimed at explaining their catch data or the hare-lynx interaction in the wild that
the data implies. This is exactly what we will do in this paper. We will demonstrate among other
things that the trapped animals are expected to exhibit the paradoxical prey-eats-predator oscillation
while the populations in the wild always follow the classical predator-eats-prey chase. That is, these
two contradictory properties are for the first time unified by our benchmark model. The Hudson’s
Bay Company’s data is qualitatively good, and had it not shown the HEL effect it would have been
questionable, a conclusion contrary to the conventional approach to explain it away ([19, 38]).

Because of the HEL paradox the failure of the classical Lotka-Volterra model to the hare-lynx sys-
tem was spectacular. Leigh’s work ([22]) was not only the first attempt to fit a Lotka-Volterra model
to the fur data but also the most comprehensive mathematical analysis of any model for the hare-lynx
system in the past forty plus years. The HEL legacy he left behind was long lasting. For one thing
mathematicians and ecologists since then have stopped fitting their conceptual models to the data. As a
result we have failed to establish any followup benchmark model. As a more serious consequence we
have failed to connect mathematics to reality, which biologists were right to question the role of math-
ematics in ecological research ([16, 12]). (Statistical analysis is not considered strictly as mathematical
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modeling here but rather an extension of observation or a tool of observation by experimentalists.) The
HEL problem has raised some basic questions as to can a piece of mathematics be called a mathemat-
ical model without ever being best-fitted to an empirical data? How to objectively select them from
such numerous and often arbitrary choices? And what is knowable and what is not when a model of
high dimensions is fitted to a low dimensional data set?

In this paper we will consider several models for the Canadian hare-lynx problem. We will make
the following distinctions among models. A model without being best-fitted to a data is referred to as a
conceptual model. A conceptual model that is best-fitted to a data is referred to as a provisional model.
A provisional model that is the best amongst all provisional models is referred to as the benchmark
model. To best fit a model to a data is to have the least error between the predicted by the model and
the observed from the data. To determine system parameter values for the least error is to solve the
so-called inverse problem in mathematics, and the most effective method to solve inverse problems is
by Newton’s gradient search method for which the most effective implementation is the line search
method ([30, 32]). The model selection protocol outlined above is referred to as benchmarking. All
provisional models in this paper are determined mainly by the line search method. We will demonstrate
that all models without the trappers do not exhibit the HEL effect but all models with the trappers do,
and of all the models with or without the trappers, the hare-lynx-coyote-trapper (HLCT) model has the
least error, hence is qualified to be the benchmark model. We will comment on some seemingly ‘bad’
parameter fit but apparently for some perfectly good reasons which in turn lead us to conclude that the
hare pelt series is severely under recorded for a few orders of magnitude. We will also introduce for
the first time to our best knowledge a sensitivity analysis of the best fit to show expectedly that the
native trappers seemed to value their lynx furs more than their hare furs, but also to show unexpectedly
that they did not interfere each others trapping activities. We will also introduce for the first time an
uncertainty analysis of fitting high dimensional models to low dimensional data to show that despite
the dimensional deficiency some system parameters can be uniquely determined by the best fit.

2. Method. In this paper we will first introduce various conceptual models in differential equations
with as much mechanistic justifications as possible. We will then use Newton’s gradient search method
and its most effective implementation — the line search method — to best fit each conceptual model to
the lynx-hare data from [22, 11]. It is by the benchmark model that our observations and conclusions
about the Canadian hare-lynx system will be derived.

2.1. Models. For variable notations we will denote by t the time in year with t = 0 corresponding to
1875 the first data year of [22, 11]. We will use H(t), L(t) for the head counts of hare and lynx in the
wild at time t that we often breviate to H, L, suppressing the time variable. According to [28], coyotes
is a main predator of the hares just as lynx is among many other ancillary predators ([30, 34, 28]).
Hence variable C = C(t) is used as a proxy for all predators, the coyotes in particular, other than the
lynx and instead of a natural number it is simply a nonnegative natural number using as an index to
measure the predatory effect on the hares. It can be interpreted as the total biomass if the average size
of the coyotes is not specified. Similarly, variable T = T (t) is used as an index for the trappers, a proxy
for the trapping effect on the hare and the lynx rather than the head count or family count or tribe count
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Table 1: Model Variables and Parameters
Parameter Definition Unit

H Hare’s population Natural Number
L Lynx’s population Natural Number
C Coyote’s population index Scalar
T Trapper’s population index Scalar
b Hare’s per-capita growth rate 1/[year]

m Hare’s intraspecific competition rate 1/[H]/[year]

a1 Hare’s encounter rate with Lynx 1/[year]

h1 Lynx’s handling time of Hare [year]/[H]

a2 Hare’s encounter rate with Coyote 1/[year]

h2 Coyote’s handling time of Hare [year]/[H]

u1 Hare’s encounter rate with Trapping 1/[year]

v1 Trapper’s handling time of Hare [year]/[H]

u2 Lynx’s encounter rate with Trapping 1/[year]

v2 Trapper’s handling time of Lynx [year]/[L]

b1 Lynx’s consumption-to-birth ratio Scalar
d1 Lynx’s per-capita death rate 1/[year]

m1 Lynx’s intraspecific competition rate 1/[L]/[year]

b2 Coyote’s consumption-to-birth ratio Scalar
d2 Coyote’s per-capita death rate 1/[year]

m2 Coyote’s intraspecific competition rate 1/[C]/[year]

r1 Trapper’s Hare-to-recruitment ratio Scalar
r2 Trapper’s Lynx-to-recruitment ratio Scalar
d3 Trapper’s per-capita quit rate 1/[year]

m3 Trapper’s intraspecific competition rate 1/[T ]/[year]
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of trappers. The variables and parameters are listed in Table 1, and the theoretical model is given as
follows:





dH

dt
= H

(
b−mH − a1L

1 + h1a1H
− a2C

1 + h2a2H
− u1T

1 + v1u1H + v2u2L

)

dL

dt
= L

(
b1a1H

1 + h1a1H
− d1 −m1L− u2T

1 + v1u1H + v2u2L

)

dC

dt
= C

(
b2a2H

1 + h2a2H
− d2 −m2C

)

dT

dt
= T

(
r1u1H + r2u2L

1 + v1u1H + v2u2L
− d3 −m3T

)
.

