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Two major forms of Silica include the crystalline form named Quartz which 

consist of the sand grains in nature, and amorphous form named Silica Glass 

or Fused Silica which is commonly known as glass. Fused Silica is an 

amorphous crystal that can show plastic behavior at micro-scale despite its 

brittle behavior in large scales. Due to the amorphous and ductile nature of 

Fused Silica, this behavior may not be explained well using the traditional 

dislocation-based mechanism of plasticity for crystalline solids. The crystal 

plasticity happens due to shear stress and stored energy in the material as 

dislocations which does not change the volume. In amorphous Fused Silica 

however, the permanent deformation is mainly caused by densification of 

the material under localized loading in addition to plastic flow caused by 

shear stress. This behavior is particularly true in the case of nanoindentation 

testing. Due to this densifying behavior, modeling the material using 

constitutive models such as Drucker-Prager/Cap can be quite helpful to 

further expand the model parameters to be used for geomaterials. 



 

 

Nanoindentation tests were performed on Fused Silica and Quartz samples 

and Finite Element Method (FEM) was used to further investigate the effect 

of different constitutive model parameters on material behavior. It was 

observed that, by implementing volumetric hardening in constitutive models, 

the FEM results were in better agreement with experimental results in case 

of both Fused Silica and sand grains. In the second part of the study 

Artificial Neural Network (ANN) models were used to predict 

nanoindentation test results for different material parameters as well as 

indenter shape and geometry.  ANN models were trained using FEM results 

and experimental test results and verified using the reminder of the data. 

Trained models were then used to study of different scenarios that were not 

analyzed using FEM or experiments.  

KEYWORDS: ANN; FEM; Nanoindentation; Silica; Nonlinear Behavior 
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CHAPTER 1 

INTRODUCTION 

1.1 Problem statement 

Behavior of material at different scales can sometimes be complex due to their nature and 

different methods of loads applied to the material. Although Fused Silica glass behaves as 

a brittle material under conventional flexural and uniaxial loading, it can behave 

differently under loading conditions that can prevent tensile stress such as 

nanoindentation tests. Unlike having the same atoms as crystalline Quartz which shapes 

sand grains, Fused Silica has amorphous molecular structure and this structure can result 

in lower Elastic modulus as well as compressibility to up to 20% under compression 

loadings. This behavior can also be seen in granular material such as powders or 

geomaterials. Soils also do not bear tensile stress but can show higher strengths when 

tensile stress is absent and densification behavior of soil is also observed under 

compressional loading. Different constitutive models have been used to describe this 

behavior of Fused Silica and some of these constitutive models have also been used in 

modeling soil behavior. Understanding the effect of different model parameters on 

behavior of material in micro as well as macro scale can help develop models that better 

capture the complex behavior of target material. This study aims to use Fused Silica as a 

basis of the investigation and further its application to Quartz and use the results to study 

the behavior of sand in macro-scale. To study various cases and understand the effect of 

different parameters, extensive parametric studies are needed which can be time 

consuming and computationally expensive. Thus, an Artificial Neural Network (ANN) 
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model was developed to learn from available data and predict material behavior in cases 

that have not been numerically simulated or experimentally studied. Using ANN for 

predicting nonlinear material behavior proved to be time efficient and accurate if the 

ANN model is properly structured and trained. One of the other advantages of ANN over 

other inverse analysis tools is that there is no need for prior determination of any equation 

for curve fitting of the material behavior. Using the combination of nanoindentation tests, 

finite element simulation and artificial neural network models can provide a robust 

system of analyzing material behavior that can also be used in viscoplastic and other 

categories of material behavior. 

1.2 Research objectives and scope 

This study aims to investigate the effect of different constitutive model parameters on 

micro-scale behavior of elastic plastic material especially Fused Silica and sand grains 

which have the same atomic combination. Performing nanoindentation tests on these 

materials provides a starting point of observing different behavior in micro scale 

compared to macro scale especially for Fused Silica. Additionally, finite element 

simulations of these material can provide a better understanding of how the material can 

be modeled using constitutive models and how different parameters of the constitutive 

modes can affect the results. Using Artificial Neural Network in addition to the studies 

mentioned before helps to investigate various properties that would be time consuming 

and inefficient if modeled with conventional methods. Therefore, a combination of these 

three methods shows to be promising in the area of mechanical behavior of material and 

will shed some light on the complications that can arise from different material behavior 

from micro to macro scale. 
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1.3 Organization of thesis 

The present thesis consists of five chapters. After the introduction of the subject and the 

scope of the study in Chapter One, in Chapter Two previous work of researchers in areas 

related to the subject are presented. Since the proposed method consists of three main 

scientific methods, some of the reviewed material consists of only one or two of the 

methods and some a combination of these methods, and therefore of these sources are 

introduced. In Chapter Three the methodology of the research is introduced in three main 

parts: nanoindentation tests and their usage as well the theory behind the tests and sample 

preparation methods, FEM model and its convergence study and verificatiob using other 

literature, ANN model development, verification and convergence studies as well as 

training and usage. Chapter Four consist of the results of the proposed methods in 

combination together. In Chapter Five the concluding remarks are made and some 

recommendations for future work in this area are presented. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Nanoindentation Experiments 

Material can behave differently at different scales due to their nature and construct as 

well as the types of applied loads. Granular materials like sand behave differently and 

like different forms of matter. They can behave like solids with a large amount of void 

space in them and can support load, but unlike solids they cannot bear tensile stress. Like 

liquids they can flow and take the shape of their container but unlike liquids they have 

shear strength. They consist of discrete elements like gases however unlike gases they are 

not significantly compressible. This complex behavior can be studied and understood 

better using micro-scale (continuum in case a single grain of sand) to macro-scale 

(discrete in case of the granular material) mechanical investigations. The behavior of 

granular material at macro-scale is directly influenced by the mechanical properties of the 

elements constructing them at micro-scale such as the Young’s modulus, fracture 

toughness, surface roughness, hardness, and load-deformation behavior of individual 

grains. The same scaling and analogy can also be used at a different level for amorphous 

material like Fused Silica, as the atomistic characteristics of the molecular and non-

crystalline structure is the source of the micro-scale behavior of this material. For 

instance, as the atoms are dislocated and localized densification occurs under uniaxial 

microscale loading, plastic deformation at this scale happens but at a larger scale the 

insufficient tensile forces between atoms results in crack growth and as a result brittle 

behavior of this material at macro-scale. The shear failure due to developed slip surface is 
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a common factor of failure in granular material in continuum level. It is interesting to see 

that the same mechanism can cause the failure of amorphous material in micro-scale. 

Instrumented indentation of material namely nanoindentation has been used widely in the 

past three decades to investigate different material behavior such as elastoplastic or 

viscoelastic at micro and nano scale. The scale of loads and displacement in these tests 

are in the order of microNewton and nanometer or micrometer. The scale of the analyzed 

material using nanoindentation method is correlated mainly to the indentation depth. This 

is not the only quantity that depends on the indentation depth: Since the contact area in 

nanoindentation is too small to directly measure, it is calculated using correlations with 

the indentation depth. Oliver and Pharr (1992) proposed a method to use nanoindentation 

load-displacement response to calculate Young’s modulus of the material. They used the 

Berkovich indenter to characterize different material such as fused silica, aluminum, 

quartz, etc. by calculating their Young’s modulus and hardness using their proposed 

method. In recent years many scientists have used nanoindentation tests to study the size 

effect on plastic deformation of material in continuum level. Al-Rub and Voyiadjis 

(2004) proposed an analytical method to show that continuum plastic behavior can be 

derived from micro-scale measurable parameter and showed that length scale parameters 

can be identified using this method. Dutta and Penumadu (2007) measured the elastic 

modulus and hardness of sand grains using nanoindentation. Daphalapurkar et al. (2011) 

used nanoindentation to identify Young’s modulus, hardness, and fracture toughness of 

individual sand grains and used inverse problem solving methods as well as statistical 

data analysis to assess the overall mechanical properties of sand grains to be used in 

mesoscale studies. Wang et al. (2011) also used the same approach in addition to X-Ray 
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Diffraction (XRD) technique to study mechanical and crystal properties of sand grains by 

means of nanoindentation.  

