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ABSTRACT: We examined the relationship between acorn mass and
number in valley oaks (Quercus lobata) over 4 years in central coastal
California. Despite considerable variation in acorn size among both
trees and years, trees produced acorns of the same size relative to
other trees in different years. Across years, the relationship between
acorn mass and acorn crop size was generally positive, even after
controlling for environmental conditions and differences in individ-
ual tree size and quality. Life-history trade-offs in valley oaks are
primarily between current and future reproduction and indirectly
between concurrent growth and reproduction, not between seed size
and number, and are probably related to this species’ mast-seeding
behavior. Phenotypic trade-offs in long-lived plants such as oaks
exhibit complex patterns of life-history covariation and deserve
greater attention, both theoretically and empirically.

Keywords: acorns, life-history trade-offs, mast fruiting, oaks, seed
size, Quercus lobata, valley oak.

Introduction

A trade-off between offspring size and number has been
a foundation for much of the theoretical work on life-
history patterns for over 30 years (Smith and Fretwell 1974;
Wilbur 1977). There has been considerable empirical work
examining this relationship at the interspecific and inter-
population levels, leading to the conclusion that an inverse
relationship between size and number is widespread
among plants (Westoby et al. 1992; Greene and Johnson
1994; Jakobsson and Eriksson 2000; Leishman 2001; Abra-
hamson and Layne 2002; Parciak 2002) as well as other
taxa (Warne and Charnov 2008), at least after controlling
for potentially confounding effects of adult size (Aarssen
and Jordan 2001; Henery and Westoby 2001). Within pop-
ulations of plants, however, the growth form of species
studied has been limited—most studies have been con-
ducted on forbs, with a small number on shrubs or small

* Corresponding author; e-mail: wdk4@cornell.edu.
Am. Nat. 2009. Vol. 173, pp. 000-000. © 2009 by The University of Chicago.

0003-0147/2009/17305-50697$15.00. All rights reserved.
DOI: 10.1086/597605

trees—and results have been mixed. For example, inverse
relationships between seed size and seed number within
individual plants have been reported in Ipomopsis aggre-
gata (Wolf et al. 1986), Lupinus polyphyllus (Aniszewski et
al. 2001), and the shrub Banksia marginata (Vaughton and
Ramsey 1998). However, a comparative study of six species
of Asclepias yielded correlations between seed size and
number ranging from significantly negative to significantly
positive (Wilbur 1977), and work on Claytonia virginica
(Morgan 1998), Lupinus texensis (Schaal 1980), Desmo-
dium paniculatum (Wulff 1986), and the small tree Prunus
virginiana (Parciak 2002) yielded no consistent relation-
ship between seed size and number.

The interpretation of these results is complicated by at
least two well-recognized difficulties. First, correlation is
not causation, and even apparently strong life-history cor-
relations can be due to confounding variables rather than
trade-offs (Knops et al. 2007). Second, variation in re-
source availability can confound the relationship between
seed size and number: if resources vary greatly from year
to year or individuals vary in quality, underlying trade-
offs between seed size and number can be obscured by
variation in resources (van Noordwijk and de Jong 1986;
Pease and Bull 1988; Venable 1992). To the extent this is
occurring, there should be more of a trade-off (i.e., a stron-
ger negative correlation) in poor years and among low-
quality individuals for which resources are more likely to
be limiting than in good years and among high-quality
individuals, resulting in a positive correlation between re-
sources (or individual quality) and the correlation coef-
ficient between the life-history characters of interest.

Given these issues, studies controlling for resources, fo-
cusing on individual variation across years, and extending
the growth form of species that have been studied to date
are clearly desirable. Here we investigate the seed size/
number trade-off in a population of valley oaks (Quercus
lobata) in central coastal California. Apart from being by
far the largest and longest-lived species in which this re-
lationship has been studied to date—valley oaks can grow
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Table 1: Sample sizes, mean, and coefficient of variation (CV) of acorn mass among trees
and the mean acorn crop (acorns counted per tree in 30 s) in the 4 years of the study

Dry mass (individual tree means)