(1)

Explanation for the model is as follows. Without the predators and trappers (L = C = T = 0),
the hare population is modeled as a logistic growth with the intrinsic growth rate b and the intraspecific
competition coefficient m (which can be justified by the field study of [20]). We will use Holling’s Type
II functional form ([14]) for the predation rate of the lynx on the hare with the encounter rate a1 and the
handling time h1. Parameter b1 is the consumption-to-birth ratio (biomass conversion coefficient) of
the lynx and parameters d1,m1 are its natural death rate and intraspecific competition rate respectively.
Similar parameters notations, a2, h2, b2, d2,m2, apply to the coyotes equation.

Like the predators, the trapping rates (the pelt harvest rates) of the hares and the lynx per unit index
of trappers are the joint Holling Type II functional forms ([27, 21]), u1H

1+v1u1H+v2u2L
, u2L

1+v1u1H+v2u2L
,

with the encounter rates u1, u2 and handling times v1, v2 of the hares and lynx, respectively. However,
unlike the predators, parameters r1, r2 for the trappers equation are the intrinsic pelt-to-recruit ratios, d3

is trappers quit rate, and m3 is trappers intraspecific competition rate. That is, the system of equations
models not only the ecological interactions of the hares, lynx, and coyotes, but also the economical
interactions of the trappers with the natural system. The trappers equation is the same as those for the
predators in form but the interpretations for its parameters are economical rather than ecological.

The continuous model Eq.(1) is referred to as the hare-lynx-coyote-trapper (HLCT) model. We will
also consider the following models which it contains: the hare-lynx-trapper (HLT) model with C ≡ 0

set for the HLCT equation; the hare-lynx-coyote (HLC) model with T ≡ 0; and the HLCT1 model
which has the same equation (1) except that the trapping rates are of Holling’s Type I forms with the
zero handling times v1 = v2 = 0. For comparison purpose we will also consider the vegetation-hare-
lynx (VHL) model used in [1, 18, 37].

2.2. Gradient Search and Line Search for Least Error. Empirical data for a physical process P is a
collection of time and real numbers, denoted in general by

(tij, yij), i = 1, 2, . . . , kj, j = 1, 2, . . . , `

Here the second subindex j is for different type of data, say j = 1 for the population of a prey and j = 2

for the population of a predator. We will refer to it as the jth data type for a total of ` many types. Each
data type is collected at the same or distinct data acquisition times but we will assume without loss of
generality that tij is increasing in i and the earliest collecting time is set to 0, i.e. t(i+1)j > tij ≥ 0.
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In this paper we will only consider differential equations as mathematical models for the process,




dx

dt
= F (x, p)

x(0) = x0

(2)

where t has the same time dimensional unit as tij , p the model parameters, x(t) = (x1, x2, . . . , xn)(t)

is the state variables of the model at time t. For each j, we consider a fit functional, fj(tij, p, x0), to the
jth data type (y1j, y2j, . . . ykjj), and consider the weighted Euclidean error between the predicted and
the observed:

E(F,f)(p, x0) =

√√√√∑̀
j=1

kj∑
i=1

w2
ij|fj(tij, p, x0)− yij|2

where the weight parameter wij has the reciprocal unit of yij to scale each term dimensionless. For
example, we can use wij ≡ 1/ max1≤i≤kj

{|yij|} assuming not all yij = 0 in i, or analogous to the
χ-square test we can use wij = 1/|yij| assuming all yij 6= 0. The usage of dimensional weights is
essential when the best fit is sought for multiple data types for which the error, E(F,f)(p, x0), has to be
dimensional free for consistency. We also note that the state variable x(t) may or may not coincide
in part or whole with the data type y. That is, fj for any 1 ≤ j ≤ ` may or may not have the same
dimensional unit as xk for any 1 ≤ k ≤ n.

By definition, the best fit of the model F to the data has the least error

ε(F, f) = min
(p,x0)

E(F,f)(p, x0) = E(F,f)(p
∗, x∗0)

at some (p∗, x∗0), referred to as the global minimizer, among all choices of the initial conditions x0 and
parameter values p. Therefore, by definition, a model F is a benchmark model if

ε(F, f) ≤ ε(G, g)

holds for all provisional models G (with the same fit weights wij). A benchmark model is only tem-
porary as it can be replaced by new and better provisional models. We note that it is often the case
that we cannot prove a minimizer we found by a particular method is indeed the global minimizer but
instead the best local minimizer with respect to the search method. Thus, the provision and benchmark
designation to a model in this paper is contingent upon the search method we used for all models.