A handful of studies have also been performed to investigate the densification of fused 

silica under nanoindentation loading. Xin and Lambropoulos (2000) and Kermouche et 

al. (2008) used the results of nanoindentation tests on fused silica in combination with FE 

analysis to derive a new constitutive model for capturing indentation-induced 

densification of this material. Bruns et al. (2017) used the same approach and introduced 

another constitutive model for plastic deformation and densification as well as 

indentation cracking of fused silica. Additionally, Torres-Torres et al. (2010) studied the 

effect of indenter tip geometry, shape and bluntness on nanoindentation results and 

determined the yield stress of fused silica in von Mises stress space. 

2.2 Constitutive Models 

Considering the densification behavior of Fused Silica, researchers have tried to use 

different constitutive models to describe the plastic flow in this material. Marsh (1964) 

started with showing the evidence of plastic flow in Fused Silica using the results of 

various indentation hardness and scratch tests with low-amplitude loads. Even though the 

effect of compaction of different glass material were addressed and confirmed that there 

are different amounts of compaction for different glass material, the effect was thought to 

be negligible thus only volume-conservative plastic flow was assumed to play the role in 

plastic deformation of Fused Silica.  

As mentioned before, the development of shear slip surface in amorphous material can 

have the same mechanism in granular material, which is the subject of the studies by 
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many researchers. Li et al. (2015) studied the failure of amorphous granular pillars under 

compressional loading and Bouil et al. (2014) observed the plastic flow and shear failure 

in soft glassy material. Maloney et al. (2006) also observed developed shear failure 

planes in molecular simulations of amorphous systems. 

Lambropoulos et al. (1996) took into account the effect of densification and introduced a 

new constitutive model assuming that the incremental plastic strain consists of both 

densification (caused by volumetric strain) and shear flow. Even though the amorphous 

nature of Fused Silica implies that it is isotropic and the yield behavior will be governed 

by three stress invariants, Lambropoulos et al. (1996) assumed that the yield condition 

depends on only first two stress invariants. They also assumed that the yield function has 

linear dependency on hydrostatic pressure and shear stress, resulting in: 

𝑓(𝜎𝑖𝑗) = −𝑝 + 𝜁𝑞 − 𝜎0 ≡ 0     (2-1) 

in which 𝑝 is hydrostatic pressure, 𝑞 is equivalent shear stress (𝑞 = √𝑠𝑖𝑗𝑠𝑖𝑗/2), 𝜎0 is yield 

stress, and 𝜁 is an arbitrary positive material constant giving the contribution of shear in 

triggering and retaining densification. 

Later on, Xin and Lambropoulos (2000) proposed another yield criteria for behavior of 

Fused Silica considered the contribution of shear and hydrostatic pressure in yielding as a 

variable:  

𝑓(𝜎𝑖𝑗) = −𝛼𝑝 + (1 − 𝛼)𝑞 − 𝑌 ≡ 0    (2-2) 

in which 0 ≤ 𝛼 ≤ 1 is a constant determining the contribution of shear and hydrostatic 

pressure in yielding, and Y is the yield stress which is different than 𝜎𝑦 under uniaxial 
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tension or compression. As it can be seen in Eq. 2, if 𝛼 = 0, the equation turns into shear 

flow theory, and if 𝛼 = 1, the yielding is done under pure hydrostatic condition. By fitting 

the experimental indentation curves to the results of numerical modeling, Xin and 

Lambropoulos found the values of the above parameters to be 𝛼 = 0.6 and 𝑌 = 9.4 GPa.  

These simple criteria were further developed and modified by other researchers. The 

reasons for these further developments are first, linearity of these equations with the 

associate flow rule hypothesis does not take into account the dependence of direction of 

plastic strain rate on either hydrostatic pressure or shear stress; and second, the 

densification-induced hardening behavior which has been observed by Perriot et al. 

(2006) for Fused Silica needs to be considered in the constitutive model. Perriot et al. 

(2006) used Raman microspectroscopy to characterize the plastic behavior of amorphous 

silica. They used the results of Diamond Anvil Cell experiments to show the 

densification-induced hardening of Fused Silica. Using the test results, they illustrated the 

densified area mapping showing that the material can be densified to up to 20% gradually 

as the load increases. In the case of confined boundary conditions, while the volume-

conserving deformation occurs under shear flow, densification-induced hardening is 

caused by hydrostatic pressure and it is the most dominant cause of plastic deformation. 

On the other hand, if the material is not confined, it has been observed that the shear 

deformation is the major cause of plastic behavior compared to densification. In case of 

nanoindentation tests, the densification is caused indirectly under the indenter tip. 

Kermouche et al. (2008) proposed that, since the plastic behavior of Fused Silica has a 

strong dependency on hydrostatic pressure, the behavior has a lot of similarities to 
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geomaterial or powders. However, it was assumed that there is no frictional behavior in 

Fused Silica thus maintaining the associate plasticity. Furthermore, the effect of negative 

pressure was neglected. Due to the lack of experimental data, Kermouche et al. (2008) did 

not consider shear hardening for their constitutive model and assumed only densification-

induced hardening for their model. Therefore, a criterion consisting of a simple von Mises 

criterion for negative hydrostatic pressure and an ellipse criterion for positive hydrostatic 

pressure was introduced as:  

𝑓(𝜎𝑖𝑗) = {
(

𝑞

𝑞𝑐
)

2

+ (
𝑝

𝑝𝑐
)

2

− 1                   𝑝 > 0

𝑞 − 𝑞𝑐                                        𝑝 < 0
   (2-3) 

where 𝑝𝑐 is hydrostatic plastic limit in pure hydrostatic state, and 𝑞𝑐 is shear limit in pure 

deviatoric state. As discussed before, now the direction of plastic strain rate depends on 

hydrostatic pressure: 

𝜀𝑖̇𝑗
𝑝 = 𝜆̇ (3𝑠𝑖𝑗 −

2𝑞𝑐
2

3𝑝𝑐
2 𝑝𝛿𝑖𝑗)    (2-4) 

It can be seen that the plastic densification only occurs in pure hydrostatic state. Due to the 

lack of experimental data, Kermouche et al. (2008) did not consider shear hardening for 

their constitutive model and assumed only densification-induced hardening for their model. 

The densification-induced hardening was assumed to have a linear relationship with the 

hydrostatic pressure, in which the increase in volumetric strain causes a linear increase in 

hydrostatic plastic limit  𝑝𝑐: 

𝑝𝑐 = 𝜉𝜀𝑚
𝑝 + 𝑝𝑐0     (2-5) 
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Kermouche et al. (2008) calibrated the values for the parameters introduced in the model 

by fitting the numerical analysis results to the experimental data: 𝐸 = 72 𝐺𝑃𝑎, 𝜈 = 0.18,

𝑝𝑐0 = 11.5 𝐺𝑃𝑎, 𝜉 = 100 𝐺𝑃𝑎, and 𝑞𝑐 = 6.5 𝐺𝑃𝑎. 

 Another effect of hydrostatic pressure on material properties of Fused Silica was changing 

of Young’s Modulus and Poisson’s ratio which was studied by Keryvin et al. (2014). They 

also observed the saturation of densification in high pressure. In recent studies, Bruns et al. 