N N Mean * SD acorn crop
Year trees acorns Mean * SD (g) Mean CV (%) (acorns counted in 30 s)
2004 74 809 2.20 = 97 39.8 46.7 = 40.9
2005 28 136 1.07 £ 91 44.1 20 + 44
2006 43 333 1.75 = .82 38.3 11.4 = 229
2007 75 1,263 2.08 = .76 37.1 61.9 = 435

to be over 2.5 m in diameter and live over 500 years (Pavlik
et al. 1991)—they are well suited to such a study as a
consequence of their relatively large seed size and mast-
fruiting habits (Koenig et al. 19944), the latter ensuring
that seed numbers vary widely from year to year. As in
many other taxa, including other species of oaks (McComb
1934; Tripathi and Khan 1990; Westoby et al. 1992; Ken-
nedy et al. 2004), larger valley oak acorns accrue a clear
fitness advantage in terms of increased growth (R. D. Sage,
unpublished data), thus fulfilling one of Smith and Fret-
well’s (1974) “intuitively obvious” relationships linking
patterns of energy expenditure by parents and their off-
spring. Here we investigate the extent to which the second
of these relationships, that between energy expended per
offspring (i.e., size) and number of offspring, follows the
expected inverse relationship in this species.

Methods
Study Site and Data Collection

We studied acorn size variation in valley oaks at Hastings
Reservation in Monterey County, central coastal Califor-
nia, which were tagged in 1980 as part of a long-term
study of acorn production. A total of 88 trees were sam-
pled, ranging in size from 31 to 193 cm diameter at breast
height (DBH). Focal trees grew over a 900-ha area ranging
in elevation from 475 to 875 m. Over the course of the
study, three of the trees died, leaving a sample of 85. Not
all data were available for all trees, however, and sample
sizes for individual analyses are generally smaller. This was
particularly true for the poor acorn crop in 2005, when
many trees produced no or so few acorns that samples
could not be obtained.

Each year, we estimated acorn production by visual sur-
veys in which two observers, each counting for 15 s (30
s total), counted as many acorns as possible on each tree,
a method that provides a good index of relative acorn
production in this population (Koenig et al. 1994b).
Counts were then added and log transformed (log (x +
1)) to reduce the correlation between the mean and var-
iance (Sokal and Rohlf 1981). Counts were made for all
trees in the study for 28 years from 1980 to 2007, inclusive.

Acorn size was obtained in 2004-2007 from as many

individual trees as possible. In each year, acorns were col-
lected from the tree or, when the tree they came from was
unambiguous, directly under the tree. The latter was only
possible in very good acorn years when predation was
relatively low, ensuring that the acorns collected were a
reasonably random sample of those produced. Acorns were
dried, shelled to extract the endosperm from the husk, and
weighed to the nearest 0.01 g. Only acorns that were easily
extracted from their caps without damaging the husk were
used, and any that were noticeably insect damaged or ab-
normal were excluded. On average (+SD), we measured
11.6 = 7.6 (range 1-42) acorns from each tree x year
combination sampled (table 1).

Size of trees was measured by their DBH in September
2008. As indexes of individual tree quality, we used (1) the
mean acorn production of trees over the entire 28 years
that acorns were counted and (2) access to groundwater,
a key limiting factor in this habitat, estimated by xylem
water potential using the pressure chamber technique
(Waring and Cleary 1967) measured at predawn Septem-
ber 20—-October 5, 1991 (Knops and Koenig 1994). Sub-
sequent measurements confirmed that although xylem wa-
ter potential differs from year to year, predawn values for
individual trees are concordant across years (Knops and
Koenig 2000). Thus, values used provide a good index of
relative water availability, despite having been obtained
over a decade before the study. To capture an additional
life-history trait potentially involved in trade-offs with re-
production, each autumn at the time acorns were counted,
we measured radial growth of trees using dendrometers
(Cattelino et al. 1986) placed on the trees in 1992. Values
used were the radial growth during the year before acorns
were collected, relative to the mean annual growth for the
same tree for 1993-2007.

Statistics

Neither mean acorn mass nor mean log-transformed acorn
mass of individual trees was normally distributed (Sha-
piro-Wilks normality test using all tree x year means;
both P<.005). However, normality was achieved by
square-root transformation (Shapiro-Wilks normality test:
W = 0.99, P = .26), and consequently this transforma-



tion was used on mean acorn mass in all parametric anal-
yses. However, untransformed values were used for cal-
culating descriptive statistics in order to render results
easier to visualize and more directly comparable to the
acorn crop data.

Although the relationship between acorn mass and
acorn crop size can be estimated several ways, it only po-
tentially involves a phenotypic trade-off when measured
across years within individual trees. Thus, only this level
is analyzed here.