Finding local minima of the error function E(p, x0) is the same as finding local minima of the error
function squared E2(p, x0). The search is done in the parameter and initial state space (p, x0), often
along a fastest descending path. The methods we will use are all based on Newton’s gradient search
method. That is, we seek to determine a path in the parameter and initial state space, (p, x0)(s), so that
it follows the negative gradient of E2(p(s), x0(s)) in search of a local minimum of the squared error:





∂(p, x0)

∂s
= −∇E2(p, x0) = −2

∑̀
j=1

kj∑
i=1

w2
ij[fj(tij, p, x0)− yij]D(p,x0)(fj(tij, p, x0))

(p(0), x0(0)) = (p0, x0,0)
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where Dzf(z) denotes the derivative of function f with respect to its variable z, and (p0, x0,0) denotes
the initial search point. A local minimizer is found if the path converges

(p∗, x∗0) = lim
s→∞

(p(s), x0(s))

and a local minimum is declared numerically after a sufficiently large number s. We note that at
each search point, x(t, x0(s), p(s)) is a solution to the model differential equations Eq.(2). Thus, as a
function of (t, s), x(t, x0(s), p(s)) in fact is the solution to a partial differential equation induced from
the gradient search for which more details are given in the Appendix.

It is known that if the squared error has non-unique local extrema, a gradient search may not yield
the global minimizer. In fact, finding the global minimizer is still an active research in the area of scien-
tific computations. Another drawback for the gradient search method is that it can be time consuming
in solving the resulting PDEs. A practical approach to both speeding up the search and to finding a
better minimizer, which we will also adopt, is the line search method. Without loss of generality, we
assume all the parameters and the initial states are non-negative. The line search method we will use in
this paper works as follows.

For every initial guess (p0, x0,0), we consider a hypercube centered at the initial guess with 0 < p <

2p0, 0 < x0 < 2x0,0, componentwise. We will then partition each interval into a fixed even number,
say 2N , of subintervals of equal length, with N discrete partitioning points to each side of the center.
We will then search for a smaller error E(p, x0) along this and each coordinate line through the center
(p0, x0,0) at these discrete points. For example, for the first parameter p1 there are 2N + 1 discrete
partitioning points qi with q0 = 0, qN = p1,0 the initial guest, and q2N = 2p1,0 the end of the line search
segment for the parameter p1. With all other parameters and initial states fixed at the initial guess value
(p0, x0,0), we compute E(p, x0) with pi = pi,0, i 6= 1, x0 = x0,0 but p1 = qk for all k = 0, 1, 2, . . . 2N .
This generates 2N +1 many values for E(p, x0). Do the same for all other parameters and initial states
to generate a total of (2N + 1) × [number of parameters and initial states]. Of which we select the
smallest value of E(p, x0) and thus the next new initial guess (p0, x0,0). We repeat this process only
to stop the search if either the successive errors are within certain stoppage tolerance or if it runs out a
predetermined number of iterations. The output of this line search is our provisional global minimizer
(p∗, x∗0).

One can also run a gradient search after the line search just to increase the accuracy of such provi-
sional minimizer, which we did use. Notice that if we know the error function E(p, x0) has all its local
minima inside a bounded region, then both the gradient search and the line search must converge to a
local minimizer. In fact, all searches carried out for this paper converged, and it is in this sense each
best fitted model is the provisional model for the Canadian hare-lynx system.

2.3. Best-Fit Sensitivity. Suppose a provisional global minimizer (p∗, x∗0) has been found for the error
function E(p, x0), a next question is how sensitive does the error depends on changes in the parameters
and initial states? This question can be formulated by the Taylor expansion of the error function. To
be more specific, we first assume without the loss of generality that the minimizer occurs in interior
of the parameters and initial states space (p, x0) > 0 componentwise. The justification is as follows.
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If the minimizer occurs on a boundary with one of the parameters pi = 0, then that parameter can
be effectively dropped from the model and we can restrict the model only to those system parameters
whose minimizer components are strictly greater than zero. Similarly if the minimizer occurs on a
boundary with one of the initial states xj = 0, then the state of the model will stay invariant with the
xj-population zero for all future time, and hence it can be dropped from the model to consider only
an effectively smaller system of equations. Hence, sensitivity of the best fit is referred in this paper
to only those effective parameters and initial states for which the minimizer occurs in their interiors of
definition. That is, the first partial derivatives of the error function E at the minimizer are zeros.

We now define the sensitivity of the best fit. As an example, consider the case of the first parameter
p1 and expand E at the minimizer

E(p, x0) = E(p∗, x∗0) +
1

2

∂2E

∂p 2
1

(p∗, x∗0)(p1 − p∗1)
2 + · · · ,

where the dots represents the expanding terms for other parameters and initial states. Because p∗1 > 0

we can rewrite it as follows making the squared change dimensionless

E(p, x0) = E(p∗, x∗0) +
(p∗1)

2

2

∂2E

∂p 2
1

(p∗, x∗0)
(p1 − p∗1)

2

(p∗1)2
+ · · · ,

By definition, the coefficient of the squared percentage change (p1−p∗1)2

(p∗1)2
is the sensitivity of the error

with respect to the p1 parameter:

S(p1) :=
(p∗1)

2

2

∂2E

∂p 2
1

(p∗, x∗0) (3)

Similar definition applies to other parameters and initial states, denoted by S(pi) and S(xj,0) respec-
tively. Note that all sensitivities are greater than or equal to zero because E is an interior local minimum
at the point (p∗, x∗0).