(2017) and Kermouche et al. (2008) used a modified Drucker-Prager Cap model to capture 

both elastic-plastic response and densification under indentation loading. They used 

ABAQUS FEM analysis as well as nanoindentation experimental results to find the model 

parameters that are suitable for Fused Silica. They also captured the crack growth inside 

the material using cohesive zone and concluded that densification under the indenter tip 

causes slower crack growth and propagation. The suggested elliptical yield surface 

equation by Bruns et al. is: 

𝑞 = √𝑑2 [1 − (
𝑝

𝑝𝑐
)

2

]     (3-6) 

where 𝑑 is the yield strength under pure shear and the rest of the parameters have been 

described before in this text. The densification-induced hardening is also implemented 

using Eq. 5 for only 1% volumetric strain. The values of the parameters that result in the 

best fit of numerical and experimental results are 𝑑 = 7.5 𝐺𝑃𝑎, 𝑝𝑐 = 11.5 𝐺𝑃𝑎, 𝑝𝑐(1%) =

12.5 𝐺𝑃𝑎, and von Mises yield strength is 7.5 GPa. 
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2.3 Artificial Neural Network (ANN) Models 

2.3.1 ANN for Nonlinear Constitutive Models 

Constitutive models that can accurately describe and predict complex nonlinear material 

behavior at different length scales usually have many parameters that needs to be 

calibrated using experimental data. Classical constitutive models can utilize a small range 

of variables due to complexity that adding more coefficients causes. To expand their 

usage, adding even a single parameter or coefficient to an older constitutive model 

requires extensive amount of experiments and numerical simulations to achieve a high 

accuracy. Considering the cost and time for re-calibrating and verifying a newly 

introduced constitutive model, it is usually more efficient to use less parameters and 

sacrifice partial accuracy to achieve acceptable results. This is where the efficiency of 

Artificial Neural Network (ANN) modeling is most evident. ANN models can provide 

better accuracy and expand the usage of traditional constitutive models to better predict 

complex material behavior. This is achieved by simply adding more neurons to the model 

and adjusting their weights in contribution to the output to achieve higher accuracy. This 

method is inspired by how nature adapts itself to different conditions. ANN models are 

trained using experimental results as well as verified and known to be accurate numerical 

simulation results. Once the accuracy of a well-trained model is ensured, it can be used to 

predict material behavior under different loading conditions that were not studied using 

experiments or numerical simulations.  

ANN models that are accurately trained can also be used in a variety of inverse analysis 

problems to extract material properties using experimental results. This can be achieved 

by properly constructing the model to have variables that are suitable for inverse analysis 
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and by proper relations between input and outputs of the model. This is significant 

because studying an unknown material using nanoscale testing methods such as 

nanoindentation can sometimes be influenced by external factors such as noise in the data 

originating from vibrations in the environment. In the case of nanoindentation tests, only 

a limited number of material properties, i.e. Young’s modulus and hardness, can be 

obtained from experiment thus in research nanoindentation tests need to be combined 

with FEM simulations to better characterize the material under study in form of 

constitutive model parameters. This method can be inefficient since every small change 

in the finite element model requires a new run of the model to see the effects of that 

change. Thus an ANN model can be used to study the effect of these changes in a more 

accurate and efficient way. Different variables can be added to the ANN model to study 

the influence of the nanostructure on the overall behavior of the material.  

There has been no studies that utilize ANN models to investigate the material response of 

different forms of silica and the constitutive models used to describe their behavior. 

Therefore, studies over the last two decades that have used ANN modeling to predict 

nonlinear behavior of material in general will be addressed. Sidarta and Ghaboussi (1998) 

used ANN to extract nonlinear constitutive behavior of sand under triaxial compression 

loading and in their other publication Ghaboussi and Sidarta (1998), they introduced a 

new method called Nested Adaptive Neural Network (NANN) to also model the 

undrained and drained behavior of sand in triaxial tests. Fu et al. (2007) also used the 

same approach for analysis of results of laboratory tests on geomaterial and called it self-

learning simulation method.  
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2.3.2 Application of ANN in Nanoindentation Nonlinear Constitutive 

Models 

To extract material properties from nanoindentation using ANN, a well-trained ANN 

model can be used to find the best combination of material properties that yield a load-

displacement curve that is in the best agreement with experimental results. Among the 

first researchers who used ANN in nanoindentation response of material of films and 

substrates were Mulinia et al. (2002) who performed a comprehensive study consisting of 

2D and 3D FE analysis as well as nanoindentation tests on annealed copper and used 

ANN models to generate load-displacement curves of nanoindentation tests on a variety 

of materials and indenter geometries. After training the models, their prediction 

capability was tested against FE simulation results that were not used in ANN training. 

Huber et al. (2002) used the same approach to study plastic behavior of indentation of 

aluminum films. Tho et al. (2004) in addition to using load-displacement curves, used the 

area under the curves as input parameters to train two consecutive ANN models. 

Tyulyukovskiy and Huber (2006) developed a viscoplastic model and simulated 

nanoindentation and used the FE results to train the ANN model with parameters 

including yield stress, the initial slope of work hardening, and maximum hardening stress 

of the equilibrium response as well as elastic deformation. Haj-Ali et al. (2008) used only 

the monotonic loading part of the nanoindentation load-displacement curve to train the 

ANN model that used dimensionless input and output variables. They performed 

nanoindentation tests on copper films on silicon substrates.  
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CHAPTER 3  

RESEARCH METHODOLOGY 

3.1 Nanoindentation Testing 

3.1.1 Introduction to Nanoindentation Testing 

Nanoindentation tests have been used in many different areas to study mechanical 

properties of material mostly when samples are small and conventional tests are not 

possible to be performed on them such as thin films, when enough sample is not 

available, or on devices such as MEMS and NEMS. The basic idea behind 

nanoindentation is measurement of reaction force and displacement of an indenter when 

it is being pushed into the surface of the sample by the actuator. It can be performed load-

control or displacement-control. In load-control method, a time history of force vs. time 

is used to apply force on the surface of the sample using the indenter, while the 

displacements of the indenter is being measured. The device tries to keep the reaction 

force close to the loading time history. In displacement-control method, a known 

displacement time history is used to move the tip of the indenter inside the sample while 

measuring the reaction forces applied to the indenter from the sample. In most cases 

deformations caused by an indentation test are elastic-plastic and there is residual 

deformations left on the location of indentation. The two major mechanical properties 

extracted from nanoindentation tests are Young’s modulus (E) and hardness (H). One of 

the major parameters in an indentation test is the contact area which is measured directly 

in large scale indentations but since the residual imprint of the indenter in 

nanoindentation is very small and cannot be measured directly, the contact area is 
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calculated in correlation with indentation depth since the geometry of the indenter is 

known. But this method needs calibration as the indenter usually has some imperfections 

in its shapes and it also can become blunt over time as it is used for many tests. 

Therefore, to calibrate the device and the function that is used to correlate the indentation 

depth to contact area, a tip area function (TAF) is used. To obtain this function, some 

indentation tests are performed on a material with known values of elastic modulus and 

hardness, measuring the load-displacement curve from the tests. By fitting the calculated 

mechanical properties to known mechanical properties, the parameters of the tip area 

function are calculated which then can be used to calculate contact area with respect to 

the indentation depth. Figure 3- 1 illustrates the schematics of the cross-section of an 

indentation and different parameters used in the method proposed by Oliver and Pharr 

(1992) to calculate elastic modulus and hardness. Total displacement in the indentation 

loading is written as: 

ℎ = ℎ𝑐 + ℎ𝑠     (3-1) 

where ℎ𝑐 is called the contact depth and ℎ𝑠 is the displacement of the surface of the 

sample at the perimeter of the contact. During the loading phase, the indentation force 

will reach the maximum value of 𝑃𝑚𝑎𝑥 and the indentation depth will have a value of 

ℎ𝑚𝑎𝑥. Assuming the indenter tip has a conical shape with a known centerline-to-face 

angle, the contact area can be calculated as a circle with radius 𝑎. After the unloading is 

finished, residual deformation on the surface of the sample will have depth of ℎ𝑓.  

Even though the material used for the indenter has a significantly high modulus and its 

deformations are negligible related to the deformations of the sample, to take into account 
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the deformation of the indenter, a value called “reduced modulus” (𝐸𝑟) is defined as 

below: 

1

𝐸𝑟
=

1−𝜈2

𝐸
+

1−𝜈𝑖
2

𝐸𝑖
    (3-2) 

where 𝐸 and 𝜈 are Young’s modulus and Poisson’s ratio of the sample and the subscript 𝑖 

indicates the properties of the indenter. 