We performed two tests. First, we tested pairs of years
using Wilcoxon signed-ranks tests that compared the mean
mass of acorns produced in the year when a tree had a
larger acorn crop based on the acorn survey versus the
mean mass of acorns produced by the same tree during
the year it had a smaller acorn crop. With 4 years of data,
six pairs of years could be tested (although not all six pairs
of years were available for all trees). The overall relation-
ship was examined visually by plotting the difference be-
tween the acorn crops of individual trees in each pair of
years (calculated by subtracting the smaller crop from the
larger crop) versus the difference in the mean mass of
acorns collected from the tree in the same pair of years.
The relationship was tested statistically by conducting trials
in which we randomly chose one pair of years for each
tree and compared the number of cases in which acorn
size was larger in the year with the larger acorn crop (“pos-
itive” trees) with the number of cases in which acorns
were smaller in the year with the larger acorn crop (“neg-
ative” trees). Significance was based on the proportion of
1,000 trials in which the number of positive trees exceeded
the number of negative trees.

As a second test, we calculated the correlations between
mean square-root-transformed acorn size and the log-
transformed acorn crop size for the 53 individual trees for
which acorns were collected in at least 3 of the 4 years
and tested the significance of the resulting values using a
binomial test to determine whether the proportion of cor-
relations greater/less than zero was more or less than ex-
pected by chance. In order to control for variation in
resource availability and individual quality, we controlled
for total available resources as estimated by annual rainfall,
mean annual temperature, and annual net primary pro-
ductivity (NPP), calculated from annual rainfall and mean
annual temperature at Hastings Reservation headquarters
using the Miami model (Leith 1975). However, NPP in
this Mediterranean climate is closely correlated with an-
nual rainfall, and so only results for annual rainfall and
mean annual temperature are presented. Since acorns ma-
ture in September and October, calculations were made
from September 1 to August 31.

The relationship between individual tree size/quality
and its seed size/number was investigated using the rela-
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tionships between (1) the correlation coefficients between
mean acorn mass and acorn crop size for trees for which
we had at least 3 years of data and (2) three measures of
tree size/quality, including DBH, the mean long-term
acorn productivity of the tree, and access to groundwater
measured by predawn xylem water potential. If a trade-
off between mean acorn mass and acorn crop size exists,
a positive relationship in these analyses would indicate that
trade-offs were stronger (i.e., more negative) in years when
resources were more limiting.

Statistics were performed using SPSS (ver. 8.0) and R
(ver. 2.6.2). Values are means *+ SE, except where noted;
P < .05 is considered significant.

Results
Individual and Annual Variation in Seed Mass

Mean mass of acorns produced by individual trees ranged
from 0.11 to 4.65 g. Combining data from all trees, mean
acorn mass among years varied from 1.06 to 2.20 g, with
moderate coefficient of variation (CV) among trees within
years ranging from 37.1% to 44.1% (table 1). Using un-
transformed values, the CV among years of mean acorn
size was 28%, compared to 93% for the mean acorn crop.

Acorn mass varied significantly both among individuals
and across years (repeated-measures generalized linear
model using mean acorn mass for 18 individuals with data
for all 4 years, within-subjects effects [i.e., differences among
years] were F, |, = 14.9, P <.001, and between-subjects ef-
fects [i.e., differences among trees] were F , = 82.7, P<
.001). Despite this variation, there was high concordance
between the relative size of acorns produced by trees across
years, as indicated by positive correlations between the size
of acorns produced by individual trees considering each pair
of years separately (six correlations; mean r = 0.61; range
0.47-0.70; N = 18-72 trees; all six P < .01), and high con-
cordance of mean acorn mass among the 18 trees for which
we collected acorns in all 4 years (Kendall’s coefficient of
concordance = 0.73; x* = 50, df = 17, P<.001).

Using trees with at least 3 years of data, the mean cor-
relation between mean acorn size and radial growth was
—0.30 * 0.09 (N = 52). Thirty-nine (75%) of the cor-
relations were negative, significantly greater than expected
by chance (binomial test, P < .001).