It is important to note that the sensitivity can be used to compare deviations of the error from the
best fit with changes of all parameters and initial states. For example, for the same squared relative
changes in parameter p1 and p2 with (p1−p∗1)2

(p∗1)2
=

(p2−p∗2)2

(p∗2)2
, the inequality S(p1) > S(p2) implies that the

error function E(p, x0) is farther greater than its minimum E(p∗, x∗0) along the p1 axis than along the p2

axis. In this sense we can say the best fit of the model to the data is more sensitive to the parameter p1

than to the parameter p2. Similar pair-wise comparison applies to all parameters and initial states. We
also note that the S-sensitivity can be easily approximated from the line search method when at least
three discrete points are used for each of the search range [0, 2(p∗, x∗0)] componentwise, enough for a
discrete approximation of that component’s second order partial derivative of the error function.

2.4. Dimensional Analysis: Best-Fit Uncertainty and Sensitivity Certainty. It is often the case that
due to practical limitations, empirical data are collected in fewer independent dimensions than the di-
mensions of the physical system. The Canadian lynx-hare system is such an example for which the pelt
data in lynx and hares are available but in reality the foodweb to which these two species are embedded
has far more independently state variables from vegetation to competing herbivores and carnivores and
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to trappers. Intuitively, there ought to be some degree of freedom allowed for the best-fitted parame-
ter values of any provisional model. The questions are which parameters can be uniquely determined
and which parameters cannot be, and for the latter what is the degree of uncertainty, and will such
uncertainty effect the best-fit sensitivity S(p, x0)? These questions can be answered by the following
theorem of dimensional analysis whose proof is a straightforward application of the Buckingham’s π

Theorem (e.g. [24]).

Theorem: Consider an `-dimensional data set

(tij, yij) for i = 1, 2, . . . , kj, j = 1, 2, . . . , `,

an n-dimensional differential equation model x′ = F (x, p) with x ∈ Rn, p ∈ Rm, n ≥ `, and scalar
fit functionals fj(tij, p, x0). Assume the differential equations and the errors of fit, fj(tij, p, x0) − yij ,
are unit-free. Then there exist scalings τ(p), Ki(p), qj = gj(p), and sj(p) so that the model and the
weighted squared error

E2(p, x0) =
∑̀
j=1

kj∑
i=1

w2
ij(fj(tij, p, x0), p)− yij)

2

is transformed to a dimensionless model x̄′ = G(x̄, q) and its corresponding squared error becomes

E2(q, x̄0, s, τ) =
∑̀
j=1

kj∑
i=1

w2
ij(sj f̄j(tijτ, x̄0, q)− yij)

2

with f̄j being dimensionless, sj having the same dimensional unit as yij , t̄ = tτ(p), x̄(t̄) = x(t̄/τ(p))/Ki(p),
q = g(p) ∈ R[m−n−1]+ , where [m− n− 1]+ is zero if m− n− 1 ≤ 0 and m− n− 1 otherwise.

We note that all physical systems are unit-free, namely equivalent under dimensional unit conver-
sions, and hence the theorem should applies to mechanistic conceptual models. The degree of freedom
for the best fit is explained as follows. Notice that when m− n− 1 ≥ 0, a best fit by the dimensionless
model to the data in the scaled (m−n−1)+n+`+1 = m+` many quantities (q, x̄0, s, τ) corresponds
to an (n − `)-dimensional manifold of the same error value in the m + n dimensional parameter and
initial condition space in (p, x0). That is, n − `, which is the difference between the dimensional di-
mension m+n and the scaled, dimensionless dimension m+ `, is the degree of freedom for the best fit
of the model to the dimensional data. In other words, if n > `, we must expect infinitely many choices
in the dimensional parameters to give the same best error fit. For particular model, the question is to
determine which parameters can be uniquely determined for the best fit and which parameters cannot
but embody the degree of freedom for the fit.

We also note that for unit-free models the best fit sensitivity S(p, x0) is independent of the best fit
uncertainty. This can be easily proved by the same argument for the Buckingham’s π Theorem. More
specifically, the relationship between the dimensional and the dimensionless parameters and variables
are algebraic, and the dependence of the uncertain parameters and initial states on the free parameters
and initial states is also algebraic. As a result the free parameters and initial states are canceled out in
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the sensitivity values with respect to all the uncertain parameters and initial states. That is, even though
the global minimizers in the parameters and initial states are not unique, their sensitivities are.

2.5. Chirality: HEL v.s. LEH Orientation. When the time-dependent populations or pelts of hares
and lynx are plotted in the HL-plane, the trajectory may proceed in a general counterclockwise di-
rection, i.e. the lynx-eats-hare (LEH) orientation, or respectively in a general clockwise direction, i.e.
the HEL orientation. Describing it differently the LEH chase is also right-handed, or right chiral, and
the HEL chase is left-handed, or left chiral. Chirality is a quantity designed for the handedness of the
orientation. In particular, a positive chirality is for a right-handed LEH chase and a negative chirality is
for a left-handed HEL chase. Here is how the chirality of the hare-lynx trajectory is defined.

Let ti, i = 0, 1, 2, . . . , n be an increasing sequence in time, and Hi, Li be the population for the
hares and lynx respectively at the time ti. To define their chirality, let ~vi = (Hi − Hi−1, Li − Li−1)

be the direction or secant vector from point (Hi−1, Li−1) on the projected HL-plane to point (Hi, Li).
Now with respect to the direction ~vi the next movement by the projected HL-trajectory takes place
in the direction of ~vi+1, which can either right-handedly (counterclockwise) rotate up or left-handedly
(clockwise) rotate down, or neither. The chirality, ci, at the time ti, is defined to be the coefficient of
the curl vector from ~vi to ~vi+1. More specifically, if ~a = (a1, a2) and ~b = (b1, b2), then the curl of ~a

to ~b is curl(~a,~b) := (a1b2 − a2b1)k with k = (0, 0, 1) the standard vector base for the z-axis, and the
sign of the curl coefficient, a1b2 − a2b1 = curl(~a,~b) · k, tells whether the orientation from ~a to ~b is
right chiral (curl(~a,~b) · k > 0) or left chiral (curl(~a,~b) · k < 0). That is, we define the local or point
chirality of the HL-trajectory at time ti to be

ci = curl(~vi, ~vi+1) · k, for i = 1, 2, . . . , n.