A typical response of an indentation test is schematically shown in Figure 3- 2. To 

calculate the reduced modulus using the load-displacement curve, as proposed by 

Doerner and Nix (1986), the slope of the upper one-third section of the unloading curve 

(𝑆) is used: 

 𝑆 =
𝑑𝑃

𝑑ℎ
=

2

√𝜋
𝐸𝑟√𝐴    (3-3) 

where 𝐴 is the imprinted area of the elastic contact. Eq. (3-3) is derived from elastic 

contact theory by Bulychev and his coworkers (1975) originally for conical indenters, it 

was shown later by Pharr, Oliver, and Brotzen (1992) that this equation can be applied to 

any indenter with the shape that can be described as a body of revolution of a smooth 

function around an axis of symmetry and with an acceptable approximation for other 

indenters with pyramidal shape.  

To calculate the contact area, a function that correlates contact depth to contact area is 

used which can be unique to the shape of the indenter and can be determined either with 

functions introduced in the literature or by curve fitting technique. Thus a series of 

nanoindentation tests with different maximum depths was performed on Fused Silica 
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provided by Hysitron Company with the declared Reduced Elastic Modulus Er= 69.6 GPa 

and hardness H= 9.25 GPa to define the Tip Are Function as shown in Figure 3- 3. The 

equation that was used is defined as: 

𝐴 = 𝐶0ℎ𝑐
2 + 𝐶1ℎ𝑐 + 𝐶2ℎ𝑐

1/2
+ 𝐶3ℎ𝑐

1/4
+ 𝐶4ℎ𝑐

1/8
+ 𝐶4ℎ𝑐

1/16
   (3-4) 

With the contact area known, hardness can be calculated as: 

𝐻 =
𝑃𝑚𝑎𝑥

𝐴
     (3-5) 

 

 

 

Figure 3- 1: Schematics of an indentation cross section after Oliver and Pharr (1992) 
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Figure 3- 2: Schematic load-displacement curve of a nanoindentation test after Oliver and Pharr (1992) 

 

Figure 3- 3:Curve fitting result for determining Tip Area Function 
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3.1.2 Surface Roughness 

One of the important assumptions in all the equations presented in previous section is that 

the surface of the sample is completely flat. Therefore, one of the most important 

parameters that can affect nanoindentation test results is surface roughness of the sample. 

If the surface of the sample is rough and has bumps the contact depth can be mistakenly 

selected therefore resulting in an inaccurate contact area. Thus, the surface of the sample 

need to be prepared and polish and its surface roughness measured prior to 

nanoindentation tests. One of the methods to measure surface roughness is calculating the 

root mean square (RMS) of surface heights,𝑅𝑞, along the sampling surface: 

𝑅𝑞 = √
1

𝐴𝑠
∬ 𝑧2𝑑𝐴    (3-6) 

where 𝐴𝑠 is the sampling surface and 𝑧 is the height of the sample at different locations. 

3.1.3 Nanoindentation on Fused Silica 

For all the nanoindentation tests on the samples the Hysitron1 TI Premier 

Nanoindentation device located at the Soil Mechanics Laboratory at Department of Civil 

Engineering of University of Nebraska Lincoln was used. 

  for means of device calibration was used to study the nanoindentation behavior 

of this material. No sample preparation was needed. A series of 256 displacement-control 

tests with maximum displacement of 250 nm corresponding to the maximum load 

capacity of the device (11000 μN) were performed on different locations on the sample 

surface to extract the load-displacement curves as well as device calibration. Half of the 

                                                 
1 www.hysitron.com 
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mentioned tests were performed using a Berkovich indenter tip with total angle or 142.3˚ 

and nominal radius of approximately 100 nm (called “Berkovich indenter” in the rest of 

the text) and the rest were performed using a conical indenter tip with the face-to-

centerline angle of 45˚ and tip radius of 1.4 μm (called “conical indenter” in the rest of 

the text). 

3.1.4 Sample Preparation of Sand Grains 

The sand grains used for the tests were the standard ASTM 20-30 C778 purchased from 

U.S. Silica Company. The sand grains consist of %99.8 SiO2 as mentioned in the product 

catalog. To prepare the sample a small amount of sand grains were poured into Allied2 1" 

diameter cylindrical plastic mounting cup and submerged with approximately 1/3” height 

of acrylic resin purchased from EMS3 under the name of LR White Resin. After 

temperature treatment of the epoxy resin to harden, the sample was extracted from the 

mounting cup and was mounted in the E-PREP 4™ Grinder/Polisher with PH-4I™ 

Power Head manufactured by Allied Company. The sample was then grinded and 

polished using the following (in order) grades of Silicon Carbide sandpapers and 

Alumina Powder Suspensions applied on SPEC-Cloth produced by Allied company: 

 320 Grit 

 600 Grit 

 800 (P-2400) Grit 

 1200 (P-4000) Grit 

 2500 Fine Grit 

 1 µm Alumina Powder 

 0.3 µm Alumina Powder  

 0.05 µm Alumina Powder 

                                                 
2 www.alliedhightech.com 
3 www.emsdiasum.com 



22 

 

The final polished sample is shown in Figure 3- 4-a and the microscopic image of the 

surface of the sample is shown in Figure 3- 4-b. To measure the roughness of the 

polished samples, surface topography of the sample was obtained using the indenter 

probing method in an area of 10 µm by 10 µm. Figure 3- 5 shows the topography of the 

locations on sand grains indicated by red dots in Figure 3- 4-b. The RMS roughness of 

the scanned surfaces are significantly low averaging less than 2.5 nm which indicates a 

very good polished surface. 

 

Figure 3- 4: a. Polished sand grains in hardened epoxy resin, b. Surface of the single sand grains 

a. b. 

1.3 mm 

254 mm 

. 

. 
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Figure 3- 5: Surface topography (100 nm2 area) of the sample before indentation. Left, Rq=2.18 nm, Right, 

Rq=1.46 nm 

3.2 Finite Element Modeling 

A series of numerical analyses were performed in order to compare the response of the 

material using different plasticity constitutive models. For model verification, the results 

were compared to experimental and numerical results from available literature. The 

commercial FEM software Simulia ABAQUS 6.12-3 was used for these analyses. The 

models consist of 2-D four-node bilinear axisymmetric quadrilateral with reduced 

integration elements (CAX4R) to model the sample and a rigid surface to model the 

indenter. 

Boundary conditions for the model are fixed in horizontal (x) and vertical (y) direction at 

the bottom of the model, fixed only in x direction on the axis of symmetry, and free on 

the right side and top of the model. The surface of the indenter is fixed related to a 

Reference Point thus the displacement of the Reference Point corresponds to the 

displacement of the indenter. Since body forces are negligible in this case, the initial 

conditions did not consider the weight of material. 
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3.2.1 Constitutive Models 

The Modified Drucker-Prager/Cap Plasticity model is typically used for geomaterial since 

their yielding behavior depends on the hydrostatic pressure. The cap yield surface makes 

the model able to capture hardening behavior due to plastic compaction as well as 

controlling volume expansion that happens due to shear failure. This yield surface is 

comprised of a shear failure segment and a cap segment. The formulation of this 

constitutive model in ABAQUS is based on the 𝑝 − 𝑡 plane, in which 𝑝 is the hydrostatic 

stress and 𝑡 is the deviatoric stress measure defined as: 

𝑡 =
𝑞

2
[1 +

1

𝐾
− (1 −

1

𝐾
) (

𝑟

𝑞
)

3

]    (3-1) 

in which 𝑞 is the Mises equivalent stress 𝑞 = √
3

2
𝑠𝑖𝑗𝑠𝑖𝑗, 𝑟 is the third invariant of 

deviatoric stress 𝑟 = (
9

2
𝑠𝑖𝑗𝑠𝑘𝑙𝑠𝑘𝑙)

1

3
, and K is a material parameter depending on 

temperature and pre-defined field variables. The shape of the yield surface can be seen in 

Figure 3- 6. It is mentioned in ABAQUS Users’s Manual that this measure of stress is 

used because it provides a more consistent explanation of deviatoric stress in tension and 

compression in deviatoric plane and providing a more flexible fitting of experimental 

data and good approximation to the Mohr-Coulomb surface. Since in all the previous 

paper, the dependency on third deviatoric stress was not considered, we can assume that 

𝐾 = 1. In this case, 𝑡 = 𝑞. It should be noted that in order to make sure that the yield 

surface is always convex, 0.778 ≤ 𝐾 ≤ 1.0. 
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Figure 3- 6: Yield surface of Modified Srucker-Prager/Plasticity Cap model in p-t plane. note that q=t in 

this paper. (From ABAQUS Users's Manual) 

 

An elastic-plastic constitutive model was also used in the FE simulations in order to 

capture the difference and compare the results of Drucker-Prager/Cap model. The only 

inputs of this model consist of Young’s modulus, Poisson’s ratio, density and yield stress. 