Relationship between Acorn Mass and Crop Size

We first used Wilcoxon signed-ranks tests to compare, for
individual trees, the mean mass of acorns produced in a
year when the tree had a larger acorn crop versus the mean
mass produced by the same tree during a year in which
it had a smaller acorn crop. Of the six pairs of years, four
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were significant, all in the direction of acorns being larger
in years when trees produced larger crops (table 2). We
then examined this relationship by plotting, for all trees
and all pairs of years combined, the difference between
the acorn crops in the 2 years (subtracting the smaller crop
from the larger crop) versus the difference in the mean
mass of acorns collected from trees in the same pair of
years. The results (fig. 1) demonstrate a strong overall
positive relationship between the magnitude of the dif-
ference in size of the acorn crop and the size of acorns
produced by trees in different years.

Second, we calculated the correlations between mean
acorn mass and the acorn crops for the 53 trees sampled
in 3 (35) or 4 (18) years. The mean correlation was
0.51 £ 0.12; 41 (77%) of the correlations were positive
(binomial test, P < .001). In partial correlations controlling
for environmental conditions, the mean partial correlation
coefficient remained positive, although not significantly so
(mean annual temperature: r = 0.03 * 0.09, 26 of 53
trees positive, P = .9; annual rainfall: r = 0.12 *+ 0.09, 30
of 53 trees positive, P = 4).

The relationships between the three tree characteristics
considered (DBH, xylem water potential, and overall pro-
ductivity) and the correlations between seed size and
number were all nonsignificant (fig. 2). These results were
confirmed by a multiple regression of the correlation co-
efficients on the three independent variables, the results
of which indicated that neither the individual variables
nor the overall regression were significant (P values of the
independent variables all > .1; overall E, = 1.2, P =
.3). In all cases, the regression lines depicting the rela-
tionship for a given size or amount of resources were
positive over the observed range of trees (fig. 2). Thus, in
no case did the relationship correspond to that expected
if more limited resources result in stronger trade-offs be-
tween seed size and number or, for that matter, any trade-
off whatsoever.

Table 2: Pairwise comparisons of mean acorn mass and mean
acorn crop produced by individual trees tested using Wilcoxon
signed-ranks tests

N positive N negative

Years compared trees trees z P

2004 vs. 2005 26 1 45 <001
2004 vs. 2006 28 15 3.0 .003
2004 vs. 2007 32 41 -.8 440
2005 vs. 2006 13 5 1.6 .110
2005 vs. 2007 26 2 41 <.001
2006 vs. 2007 33 10 2.6 .008
All years combined 158 74 6.2 <001

Note: Positive trees produced larger acorns in the year in which they had
a larger acorn crop, while negative trees produced smaller acorns in the year
in which they had a larger acorn crop.

Acorn mass difference (gm)

-2 - . y=0.22x + 0.02
il T T T T
0 1 2 3 4 5

Acorn crop difference

Figure 1: All 158 comparisons of mean acorn mass for the same tree in
2 years plotted against the acorn crop difference for the tree in the same
2 years, the latter calculated such that the smaller value is always sub-
tracted from the larger value. Regression line (drawn) above zero over
the entire range of the X-axis indicates that trees produced larger acorns
in years when they had larger acorn crops, and the positive slope of the
regression indicates that the difference in acorn size became greater as
the difference in crop size between the 2 years increased. Regression line
is significant (P = .003, determined by randomization).

Discussion

Valley oak acorns vary considerably in size among both
individuals and years. Nonetheless, there is significant con-
cordance among trees in the relative size of their acorns
from one year to the next.

We tested for an inverse relationship between acorn size
and acorn number at the level of individual trees, where
phenotypic trade-offs are potentially taking place through
differential allocation of resources. Contrary to the trade-
offs hypothesis, trees produced larger acorns in years when
they produced larger acorn crops, with larger differentials
occurring in years when the difference between the crops
was larger. We found no evidence that this result was an
artifact of environmental conditions or differences in in-
dividual quality: correlations between acorn size and num-
ber remained positive controlling for rainfall or temper-
ature and across trees regardless of their size, access to
groundwater, or overall fecundity.