The chirality for the trajectory is defined to be the time-averaged point chirality:

c̄(H, L) =
1

tn − t0

n∑
i=1

ci∆ti

with ∆ti = ti − ti−1. Note that this definition applies to sequences from numerical simulations as well
as to the pelt data. It is in this sense that we say the HL-trajectory or data is right chiral if c̄(H, L) > 0

or left chiral if c̄(H, L) < 0 for the rest of the paper.

3. Result. We now apply the method outlined above to the HLCT conceptual model Eq.(1) and its
various subsystems for comparison purposes. First we will use the lynx and hare pelt data used by
[22, 11, 2, 42], and denote them by HT,i, LT,i, the trapped pelt for the hares and lynx respective in
the ith year, ti = i, i = 0, 1, 2, . . . , 31, since the year of 1875. Since they are tallied annually we can
take them as the annual catch rates by the trappers. As a result we will use the trappers predation rate
functionals for the fit functionals:

HT (ti) := fH(ti, x0, p) =
u1H(ti, x0, p)T (ti, x0, p)

1 + v1u1H(ti, x0, p) + v2u2L(ti, x0, p)

LT (ti) := fL(ti, x0, p) =
u2L(ti, x0, p)T (ti, x0, p)

1 + v1u1H(ti, x0, p) + v2u2L(ti, x0, p)
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Table 2: Dimensional and Dimensionless Scalings

Dimensional Best-Fit Scaled
Parameter Best Fit Scaling Sensitivity Parameter Best Fit Scaling

b 4.9399 τ 238.59 τ 4.9399 b

m 0.0467 τ/KH 173.97
a1 0.0965 τ/KL 174.34
h1 0.2942 η1KL/(τKH) 134.13 η1 3 h1a1KH

a2 4.9399/KC τ/KC 66.3512
h2 0.0057KC η2KC/(τKH) 127.23 η2 3 h2a2KH

u1 2.4684/KT α1τ/KT 5.14 α1 0.4997 u1KT /b

v1 0.0019KT τ1KT /s1 11.22 τ1 0.5 v1u1KH

u2 13.6498/KT β1τ/KT 31.29
v2 0.0157KT τ2KT /s2 171.84 τ2 11 v2u2KL

b1 1.3386 β1KL/KH 175.46 β1 2.7632 b1a1KH/b

d1 1.9592 δ1τβ1 128.50 δ1 0.1435 d1/(b1a1KH)

m1 0.0037 µ1τβ1/KL 1.57 µ1 0.0139 m1KL/(b1a1KH)

b2 0.005KC β2KC/KH 104.72 β2 0.5263 b2a2KH/b

d2 0.0269 δ2τβ2 1.64 δ2 0.0103 d2/(b2a2KH)

m2 0.5207/KC µ2τβ2/KC 82.46 µ2 0.2003 m2KC/(b2a2KH)

r1 0.0103KT γ1ρτKT /s1 22.25 γ1 0.0687 r1u1KH/(r2u2KL)

r2 0.0558KT ρτKT /s2 170.33 ρ 7.8948 r2u2KL/b

d3 2.6982 δ3ρτ 134.63 δ3 0.0692 d3/(r2u2KL)

m3 0.0511/KT µ3ρτ/KT 1.02 µ3 0.0013 m3KT /(r2u2KL)

s1 260.8767 u1KHKT

s2 698.8768 u2KLKT

KH 105.6875 s1/(α1τ) KH 105.6875 b/m

KL 51.2005 s2/(τβ1) KL 51.2005 b/a1

KC 1 free KC 1 b/a2

KT 1 free KT 1 b1a1KH/u2

Dimensional
Initials

H0 52.0003 7.41
L0 9.7764 30.56
C0 0.9051KC 57.69
T0 0.2747KT 94.95
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and the corresponding the squared error:

E2(p, x0) =
31∑
i=0

[(
fH(ti, x0, p)−HT,i

H∗
T

)2

+

(
fL(ti, x0, p)− LT,i

L∗T

)2
]

for which ti1 = ti2 = ti = i, wi1 = 1/H∗
T , wi2 = 1/L∗T , i = 0, 1, 2, . . . , 31 and

x0 = (H0, L0, C0, T0), H∗
T = max{HT,i}, L∗T = max{LT,i}.

By the dimensional analysis theorem above we know for the HLCT model it has a degree-2 uncertainty
for the best fit. To determine those uncertain parameters and initial states we transform the dimensional
model Eq.(1) into a dimensionless model with a change of parameters and states. More specifically,
the transformation and the inverse transformation are given in Table 2. For example, the entries from
Scaled Parameters column are defined by the last Scaling column which defines transformation from the
dimensional parameters to the dimensionless ones, such as η1 = h1a1KH with KH = b/m. Similarly,
the third column defines the inverse transformation from the dimensionless parameters to the dimen-
sional ones in the first column, such as h1 = η1KL/(τKH) with KH = s1/(α1τ), KL = s2/(τβ1.
The dimensionless variables and dimensionless time are H̄ = H/KH , L̄ = L/KL, C̄ = C/KC , T̄ =