3.2.2 Convergence Study 

It is important that the boundaries of the sample in the FE simulation do not affect the 

results. Therefore, a series of analysis were performed to find an acceptable sample 

dimension. Since the maximum indentation depth in this study was 500 nm, a sample 

with dimensions of 5x5 μm was used as a starting point and multiple numerical 

simulations were run while increasing the sample dimensions until no significant change 

was noticed in the results as shown in Figure 3- 7. The sample dimensions were 50x50 

μm, which is proved to be big enough to avoid boundary effects on the results. The model 

mesh and size can be seen in Figure 3- 8. 
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To find the adequate mesh size for the model, a convergence study was performed by 

decreasing the size of the elements in the vicinity of the indenter tip and the results were 

compared. A finer mesh was used near the indenter to achieve more accurate results. 

Figure 3- 9 presents the results of the convergence study, therefore the chosen element 

dimensions near the indenter tip was 0.1 μm. The numerical simulation was run in 

Update Lagrangian reference frame and nonlinear deformation was assumed.  

 

Figure 3- 7: Sensitivity analysis of FE results to sample dimensions 
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Figure 3- 8: 2D axisymmetric model of sample and conical indenter, the image is zoomed in from right to 

left 

 

 

Figure 3- 9: Sensitivity analysis of FE results to mesh size 

3.2.3 FEM Model Verification 

After the convergence study and determination of the sample size, nanoindentation finite 

element model for the conical indenter was verified against the results of Bruns et al. 
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(2017) study as they used a 55º half-angle conical indenter and it can be assumed close to 

the 45º indenter used in this study, and for modeling the Berkovich indenter results from 

Kermouche et al. (2008) was used as in their paper an equivalent 70º half-angle conical 

indenter was used to successfully replicate the nanoindentation test results from a 

Berkovich indenter. The same approach was taken in the present study. Nanoindentation 

load-displacement curves were normalized since the details of indentation depth was not 

presented by Bruns et al. (2017) and for other results as well, for the sake of consistency.  

 

Figure 3- 10: FEM model verification, Nanoindentation on fused quarts, 2-D Berkovich equivalent 70º 

indenter 
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Figure 3- 11: FEM model verification, Nanoindentation on fused quarts, 2-D conical 55º indenter 
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major parts: dendrites that receive signals from other neurons, cell body that sums up all 

incoming signals into the cell, axon that lets the output signal out of the cell if it reaches a 

certain threshold, and synapses that pass the signal to other neurons depending on the 

strength of the connection (i.e. the weight of the connection). The strength of these 

connection is not constant and can increase or decrease. This simple neuron was first 

developed by McCulloch and Pitts in 1943 and despite the years passed, it is still one of 

the most used concepts in ANN. However, it should be noted that in their model a simple 

step function was used but other functions, as described in later sections, can also be used 

as the transformation function. This analogy in ANNs is called a perceptron (Figure 3- 

12-b) which is connected to other nodes to form the whole ANN structure which is 

discussed in the following sections.  

  

Figure 3- 12: a. Schematics of a biological neuron cell after Moya and Irikura (2010) and b. a perceptron 

model after Messikh et al. (2017) 

 

3.3.2 Artificial Neural Network Structures 

3.3.2.1 Function of a Single Artificial Neuron 

In the simplest artificial neuron, a scalar input 𝑥 is sent to the neuron and is multiplied by 

the neuron weight 𝑤 to calculate the neuron output 𝑦 using the activation (or 

transformation) function. Thus the output will be 𝑦 = 𝑓(𝑤𝑥). In some cases to get a more 

a. b. 
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acceptable output, a bias is added to the equation forming the output as 𝑦 = 𝑓(𝑤𝑥 + 𝑏). 

The values of weight and bias (𝑤 and 𝑏) are then adjusted to get the most accurate output. 

The input of the activation function can also have a more complex form rather than 

linear, such as quadratic, forming the output as 𝑦 = 𝑓(𝑤𝑥2 + 𝑏) or other complex forms 

however the linear form is mostly used. The next level of complexity for a neuron is 

changing the scalar input to an array input consisting of 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛 and 𝑤𝑖, 1 ≤ 𝑖 ≤ 𝑛 

therefore calculating the output as 𝑦 = 𝑓(∑ 𝑤𝑥 + 𝑏) which is also illustrated in Figure 3-

1-a. 

3.3.2.2 Construction of a Neural Network 

Connecting the single neurons explained in previous section forms a neural network in a 

way that the output of a single neuron will be the input of every other neuron in its next 

layer. There are three main layers in computational neural networks: the input layer with 

values 𝑥1 to 𝑥𝑛, a hidden layer with nodes that receive the input from another layer, 

multiplies each input by its designated weight and adds bias, and the output layer which 

is the calculated values of the combination and transformation of inputs, weights and 

biases through activation functions. There can be multiple hidden layers in a neural 

network to make it capable of predicting more complex and nonlinear data. For instance, 

a neural network with two hidden layers will ultimately be called a four-layer neural 

network. The number of nodes in a layer is determined either by the architect of the 

network or by adaptive learning. A schematic view of an ANN with n inputs, m number 

of hidden layers each containing n nodes, and n outputs is shown in Figure 3- 13. It 

should be noted that the number of inputs, number of nodes in each layer and the number 
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of outputs are not necessarily the same. For example, an ANN can consist of four inputs, 

five nodes in first hidden layer, eight nodes in second hidden layer, and one output. 

 

Figure 3- 13: ANN with m hidden layers and n nodes in each layer 

3.3.2.3 Activation Functions 

After integration of all the weighted inputs and bias for a single neuron, the value must 

go through an activation function to represent the output of the neuron. There are 

different activation functions suitable for different sorts of input and output data and 

which have to be selected based on the nature of the problem. Typical activation 

functions used in ANN are shown in Table 3- 1. Functions such as step function are good 

for sorting the input to categories for the output and functions like Hyperbolic Tangent 

and Sigmoid are suitable for nonlinear relationships between input and output data while 

a function like Ramp function is more suitable for linear approximation of data. 
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Table 3- 1: Typical activation functions used in ANNs 

Name Expression Plot 

Step Function 𝑦 = {
1          𝑥 ≥ 0
0          𝑥 < 0

 

 

Hard Limit 

Function 

𝑦 = {
1          𝑥 ≥ 0
−1       𝑥 < 0

 

 

Ramp Function 

𝑦

= {
1                  𝑥 > 1
𝑥          0 ≤ 𝑥 ≤ 1
0                  𝑥 < 0
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Unipolar 

Sigmoid 

Function 

𝑦 =
1

1 + 𝑒−𝑎𝑥
 

(plot for a=5) 

 

Bipolar 

Sigmoid 

Function 

𝑦 =
2

1 + 𝑒−𝑎𝑥
− 1 

(plot for a=5) 

 

Tanh Function 𝑦 = tanh (ℎ) 

 

Softplus 𝑦 = log (1 + 𝑒𝑥) 
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3.3.2.4 Training Process 

To train a neuron and the whole network in general means to adjust the values of weights 

and biases in order to get the most accurate output. There are two main methods for 

training a neural network: “supervised” method in which after each calculation the output 

of the network is compared with the output that is expected from the network and the 

weights and biases are adjusted based on how close these values are. This method is 

called “backpropagation” and was first proposed by Werbose (1974) and consists of 

using a minimization method such as steepest gradient method to minimize the difference 

between the calculated output and the existing output. This error calculation is also done 

on the level of each neuron and high errors relating to specific nodes will cause the 

weights of those nodes to be reduced so that their contribution to the overall output 

becomes less, resulting in a more accurate output. If the difference between the calculated 

output and expected values are less than the error tolerance, the networks is considered as 

trained and can be used to predict unknown values based on different inputs. On the other 

hand, “unsupervised” method automatically analyses the characteristics of the input and 

output data and determines which patterns and weights to use. In this study, supervised 

learning method is used. Another categorization of ANN training paradigms is fixed and 

adaptive training. In fixed training the number of nodes are fixed throughout the training 

however in adaptive method training starts with a relatively small number of nodes and if 

a threshold of iterations (epochs) is met, more nodes are added to the network. The later 

method can be useful for saving computational time as we all in cases which contain 

noise and more complex relation between the data. 
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There are two types of processing the output of the neurons: feedforward and feedback. 