Given that valley oaks produce acorns that are neither
as large or numerous as is apparently physiologically pos-
sible, trade-offs involving these characters must exist at
some level (Stearns 1989). However, our analyses indicate
that neither resources nor individual quality is confound-
ing our failure to detect phenotypic trade-offs. More likely
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Figure 2: Relationships between acorn size/number and individual dif-
ferences among trees. Correlation coefficients between acorn size and
acorn crop size measured across years for the 53 trees sampled at least
3 years (Y-axis) plotted against the variable measuring individual size or
quality (X-axis). The three variables and statistics are (a) diameter at

breast height (DBH; r = —0.2, t;;, = —1.4, P = .16), (b) predawn xylem
water potential (r = 0.07, t;, = 0.5, P = .6), and (c) overall long-term
acorn productivity (r = —0.10, t;, = —0.7, P = .5). Solid lines are linear

regressions. Dotted lines, at y = 0, separate negative correlations, indi-
cating a potential trade-off between acorn size and acorn number, from
positive correlations. In b, the correlation excluding the single outlier is
r=005t, =04, P =7

is that, as only two among a series of reproductive traits
for which resources are being partitioned, acorn size and
number are not characters that are directly competing with
each other, or if they are, then the allocation choice be-
tween them comes late, leading to a situation in which
they may be positively correlated, even if resources are
being directly divided between them (de Jong 1993).

In terms of other traits among which resources may be
partitioned, one is growth. Among the trees with relatively
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complete data, there was a significant tendency for radial
growth to correlate negatively with acorn size, suggesting
a possible trade-off. However, a comparable inverse re-
lationship is observed between radial growth and the size
of the acorn crop that is due to confounding weather
factors rather than a direct phenotypic trade-off (Knops
et al. 2007). Whether the inverse relationship between ra-
dial growth and acorn size is the result of a similar con-
found remains to be determined.

A less ambiguous trait potentially involved in trade-offs
is future reproduction. Based on the 28 years of acorn
production data used in this study, the mean lag-one tem-
poral autocorrelation among the acorn crops of valley oaks
in our study is r = —0.28 = 0.02, with autocorrelations
for 78 (91%) of 86 trees being negative (binomial test,
P<.001). Given the lack of autocorrelation in relevant
weather factors in this study area (between 1980 and 2007
the lag-one autocorrelation in annual rainfall was r =
0.03 [P = .9], and that for mean maximum early spring
temperatures in March and April, the key time for flow-
ering and pollination in valley oaks, was r = 0.06 [P =
.8]), this suggests that the major trade-offs in resource
allocation made by this species are between current and
future reproduction, followed by a second possible divi-
sion, albeit indirectly, between growth and reproduction.

Thus, contrary to the trade-offs hypothesis, it does not
appear that the allocations of resources between acorn size
and number directly compete with each other, although
given that the study was focused on phenotypic correla-
tions, it is possible that the observed results may be due
to unmeasured environmental factors that are masking a
trade-off between the underlying genetic basis of these
traits. This caveat aside, our results suggest that factors
other than the resources available to individual trees or
present in different years determine the relationship be-
tween seed size and number. Controlled studies investi-
gating the genetic basis of seed size variation, such as can
be performed in more tractable systems (Paul-Victor et al.
2007), would be desirable, albeit logistically difficult in this
long-lived species.

Trees such as the oaks studied here presumably have
nutritional reserves on which they can draw and expend
only a small proportion of their net annual assimilation
on reproduction (Harper et al. 1970; Boucher and Nash
1990; Callaway and Nadkarni 1991). They thus qualify as
“capital breeders,” storing energy that can be mobilized
for reproduction in future years, a situation creating a
mechanical linkage between current and future reproduc-
tion (Stearns 1989). As such, it is, at least in retrospect,
not surprising that a primary life-history trade-off in the
system appears to be between current and future repro-
duction. In contrast, within years, trees are apparently ca-
pable of investing simultaneously in both larger seeds and
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larger acorn crops with no resource switching. To the ex-
tent that the strongly negative lag-one autocorrelation be-
tween acorn crops is a key feature of masting behavior
(Koenig et al. 19944, 2003; Kelly and Sork 2002), these
patterns also suggest a link to the highly variable annual
seed production defining this evolutionarily interesting
and ecologically important phenomenon.

Our results do not indicate the existence of a significant
relationship between acorn size and tree age, at least to
the extent that the latter is correlated with DBH. However,
valley oaks are long lived, and the oldest trees in our pop-
ulation are estimated to be on the order of 500 years old.
It is thus not possible to conclusively reject the possibility
that a trade-off between seed size and lifetime reproductive
output exists, as was found in an interspecific comparison
performed by Moles et al. (2004), or that seed predation
selects for smaller seeds and thus counters the presumed
advantages of larger acorns, as found in Quercus ilex by
Gomez (2004).