T/KT , t̄ = tτ . To simplify notations we drop the bars for the new variables and time and obtain the
following dimensionless model for Eq.(1):





dH

dt
= H

(
1−H − L

1 + η1H
− C

1 + η2H
− α1T

1 + τ1H + τ2L

)

dL

dt
= β1L

(
H

1 + η1H
− δ1 − µ1L− T

1 + τ1H + τ2L

)

dC

dt
= β2C

(
H

1 + η2H
− δ2 − µ2C

)

dT

dt
= ρT

(
γ1H + L

1 + τ1H + τ2L
− δ3 − µ3T

)

(4)

together with the fit functionals and the squared error

f̄H(t̄i, x̄0, q) =
H(t̄i, x̄0, q)T (t̄i, x̄0, q)

1 + τ1H(t̄i, x̄0, q) + τ2L(t̄i, x̄0, q)

f̄L(t̄i, x̄0, q) =
L(t̄i, x̄0, q)T (t̄i, x̄0, q)

1 + τ1H(t̄i, x̄0, q) + τ2L(t̄i, x̄0, q)

E2(q, x̄0, s, τ) =
31∑
i=0

[(
s1f̄H(tiτ, x̄0, q)−HT,i

H∗
T

)2

+

(
s2f̄L(tiτ, x̄0, q)− LT,i

L∗T

)2
]

x̄0 = (H0/KH , L0/KL, C0/KC , T0/KT ) , t̄i = tiτ.

Notice here that ti = i and t̄i = iτ retain their dimensional and dimensionless identities for being a
fixed sequence each rather than a variable.



13

A combined PDE search and line search for the dimensionless model yielded a provisional global
minimizer for the dimensionless parameters listed in the second last column of Table 2 from τ down to
s2. Translating it to the dimensional variables and state scalings we obtain the parameterized values in
the second column of Table 2. As predicted by the theorem, four parameters (m, a1, a2, u2) are scaled
away but two more, s1, s2, are created by the transformation as can be seen in the Scaled Parameter
column, which in turn creates two free, parameterizing, auxiliary parameters which we take them to
be KC , KT , the ‘carrying capacities’ for the coyotes and the trappers respectively. Notice that their
units remain to be free — they can be head-count, biomass, or for the case of KT , a pure index for the
trapping business from the perspective of Hudson’s Bay Company. For the provisional global minimizer
in the space of the dimensional parameters and initials, we see clearly from the second and the third
columns that some parameters are uniquely determined by the global minimization of the squared error
but some are not, namely the uncertain parameters and initial states. That is, different choices for the
parameterizing pair, KC , KT , will give rise to different values for those uncertain parameters but to the
same minimum error value E(p∗, x∗0) = 1.1677.

The minimizer in the parameters and initial states was found for the dimensionless model first, and
then translated for dimensional model. The dimensional minimizer was then checked and re-searched
independently by both methods for the dimensional model, only after which were the sensitivities
calculated and listed in the Best-Fit Sensitivity column.

Figs.1,2,3 highlight part of the numerical result. Fig.1 clearly shows the hare and lynx populations
left in the wild is right chiral and the respective catches by the trappers is left chiral. Fig.1(d) also
shows a typical gradient or line search in action. Fig.2 shows part of the result of the line search.
Twenty subinterval partitions are used for each of the line segment, (0, 2p0) and (0, 2x0), and as a result
the provisional minimizer sits at the center of each segment with ten searching points to each side.
Because the same proportionality is used for each interval length and the same window size is used for
all plots of the error function against the search intervals regardless the values of the components of
the minimizer, these plots give a graphical depiction to the dimensionless sensitivity and a graphical
comparison of the sensitivities among all parameters and initials. For example, between the recruitment
parameters r1, r2 of the hares and lynx, respectively, the best fit is less sensitive to hare pelt than to lynx
pelt because S(r1) < S(r2). This is represented by the top two graphs of Fig.2 for which the concavity
is more pronounced for the r2 parameter than to the r1 parameter. Similar comparisons can be done for
all parameters and initial states, and are captured by the sensitivity scores from Table 2. Notice also for
each of the plots the trajectory chiralities are plotted.

One general conclusion is that the best fit is more sensitive to all trapping parameters and initials in
the lynx than the hare. This may not be that surprising because it is consistent with the fact that the lynx
fur was economically more valuable than the hare fur to the trappers and the Hudson’s Bay Company.
However, what is surprising is the finding from the last plot of Fig.2 that the intra-competition parameter
m3 for the trappers can be set to zero with little effect on the best fit. That is, there was little interference
among the trappers. Although the sensitivities in parameters m1, d2 are comparable to that in m3, none
of the parameterized error function plots remains as flat as that with m3 all way to the parameter zero.
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That is, for the HLCT model, m3 is the only parameter that can be effectively dropped.
Fig.3 summarizes the result of comparing various provisional models. Among which are the VHL

model from [1], the HLC model without the trappers, the HLT model without the coyotes, and the
HLCT1 model with the Holling Type I predation form for the trappers. The last four models are simply
subsystems of the HLCT model Eq.(1) setting T0 = 0, C0 = 0, and v1 = v2 = 0, respectively. For the
first two models without the trappers, the pelt quantities are set to be proportional to the populations
as HT = s1H, LT = s2L, respectively, with si being the proportion parameters. As shown in the bar
plot of Fig.3, the two models without the trappers do not share the same chirality as the pelt data but
all models with the trappers do. Also notice that having more parameters or bigger systems does not
necessarily yield a smaller least error. A comparison of the least errors among the HLT and HLCT1
models against the HLC model demonstrates this point. Notice also from the figure that the best-fit
exercise by the gradient and line searches places the HT LT -trajectory in the middle of the pelt data
for the VHL, HLT, and HLCT1 models, but cannot at the same time make the trajectory oscillate left
chiral. For the VHL model without the trappers, it cannot because the error will only get greater when
its catch trajectory oscillation in the opposite direction of the pelt trajectory. (The VHL model can
generate chaotic oscillations as shown in [1, 37], but they are far away from the pelt oscillation and
in the wrong direction.) For the HLT and HLCT1 models, although each can generate the co-chiral
oscillations as the pelt but not at the right location in the HL-plane. The important conclusion is the
HLCT model becomes the benchmark model for the pelt data set.