In the feedforward method, the output of the neuron is never used again as its input and 

the flow of data is straight forward through the network whereas in feedback networks, 

the output of the neuron can be fed back into itself as a new input as shown in Figure 3- 

14.  

 

 

Figure 3- 14: a. single feedback neuron, b. simple feedback neural network (after Zhang (2000)) 

 

3.3.3 Developing an ANN for Nonlinear Material Behavior 

To accurately predict nonlinear material behavior in nanoindentation tests a suitable 

number of layers and nodes in the proposed ANN shall be chosen. In the past years many 

researchers have used different ANN structures to predict nonlinear behavior of material 

which mostly consist of three or four layer ANNs. While selecting the input and output 

parameters for the ANN depends on the nature of the problem and type of behavior, the 

number of hidden layers usually does not exceed two, since too using a large number of 

hidden layers or too many nodes in each layer can cause divergence problems as well as 
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biased outputs toward the training data which means the trained model will have 

difficulty predicting material behavior using new input data. As a result, a neural network 

consisting of an input layer, two hidden layers and an output layer with adaptive learning 

was chosen for this study. The adaptive structure of the ANN was initially proposed by 

Ash (1989) called “Dynamic Node Creation Scheme” and further developed by Wu and 

Ghaboussi (1992) and further modified and used by Ghaboussi and Joghataie (1995), 

Ghaboussi et al. (1998), Muliana et al. (2002), and Haj Ali et al. (2008) and it was chosen 

for this study as well. However, the Dynamic Node Creation Scheme proposed by Ash 

(1989) consists a three-layer Neural Network that starts with a single node in the hiden 

layer and the algorithm continuously adds more nodes to the hidden layer until the 

convergence criteria is met. The decision that a new node needs to be added is made 

based on the gradient of slope of the average squared error (called “trigger slope”) in 

relation to the number of iterations (epochs) that have passed since the previous node was 

added. However, Wu and Ghaboussi (1992) mention that the selection of the “trigger 

slope” is highly dependent on the nature of the problem and the correct tolerance 

selection can greatly affect the convergence of the model. Thus, a fixed criteria in form of 

the maximum iterations after adding of each node was used in addition to the “trigger 

slope” method. After reaching the criteria for adding a new node to each of the hidden 

layers, the weights and biases of the existing connections are kept constant while the 

weights and biases of the new connections added with the new nodes are trained with a 

limited number of epochs. After that the constraint of the existing weights and biases is 

lifted and the training of the network is then resumed with the newly added and adjusted 

weights. The training then stops eventually when the convergence criteria, i.e. total error 
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becomes less than the error tolerance or the maximum number of epochs is reached, is 

reached and all the weights and biases of the trained network are stored as trained model 

parameters. The trained model is then used with other inputs that were not used in the 

training process and the outputs of the trained model are compared with the expected 

outputs to ensure the accuracy of the model. 

To build the ANN for this study, an in-house code was developed using Python 

programming language which is very suitable for Machine Learning applications. The 

four-layer ANN was built in an object-oriented paradigm to ensure future readability and 

leave room for further adjustments such as adding the number of layers or manipulating 

the architecture of the neural network. The algorithm was adopted from Haj Ali et al. 

(2008) to implement the adaptive architecture for the ANN. 

1. The available data is normalized to have values between 0 and 1 (or -1 and 1 

depending on the nature of the problem and the type of activation functions used). 

2. A percentage of available data, say 70% is selected as training data. 

3. The initial number of nodes in the hidden layers is determined. 

4. All the variables, i.e. weights and biases, are initialized using random values 

between 0 and 1. 

5. Training is started by adjust the weights and biases to minimize the total error 

defined as: 𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2
∑(𝑻 − 𝑶)2 (T: Target values array, O:Output values array) 

I. Forward Propagation: 

The inputs of the first hidden layer are the input values of the data set. 
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The inputs of the second hidden layer are the outputs of the first hidden layer 

and the inputs of the output layer are the outputs of the second hidden layer: 

𝑎𝑖 = 𝑓(∑ 𝑤𝑗𝑜𝑗 + 𝑏𝑖)  

where 𝑓 is the activation function, 𝑤𝑗 is the weight of each connection, 𝑏𝑖 is 

the bias of each neuron, and 𝑎𝑖 will eventually be the input for the next layer. 

II. Backward Propagation: 

Steepest gradient descent method is used to adjust the weights by calculating 

the needed change in the weight of each connection using the gradient of the 

error with respect to the connection weight: 

∆𝑤 =  𝜃
𝜕𝐸(𝑤)

𝜕𝑤
  

in which 𝜃 is the learning rate. Assuming that the sigmoid function is used as 

activation function, we have: 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
               𝑎𝑛𝑑        𝑓′(𝑥) = 𝑓(𝑥)(1 − 𝑓(𝑥)) 

Thus, for neurons that yield the final output layer, total error gradient with 

respect to the weights is calculated as: 

𝜕𝐸(𝑤𝑗)

𝜕𝑤𝑗
= (𝑡𝑗 − 𝑜𝑗)𝑓′(∑ 𝑤𝑗𝑜𝑗)𝑜𝑖  

and for neurons that are in the hidden layers (note that node i is before j in 

layers): 
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𝜕𝐸(𝑤𝑗)

𝜕𝑤𝑗
= ∑ (𝑤𝑖

𝜕𝐸(𝑤𝑖)

𝜕𝑤𝑖
) 𝑓′(∑ 𝑤𝑗𝑜𝑗)𝑜𝑖  

Therefore, all weights are adjusted by their corresponding value of ∆𝑤. 

6. If the gradient of the total error with respect to the number of iterations passed 

after the last node was added is less than the specified criteria or a certain number 

of epochs has passed, a new node is added: 

All existing connection weights are stored and fixed. New connection weights 

and biases related to the new nodes are initialized. The new weights are then 

trained with a few iterations while the old weights are kept constant. After that 

all the fixes are released and training of the network is resumed by going back 

to step 5. 

7. If the maximum number of total epochs has reached or the total error is less than 

the tolerance, the training is stopped and the values of weights and biases are 

stored as trained model parameters. 

8. The rest of the data used in step 2 is used as prediction accuracy measurement. 

3.3.4 Performance of the Developed ANN Model 

The performance of the developed ANN model was studied by means of verification with 

available literature as well as convergence study to understand the limits and optimum 

architecture of the network. To verify the model, two nonlinear phenomena in literature 

were modeled. Nonlinear structural response data from a 25-element truss used by 

Ghaboussi et al. (1998) shown in Figure 3- 15 to train their ANN model and later used by 

Kim (2008) for verification of the ANN he proposed, was used as training and 
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verification data. An ANN with two hidden layers were used with different nodes in each 

layer to verify the performance of the developed ANN as well as observe the effect of 

number of nodes on nonlinear results. The structure of network was chosen similar to the 

one proposed in Kim (2008) so that the results of the studies are comparable. The first 

model had three nodes in each hidden layer with an error tolerance of 10% and the 

second model consisted of 15 nodes in each hidden layer with an error tolerance of 0.1%. 

As it can be seen in Figure 3- 16, the developed ANN model with the same structure as 

the one in Kim (2008) has better performance related to the number of epochs as well as 

the shape of the curve. For the models with 15 node, the difference is not significant but 

the number of epochs are again less that the ones in Kim (2008). 