Despite the challenges they present, studies of life-his-
tory variation in long-lived species such as oaks deserve
greater attention, both theoretically and empirically. As
demonstrated here, such species may exhibit complex and
surprising patterns of life-history covariation quite differ-
ent from those observed in many of the shorter-lived spe-
cies that have been more thoroughly studied to date.

Acknowledgments

We thank R. Drobek, J. McEntee, E. Moran, D. Morin, B.
Piculell, J. Stahl, and A. Tucillo for shelling and weighing
acorns and R. Karban, P. Klinkhamer, R. Wesselingh, and
an anonymous reviewer for their comments. Support was
provided by the University of California’s Hastings Res-
ervation and Integrated Hardwoods Range Management
Program and by the National Science Foundation.

Literature Cited

Aarssen, L. W,, and C. Y. Jordan. 2001. Between-species patterns of
covariation in plant size, seed size and fecundity in monocarpic
herbs. Ecoscience 8:471-477.

Abrahamson, W. G., and J. N. Layne. 2002. Relation of ramet size
to acorn production in five oak species of xeric upland habitats
in south-central Florida. American Journal of Botany 89:124-131.

Aniszewski, T., M. H. Kupari, and A. J. Leinonen. 2001. Seed number,
seed size and seed diversity in Washington lupin (Lupinus poly-
phyllus Lindl.). Annals of Botany 87:77-82.

Boucher, V. L., and T. H. Nash IIL. 1990. The role of the fruticose
lichen Ramalina menziesii in the annual turnover of biomass and
macronutrients in a blue oak woodland. Botanical Gazette 151:
114-118.

Callaway, R. M., and N. M. Nadkarni. 1991. Seasonal patterns of
nutrient deposition in a Quercus douglasii woodland in central
California. Plant and Soil 137:209-222.

Cattelino, P. J., C. A. Becker, and L. G. Fuller. 1986. Construction

and installation of homemade dendrometer bands. Northern Jour-
nal of Applied Forestry 3:73-75.

de Jong, G. 1993. Covariances between traits deriving from successive
allocations of a resource. Functional Ecology 7:75-83.

Gomez, J. M. 2004. Bigger is not always better: conflicting selective
pressures on seed size in Quercus ilex. Evolution 58:71-80.

Greene, D. E, and E. A. Johnson. 1994. Estimating the mean annual
seed production of trees. Ecology 75:642-647.

Harper, J. L., P. H. Lovell, and K. G. Moore. 1970. The shapes and
sizes of seeds. Annual Review of Ecology and Systematics 1:327—
353.

Henery, M. L., and M. Westoby. 2001. Seed mass and seed nutrient
content as predictors of seed output variation between species.
Oikos 92:479-490.

Jakobsson, A., and O. Eriksson. 2000. A comparative study of seed
number, seed size, seedling size and recruitment in grassland
plants. Oikos 88:494-502.

Kelly, D., and V. L. Sork. 2002. Mast seeding in perennial plants:
why, how, where? Annual Review of Ecology and Systematics 33:
427-447.

Kennedy, P. G., N. J. Hausmann, E. H. Wenk, and T. E. Dawson.
2004. The importance of seed reserves for seedling performance:
an integrated approach using morphological, physiological, and
stable isotope techniques. Oecologia (Berlin) 141:547-554.

Knops, J. M. H., and W. D. Koenig. 1994. Water use strategies of
five sympatric oaks in central coastal California. Madrofio 40:290—
301.

.2000. Annual variation in xylem water potential in California
oaks. Madrofio 47:106-108.

Knops, J. M. H., W. D. Koenig, and W. J. Carmen. 2007. A negative
correlation does not imply a trade-off between growth and re-
production in California oaks. Proceedings of the National Acad-
emy of Sciences of the USA 104:16982—-16985.

Koenig, W. D., R. L. Mumme, W. J. Carmen, and M. T. Stanback.
1994a. Acorn production by oaks in central coastal California:
variation within and among years. Ecology 75:99-109.

Koenig, W. D., J. M. H. Knops, W. J. Carmen, M. T. Stanback, and
R. L. Mumme. 1994b. Estimating acorn crops using visual surveys.
Canadian Journal of Forest Research 24:2105-2112.

Koenig, W. D., D. Kelly, V. L. Sork, R. P. Duncan, J. S. Elkinton, M.
S. Peltonen, and R. D. Westfall. 2003. Dissecting components of
population-level variation in seed production and the evolution
of masting behavior. Oikos 102:581-591.

