4-2017

A Web Based Real Time Nitrogen Leaching Calculator

Saeideh Samani
University of Nebraska-Lincoln

Babak Samani
University of Nebraska-Lincoln

Haishun Yang
University of Nebraska - Lincoln

Follow this and additional works at: http://digitalcommons.unl.edu/agronhortdiss

Part of the Agriculture Commons, Agronomy and Crop Sciences Commons, and the Environmental Indicators and Impact Assessment Commons

http://digitalcommons.unl.edu/agronhortdiss/123

This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research in Agronomy and Horticulture by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
A Web Based Real Time Nitrogen Leaching Calculator
Saeideh Samani, Babak Samani, Haishun Yang
Departments of Agronomy & Horticulture and Computer Science & Engineering, University of Nebraska-Lincoln

Abstract
While nitrogen (N) is an essential nutrient for corn, its leaching to ground water is a serious environmental issue and a hazard to public health. N leaching is closely linked to weather factors, especially rainfall. Prediction of N leaching in cropping systems is critical to improvement of crop management and reduction of N leaching. The objective of this project is to develop a web app that predicts in real-time mode N leaching across Nebraska using real-time weather data.

Data layers: Cropland Boundaries and Soil Data
Cropland boundaries as a raster image are converted to the Geojson format (upper and right figures).

N Leaching Visualization
The web app will map weekly assessment of current N leaching across Nebraska.

The web app
The core of the Maize-N model will be used as the engine for simulation of N leaching. Key inputs to the model include: daily weather data, major soil properties and crop information. The model simulates, on daily basis, dynamics of soil organic matter mineralization, crop N uptake, soil N balance, soil water balance, and N leaching beyond crop rooting depth.

Cropland Data Layer
HPRCC weather network
Nitrogen Leaching Web app

SSURGO soil database
Maize-N model
Google Map API

Remarks
If desired, field specific assessment can be made. The user needs to specify a field on Google map and provides key information of the field.

We are in the processing of developing the web app and expect a prototype to be running in 2017 cropping season. Field research will be carried out to test and validate the app predictions. Once completed, the app can help farmers understand better the fate of soil N, improve fertilizer management, and reduce N leaching losses.

Reference

Acknowledgement
Funding of this project is provided by the Nebraska Corn Board and UNL Institute of Agriculture and Natural Resources (IANR).