To investigate the effect of different number of nodes and hidden layers, the training data 

was chosen to be a nanoindentation load-displacement curve proposed by Kermouche et 

al. (2008). Performance of the developed ANN with two hidden layers was analyzed by 

varying the number of nodes in each hidden layer and using the nanoindentation curve as 

input and test data. As it can be seen in Figure 3- 17, a low number of nodes does not 

yield acceptable results but as the number of nodes increase, the error tolerance decreases 

and the shape of the curve becomes closer to the one using for the training. It should be 

noted that too many nodes in each layer will cause the model to over-fit the curve thus 

diverging from the actual results, therefore the optimum number of nodes in this case was 

approximately 16 for each of the two hidden layers. 
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Figure 3- 15: The truss used by Ghaboussi et al. (1998) to verify their ANN model 
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Figure 3- 16: Developed ANN model performance in comparison with the same model architecture 

proposed by Kim (2008)

 

Figure 3- 17: Performance of developed 4-layer ANN in predicting nanoindentation results 

 

3.3.5 Implementing the Nanoindentation Unloading Section in ANN 

One of the major shortcomings of previous studies on nanoindentation tests with ANN is 

that most of the studies only take into account only the loading section of the curves (i.e. 

in Figure 3- 17). The reason for this problem is that if both loading and unloading parts 
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are used in the training of ANN, the ANN will not be able to distinguish between the 

loading and unloading sections due to the fact that a unique value for displacement will 

correspond to two values of load, one for loading and the other for unloading. This will 

cause losing the data of the unloading section which is an important part for 

understanding the plastic behavior of material in nanoindentation tests.  As mentioned in 

Chapter 2, Tho et al. (2004) in addition to using load-displacement curves, used the area 

under the curves as input parameters to take into account the amount of plastic 

deformation in nanoindentation test. This approach however lacks the prediction of the 

shape of the unloading curve since it is difficult to find the exact shape of the unloading 

curve using the area under the curve. To overcome this problem, another approach was 

taken in the present study. To use both loading and unloading curves in the training data 

for ANN, a code was assigned to each part of the curve in the form of a 0 and 1. 

Therefore, in the dataset of the nanoindentation load-displacement points, a single point 

on the loading curve will be in the form of [displacement value, 0, force value] and a 

single point on the unloading curve will be in the form of [displacement value, 1, force 

value]. Adding the loading-unloading parameter to the data set might require more 

number of hidden layers in order for the ANN to be able to accurately predict the material 

behavior. In order to find the optimum number of hidden layers for this approach, a series 

of ANN training were performed while increasing the number of hidden layers, each with 

a constant number of nodes. However, the optimum number of hidden layers for this 

approach was found to be two. Figure 3- 18 and Figure 3- 19 show the effect of number 

of hidden layers on the performance of ANN for five and 10 nodes in each layer, 

respectively. It is worth noting that in case of 10 nodes in each layer, the two hidden layer 
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network showed better performance in achieving the error tolerance of 0.1% in a 

relatively low number of epochs whereas ANNs with higher number of hidden layers had 

difficulty converging the error tolerance and reached the cap for the number of epochs. 

Comparing the number of nodes in each layer for the 2-hidden layer network shows that 

the network with 10 nodes in each hidden layer yields better results. 

 

Figure 3- 18: Performance of ANN for predicting loading-unloading curve with different number of hidden 

layers with 5 nodes in each layer (H: number of hidden layers, N: Number of nodes) 

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000

Fo
rc

e 
(m

N
)

Displacement (nm)

Kermouche et al. (2008)

2H,5N,tol=0.01,itr=5491

3H,5N,tol=0.01,itr=15198

4H,5N,tol=0.01,itr=21490

5H,5N,tol=0.01,itr=161984



46 

 

 

Figure 3- 19: Performance of ANN for predicting loading-unloading curve with different number of hidden 

layers with 10 nodes in each layer (H: number of hidden layers, N: Number of nodes) – Note: 5-hidden 

layer network did not converge 
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CHAPTER 4  

RESULTS AND DISCUSSION 

4.1 Nanoindentation Experiment Results 

4.1.1 Fused Silica 

Nanoindentation experiment were performed on the Fused Silica sample using conical 

and Berkovich indenter to investigate the effect of the indenter geometry on 

nanoindentation result as well as plastic behavior of this material in micro-scale. The 

results were plotted in a form of boundaries to avoid mixing up of many test result data 

and a mean was taken as a representative for comparison with test results as shown in 

Figure 4-1.  

 

Figure 4- 1: Representative result of nanoindentation test on Fused Silica 
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Figure 4- 2: Elastic modulus of Fused Silica for different indentation depths 

4.1.2 Sand Grains 

Previously polished samples as described in Chapter 3 were used in nanoindentation 

experiments to study the load-displacement curve as well as Young’s modulus and 

hardness of sand grains. A representative load-displacement curve resulting in a Young’s 

Modulus of 105 GPa was selected and is presented in Figure 4- 3, and the same curve 

was later used for comparison with FE simulation results. Although the results of 

nanoindentation tests were not as consistent as the results of the tests on Fused Silica, 

more than 70% of the tests resulted in a Young’s modulus of approximately 105 GPa as 

shown in Figure 4- 4. Residual deformations on the sand grains that were represented in 

Figure 3- 5 is also illustrated in Figure 4- 5. 
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Figure 4- 3: Representative result of nanoindentation test on sand grains 

 

Figure 4- 4: Elastic modulus of sand grains for different indentation depths 
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Figure 4- 5: Berkovich indenter residual imprint on sand grain 
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4.2 FEM Simulation Results 

The first series of FE simulations were performed to investigate the effect of constitutive 

model used on the results in comparison with experimental data. An Elastic-Plastic (EP) 

yield criteria as well as the Modified Drucker-Prager/Cap (MDPC) model was used in the 

simulations. The starting values of the model parameters was chosen based on available 

literature which is shown in Table 4- 1. The FE results for a 45º conical indenter using 

the mentioned model parameter values were compared with nanoindentation experiment 

results as shown in Figure 4- 6.  

FE simulation of nanoindentation tests on sand grains using Berkovich indenter was 

performed using the 2D equivalent 70.3º indenter using two different tip geometry. The 

sharp tip was modeled with a rip radius of 100 nm, the same value as the actual 

Berkovich indenter tip radius used in nanoindentation experiments and a blunt tip 

modeled as an indenter with tip radius of 1.4 µm. For these two tip geometries the two 

mentioned constitutive models were used with initial values shown in Table 4- 1. The 

results of FE simulation are compared with experimental data as illustrated in Figure 4- 7 

and Figure 4- 8.  

Comparing the results of simple Elastic-Plastic model with Modified Drucker-Prager/Cap 

model, it can be seen that for both cases of SiO2, namely Fused Silica and sand grains, 

models yield better results when volumetric hardening is taken into account. 
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Table 4- 1: Initial model parameters* for FEM 

Constitutive 

Model 
Parameter 

Value 

Fused 

Silica** 
Sand grain 

Elastic-Plastic 

Young’s Modulus, E (GPa) 70.0 105.0 

Poisson’s Ratio, ν 0.18 0.1 

Yield Stress, σy (GPa) 7.0 10.0 

MDPC 

Young’s Modulus, E (GPa) 70.0 105.0 

Poisson’s Ratio, ν 0.18 0.1 

Material Cohesion, d (GPa) 7.5 10.0 

Angle of Friction, β (˚) 0.0001 0.0001 

Cap Eccentricity, R 1.53 1.0 

𝜀𝑣𝑜𝑙
𝑖𝑛 |0 0 0 

α 1.0 1.0 

K 1.0 1.0 

MDCP 

Hardening 

Parameters 

Yield Stress (GPa) @ vol. strain=0 11.5 18.5 

Yield Stress (GPa) @ vol. strain=1% 12.5 19.5 

* Refer to Section 3.2.1 for reference. 

** Values from Bruns et al. (2017) 
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Figure 4- 6: FE simulation of Fused Silica with a conical indenter and two constitutive models 

 

Figure 4- 7: FE simulation of sand grain with a sharp Berkovich equivalent indenter and two constitutive 

models 
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Figure 4- 8: FE simulation of sand grain with a blunt Berkovich equivalent indenter and two constitutive 

models 
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Figure 4- 9: FEM simulation of nanoindentation on Fuse Quartz using different indenter geometries 
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radius of 1.4 µm. Since the maximum depth is less than the tip radius in case of the 

Berkovich indenter, the indenter angle is the dominant shape parameter that affects the 

deformation as the same discussion made in previous section.  