Leishman, M. R. 2001. Does the seed size/number trade-off model
determine plant community structure? an assessment of the model
mechanisms and their generality. Oikos 93:294-302.

Leith, H. 1975. Modeling the primary productivity of the world. Pages
237-263 in H. Leith and R. H. Whittaker, eds. Primary productivity
of the biosphere. Springer, New York.

McComb, A. L. 1934. The relation between acorn weight and the
development of one year chestnut oak seedlings. Journal of For-
estry 32:479-484.

Moles, A. T, D. S. Falster, M. R. Leishman, and M. Westoby. 2004.
Small-seeded species produce more seeds per square metre of can-
opy per year, but not per individual per lifetime. Journal of Ecology
92:384-396.

Morgan, M. T. 1998. Female fertility per flower and trade-offs be-
tween size and number in Claytonia virginica (Portulacaceae).
American Journal of Botany 85:1231-1236.



Parciak, W. 2002. Environmental variation in seed number, size, and
dispersal of a fleshy-fruited plant. Ecology 83:780-793.

Paul-Victor, C., L. Turnbull, and B. Schmid. 2007. Genetic basis of the
seed size/seed number trade-off in Arabidopsis thaliana. Paper pre-
sented at the Ecological Society of America/Society for Ecological
Restoration International joint meeting, August 5-10, San Jose, CA.
http://eco.confex.com/eco/2007/techprogram/P3900.HTM.

Pavlik, B. M., P. C. Muick, S. Johnson, and M. Popper. 1991. Oaks
of California. Cachuma, Los Olivos, CA.

Pease, C. M., and J. J. Bull. 1988. A critique of methods for measuring
life history trade-offs. Journal of Evolutionary Biology 1:293-303.

Schaal, B. A. 1980. Reproductive capacity and seed size in Lupinus
texensis. American Journal of Botany 67:703-709.

Smith, C. C., and S. D. Fretwell. 1974. The optimal balance between
size and number of offspring. American Naturalist 108:499-506.

Sokal, R. R., and E J. Rohlf. 1981. Biometry. W. H. Freeman, San
Francisco.

Stearns, S. C. 1989. Trade-offs in life-history evolution. Functional
Ecology 3:259-268.

Tripathi, R. S., and M. L. Khan. 1990. Effects of seed weight and
microsite characteristics on germination and seedling fitness in
two species of Quercus in a subtropical wet hill forest. Oikos 57:
289-296.

van Noordwijk, A. J., and G. de Jong. 1986. Acquisition and allocation

Seed Size and Number in the Valley Oak 000

of resources: their influence on variation in life history tactics.
American Naturalist 128:137-142.

Vaughton, G., and M. Ramsey. 1998. Sources and consequences of
seed mass variation in Banksia marginata (Proteaceae). Journal of
Ecology 86:563—573.

Venable, D. L. 1992. Size-number trade-offs and the variation of seed
size with plant resource status. American Naturalist 140:287-304.

Waring, R. H,, and B. D. Cleary. 1967. Plant moisture stress: eval-
uation by pressure bomb. Science 155:1248-1254.

Warne, R. W., and E. L. Charnov. 2008. Reproductive allometry and
the size-number trade-off for lizards. American Naturalist 172:
E80-E98.

Westoby, M., E. Jurado, and M. R. Leishman. 1992. Comparative
evolutionary ecology of seed size. Trends in Ecology & Evolution
7:368-372.

Wilbur, H. M. 1977. Propagule size, number, and dispersion pattern
in Ambystoma and Asclepias. American Naturalist 111:43-68.

Wolf, L. L., E. R. Hainsworth, T. Mercier, and R. Benjamin. 1986.
Seed size variation and pollinator uncertainty in Ipomopsis aggre-
gata (Polemoniaceae). Journal of Ecology 74:361-371.

Wulff, R. D. 1986. Seed size variation in Desmodium paniculatum. 1.
Factors affecting seed size. Journal of Ecology 74:87-97.

Natural History Editor: Henry M. Wilbur

Left, a valley oak at the edge of Antelope Valley near the southern edge of its range. Right, valley oak acorns. In a good crop year, a single tree can
produce upwards of 50,000 acorns. Acorns in such good years are larger, not smaller, than acorns produced in poor acorn years. Photographs by

Walt Koenig.
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