4. Discussion. Model parameters for a physical system can be estimated by many ways. One of which
is by the best-fit process presented here. By this approach the parameter values are forced to give the
smallest error between the predicated and the observed data. For an ideal situation in which both the
theoretical model and the data are good representations of the process, the best-fitted parameter values
achieve some intrinsic status in the sense that they can be used elsewhere independent of the observed
data from which they are determined. For example, if our HLCT model and the data are both good
for the hare-lynx system, then we can use, say, lynx’s birth-to-consumption ratio b1 for the hare-lynx
interaction in all theoretical models with or without the trappers. However, upon a closer examination
of the value, b1 = 1.3386, we know it is a bad estimate. It cannot be right whichever ways you look at
it. If both populations are measured in the same unit of an element, say carbon, then b1 must be ≤ 1,
because of the conservation of mass transferred across trophic levels. If both are measured in their head
count which is the case, it just does not make sense that one hare kill can give birth to 1.3386 lynx. So
is the data or the model bad?

The answer is probably both. Our dimensional analysis implies the data is bad and points to a
possible solution. In fact, in terms of the dimensionless parameters, we have b1 = β1KL/KH from
Table 2. The value of b1 becomes smaller if the lynx-to-hare capacity ratio KL/KH becomes smaller.
Yet the ratio KL/KH = 51.2005/105.6875 ≈ 1:2 is too high. It is a rule of thumb that as the biomass
across trophic boundary from resources to consumers, the biomass difference is of several orders in
magnitude (e.g. [6]). In particular, the lynx to hare population in the wild should at least differ by
a magnitude of three orders (see Fig.5 of [28]). By the definitions of the capacity parameters we see
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that the ratio is directly proportional to the scaling parameter ratio s2/s1, which is directly related to
the magnitudes of the pelt data for the lynx and hares. Thus, the ‘bad’ fit can be the result of an
underestimate or an unreported or an unaccounted return in hare’s pelt. In fact, according to [40] hares
were trapped for their meat as well as for their fur and therefore it was highly probable that the hare
pelt brought in to the Hudson’s Bay Company was significantly fewer than the hares actually trapped.
Also, as pointed out in [34, 35] the hare data came from one of the fourteen regions from which the
lynx pelt were combined. Although the aggregation does not cause appreciable phase shift since those
regional data were synchronized in time ([1]), the aggregated data do flip the amplitude at least one
order of magnitude in lynx’s favor. If this indeed is the case, the ‘badly’ fitted parameter b1 can be fixed
to fall inside the plausible range b1 < 1 by simply increasing the s1 parameter (i.e. scaling up the hare
data) alone. There are other unreasonable fits (e.g. h1) which share the same problem and therefore can
be fixed by the same solution as well. In fact, by multiplying a scaling factor to the hare pelt {HT,i} we
will have exactly the same best fit by multiplying the same factor to the parameter s1 without changing
the sensitivities for the best fit nor any parameter values not related to s1. For example, Fig.1 will look
exactly the same except for the scale for the hare variable which is scaled accordingly by the same
factor. In other words we can drive the KL:KH ratio to any value by simply scaling the hare pelt data
without changing the essentials of the best fit.

The other equal culprit for the high b1 value lies in the model. It is known that the lynx is a generalist
preying on other animals beside the hares ([28]), but instead our model modeled it as a specialist. The
benchmarking process forced a best fit to the data by unduely crediting the hares for other prey’s
contribution to lynx’s good fortune. That is, the value b1 is expected to drop if alternative food sources
for the lynx are incorporated to the HLCT model. In conclusion it will take a combination of matching
up the hare and lynx pelt region-to-region as well as including alternative preys for the lynx to the
model to improve the estimate for parameter b1 and to improve the benchmark model as a result.

There were considerable interests in the question of whether or not the Canadian hare-lynx system
is chaotic. A three-dimensional time-delayed embedding ([33]) suggested the pelt time-series sit on
a strange attractor but a quantitative analysis on the Lyapunov exponents of the pelt series concluded
otherwise ([7]). Nonetheless, chaos was actively pursued for the conceptual VHL model in [1, 10, 37].
Our benchmark model supports the non-chaos conclusion of [7], but also suggests the possibility of
chaos at parameter values away from the best-fit minimizer as shown in Fig.4. The question of how
close is the pelt series to the onset of chaos can be the topic of another future exploration.

We deliberately left out discrete models (e.g. [34]) for benchmarking but instead considered exclu-
sively differential equation models. This is due to the fact almost all discrete models in ecology violate
the Time Invariance Principle ([5, 6]) without which a model cannot be independently validated by
experiments. Our result also supports the One-Life Rule postulation ([5, 6]) that every organism has a
finite life span which is guaranteed by models with carrying capacities for all their species. This in turn
is guaranteed by non-vanishing intraspecific competition parameters m,m1,m2 > 0. Curiously this
rule does not necessarily apply to the economical-ecological interaction between the trappers and their
habitat because our trapper equation does not model the birth and death of the trappers as a species but
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rather the rise and fall of their trapping business. Our result shows that interferences among trappers
can be absent (m3 = 0) and be insensitive to variations. Our result also supports another fundamental
theory in ecology — Holling’s theory of predation. Our best-fit shows that all the predation handling
times (hi, vj > 0) must be non-zero and be sensitive to changes. These results suggest that ecological
modeling must move beyond the Rosenzweig-MacArthur producer-consumer model ([31]) as well as
from the Lotka-Volterra model for competitive species.