To investigate the effect of model plastic parameters in the shape of the residual 

deformation, a significantly lower material cohesion (i.e. parameter ‘d’ in Modified 

Drucker-Prager/Cap model in ABAQUS, d=1.5 GPa) was chosen to compare the results 

with the original value of this parameter shown in Table 4- 1. Figure 4- 12 shows 

significantly higher amount of residual deformation and material pile-up compared to 

Figure 4- 10, and the same conditions can be observed in the load-displacement curves 

discussed in the next section.  

 

Figure 4- 10: Mises stress and sample deformation using: a. and b. sharp conical indenter, c. and d. blunt 

conical indenter (enlarged section of the model) 
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Figure 4- 11: Mises stress and sample deformation using: a. and b. sharp Berkovich indenter, c. and d. blunt 

Berkovich indenter (enlarged section of the model) 

 

Figure 4- 12: Pile up and extreme residual deformation with low MDPC cohesion value (d=1.5 GPa) 

(enlarged section of the model) 
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4.2.3 Effect of Model Parameters 

Sensitivity analysis of Modified Drucker-Prager/Cap model parameters were performed 

by changing the values of Elastic Modulus and material cohesion parameter (d) for the 

case of blunt conical indenter. It can be seen in Figure 4- 13 that for lower values of E, 

material does not enter the plastic region and the unloading curve is the same as the 

loading curve both with a low slope, whereas with increasing the value of E the slope 

increases and the unloading curve moves farther away from the loading curve and the 

residual plastic deformation increases as well. It is worth noting that the other parameter 

values were kept constant, having the values in Table 4- 1. To investigate the effect of 

material cohesion (i.e. parameter d) in MDPC model, the other parameters were kept 

constant and the value of d was increased as shown in Figure 4- 14. It can be seen that 

lower values of d causes the model to enter the plastic region faster and the reaction force 

has lower values in this case. Increasing the parameter d causes the reaction force to 

become higher therefore increasing the lope of the loading section of the curve. It can 

also be seen that the increase in value of d results in decrease of residual plastic 

deformation for the same maximum indentation depth. Changing the value of d in some 

cases caused interference with the cap parameters therefore they were changed 

accordingly while making sure it does not have any effects on the load-displacement 

curve.  
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Figure 4- 13: Effect of Elastic modulus on load-displacement results of FE simulation using blunt conical 

indenter 

 

Figure 4- 14: Effect of material cohesion (d) on load-displacement results of FE simulation using blunt 

conical indenter 
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4.3 Artificial Neural Network Modeling Results 

Input parameters of the ANN consisted of displacement, Elastic modulus and material 

cohesion and the output was load. The final trained model consisted of 15 neuons in each 

of the two hidden layers. FE simulation results in the form of load-displacement curves 

obtained from sensitivity analysis discussed in previous section were used to train and 

test the ANN model. Since the unloading section of the curves interfered with each other 

it was not possible to implement the loading and unloading section of the curves in the 

input data, therefore only the loading segments were used to train and test the model. Six 

loading curves were used to train the ANN model and after reaching and error value of 

1% with approximately 1 million epochs, the weights and biases of the model were saved 

and used to test the model with the remaining values of the available data. Figure 4- 15 

shows the loading curves used in the training of the ANN model and the values reached 

after the training are compared with FE results. The trained model predictions of the load 

values are shown in Figure 4- 16. As it can be seen the model successfully predicted the 

load values with the input parameters being displacement and Elastic modulus. The same 

approach was used to train and test the ANN for different values of material cohesion 

discussed in previous section, and the results of the training and testing of the ANN are 

shown in Figure 4- 17 and Figure 4- 18, respectively. 
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Figure 4- 15: Loading curves of different values of Elastic modulus used in ANN training 

 

Figure 4- 16: ANN model prediction of loading curves of different values of Elastic modulus compared 

with FE results  
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Figure 4- 17: Loading curves of different values of material cohesion used in ANN training 

 

Figure 4- 18: ANN model prediction of loading curves of different values of material cohesion compared 

with FE results 

 

If the ANN model is trained properly and with sufficient amount of data, it can then be 

used to predict the material behavior as discussed above. Figure 4- 19 shows the load-
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displacement curves of nanoindentation using conical indenter for different values of 

Elastic modulus. FE simulations for these values were not performed but the trend and 

the limits and behavior of the curves seem to follow the same pattern and trend observed 

from FE simulations. 

 

Figure 4- 19: Predicted load-displacement curves with different values of Elastic modulus 
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CHAPTER 5  

CONCLUSION AND RECOMMENDATION 

5.1 Summary and conclusion 

In the present thesis, behavior of fused silica and individual sand grains under 

nanoindentation testing was investigated with an experimental approach followed by 

numerical Finite Element simulations and Artificial Neural Network Modeling. It was 

seen that despite brittle behavior of Fused Silica in macro-scale, plastic deformation can 

occur during nanoindentation tests, as well as volumetric hardening due to densification 

of material under the indenter tip. Nanoindentation tests on Fused Silica and sand grains 

showed that individual sand grains can have higher values of Elastic modulus and less 

residual plastic deformation compared to fused silica, however localized densification 

phenomenon was also the case for natural SiO2 (i.e. sand grains). To model the material 

behavior, two constitutive models, i.e. Elastic-Plastic and Modified Drucker-Prager/Cap 

(MDPC) model were used in FE simulations and the accuracy of these models in 

predicting experimental test results were compared. It was observed that the MDPC 

model had a better accuracy provided that the model parameters are chosen accordingly. 

In both cases of Fused Silica and sand grains, using MDPC model to take into account 

the densification-induced volumetric hardening yielded significantly more realistic results 

compared to the simple Elastic-Plastic model. The effect of the model parameters on the 

final load-displacement curves of the nanoindentation simulations was analyzed by 

changing MDPC model parameters and performing FE simulations. The results were 

used for better understanding of the constitutive model as well as the micro scale 
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behavior of material. The influence of indenter tip geometry was investigated by 

modeling the 2D equivalent of a conical and a Berkovich indenter. It was observed that 

the tip radius and the face-to-centerline angle of the indenter can have a significant effect 

on the results. ANN models with different number of hidden layers and neurons were 

developed using Python programming language. The effect of different number of layers 

and neurons in the ANN model was investigated and a two-hidden-layer model was 

chosen for predicting nanoindentation test loading curve, since this model architecture 

showed better results in regard to the convergence and efficiency in predicting the results. 

The proposed ANN model was used along with FE simulation results to be trained to 

predict the FE simulation results for different constitutive model parameters. It was 

concluded that a well-trained ANN model can be a useful tool for predicting material 

response under nanoindentation loading.  

5.2 Recommendation and Future Work 

 Molecular Dynamics simulations can be a useful tool to further narrow down the 

scale of the study to molecular level. These simulations will provide a better 

understanding of the atomistic origins of plastic behavior of fused silica and sand 

grains. Dislocation of atoms under micro-scale loads is the main cause of 

densification behavior of this material and it can be further studied using MD 

simulations. 

 High magnification and SEM imaging of the indenters used in nanoindentation 

tests can provide a better understanding of the geometry of the indenter as well as 

the difference between the nominal and actual tip radius. The tip of the indenter 
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usually becomes blunt with time and it can be useful to see the actual geometry of 

the indenter and simulate the exact shape in FEM models. 

 Despite being computationally expensive, using 3D FEM simulations along with 

2D simulations can ensure more realistic results especially in the case of 

Berkovich indenter since in the 2D studies only use an equivalent shape for this 

indenter.  

 Developing other constitutive models that might be able to better capture the 

material behavior both in micro and macro scale can have a big impact of the 

scope of the material behavior in different scales. 

 Using a more robust ANN and more computational power can include more 

complicated data for training and predicting the nanoindentation test results.  
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