The benchmarking method presented here did exactly what was intended — to force the best fit
to a data to expose new problems for further investigations. It produces ‘bad’ fits for good reasons,
a property of a good and useful method. All mathematical models are constructed to fail against the
test of time, but with this method the cycle of falsification can run faster. This method literally rolled
out answers by mathematical inference alone before we could even imagine to ask the right questions,
such as were the lynx furs more valuable? or was the hare pelt under represented? or was the lynx
a generalist? or did the trappers interfere each others business? We expect the method to be equally
effective for other problems (e.g. [36, 13, 4]) in ecology and in biology in general.

We have given a numerical demonstration for the phenomenon that the kill rates by a top predator
on a predator-prey chain must rotate in opposite direction against the populations of the predator and
prey. We believe this anti-chirality property can be proved mathematically for such three-trophic food
chains, which we will leave it open nonetheless. In conclusion, what Leigh found so ‘mysterious’
about the Canadian hare-lynx oscillation some forty plus years ago can be understood systematically
by benchmarking modern ecological-economical models we presented here.
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Appendix. Gradient Search for local minimum of the squared error E2(p, x0) in the parameters and
initial states space (p, x0)





∂(p, x0)

∂s
= −∇E2(p, x0) = −2

∑̀
j=1

kj∑
i=1

w2
ij[fj(tij, p, x0)− yij]D(p,x0)(fj(tij, p, x0))

(p(0), x0(0)) = (p0, x0,0)

Formally, we let




x(t, s) = x(t, x0(s), p(s))

x(0, s) = x0(s)

X(t, s) = D(p,x0)x(t, x0(s), p(s)) = (X1(t, s), X2(t, s))

X(0, s) = (0, I)

p(s) = p(s, x0,0, p0)

x0(s) = x0(s, x0,0, p0)

Then they satisfy the following system of PDEs




∂x(t, s)

∂t
= F (x(t, s), p(s))

∂X(t, s)

∂t
= [DxF (x(t, s), p(s))X1(t, s) + DpF (x(t, s), p(s)), DxF (x(t, s), p(s))X2(t, s)]

x(0, s) = x0(s), X(0, s) = (0, I)

∂p

∂s
= −∇pE

2(p, x0) = −2
∑̀
j=1

kj∑
i=1

w2
ij[fj(tij, p, x0)− yij]Dp(fj(tij, p, x0))

∂x0

∂s
= −∇x0E

2(p, x0) = −2
∑̀
j=1

kj∑
i=1

w2
ij[fj(tij, p, x0)− yij]Dx0(fj(tij, p, x0))

(p(0), x0(0)) = (p0, x0,0)

The reason we need the variational equations in X for x is because a further expansion of D(p,x0)fj

usually involves the variations of x in both the parameters and the initial states. One can show or verify
directly that for the standard linear regression, x(ti) = a ti + b ∼ yi with p = a, x0 = b, we have the
corresponding gradient search PDEs as follows:





∂x(t, s)

∂t
= a(s),

∂X(t, s)

∂t
= (1, 0)

x(0, s) = b(s), X(0, s) = (0, 1)

∂(a, b)(s)

∂s
= −2

k∑
i=1

[a(s)ti + b(s)− yi][ti, 1]

(a(0), b(0)) = (a0, b0)
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It is a linear system of differential equations and it can be easily shown the global minimum exists,
which can be solved explicitly as

a∗ =
k

∑
tiyi −

∑
ti

∑
yi

k
∑

t2i − (
∑

ti)2
, b∗ =

∑
t2i

∑
yi −

∑
ti

∑
tiyi

k
∑

t2i − (
∑

ti)2
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Figure 1: (a) The best fit of the HLCT model in HT , LT to the pelt data, together with the hare and lynx
populations, H, L, left in the wild (dashed curves). (b) Top panel: it shows the point-wise right chirality
of the hare-lynx population in the wild and the left chirality of the hare-lynx pelt. Bottom panel: the
period-power plots of the pelt data and the best fit approximation. It shows both match exactly at the
principle period mode around a 11-year cycle. (c) A hare-lynx phase plot, which shows a 5:1 peak
ratio between the wild population and the pelt for hares and a weak 2:1 peak ratio for the lynx, both
are unreasonably low as discussed in the text. (d) As part of the outcome of the PDE gradient search
method, it shows the trapped lynx LT as a function of the search variable s showing in 10 discrete steps
and the time t. It suggests that a local minimum of E(p, x0) was reached as the 7th, 8th, and 9th search
step yield essentially the same time profile.
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Figure 2: Part of the line search result for the parameters shown. As explained in the text when a
solution is found by the algorithm, the relative error function E(p, x0) against every parameter and
initial condition must have the best fit minimum at the center of the searching intervals.
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Figure 3: The best-fit results by the method of line search for three different models and a summary
bar plot showing the HLCT model has not only the smallest error against other provisional models but
also the correct left chirality.
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Figure 4: Bifurcation diagrams in (a) the local extrema of the trapper time-series T (t) and in (b) the
trajectory chiralities, respectively, v.s. ρ for the dimensionless system Eq.(4).
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