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Abstract

Test case prioritization provides a way to run test cases
with the highest priority earliest. Numerous empirical stud-
ies have shown that prioritization can improve a test suite’s
rate of fault detection, but the extent to which these results
generalize is an open question because the studies have all
focused on a single procedural language, C, and a few spe-
cific types of test suites. In particular, Java and the JU-
nit testing framework are being used extensively in prac-
tice, and the effectiveness of prioritization techniques on
Java systems tested under JUnit has not been investigated.
We have therefore designed and performed a controlled ex-
periment examining whether test case prioritization can be
effective on Java programs tested under JUnit, and com-
paring the results to those achieved in earlier studies. Our
analyses show that test case prioritization can significantly
improve the rate of fault detection of JUnit test suites, but
also reveal differences with respect to previous studies that
can be related to the language and testing paradigm.

1 Introduction

As a software system evolves, software engineers re-
gression test it to detect whether new faults have been in-
troduced into previously tested code. The simplest regres-
sion testing technique is to re-run all existing test cases, but
this can require a lot of effort, depending on the size and
complexity of the system under test. For this reason, re-
searchers have studied various techniques for improving the
cost-effectiveness of regression testing, such as regression
test selection [10, 27], test suite minimization [9, 18, 23],
and test case prioritization [15, 29, 33].

Test case prioritization provides a way to run test cases
that have the highest priority — according to some crite-
rion — earliest, and can yield meaningful benefits, such as
providing earlier feedback to testers and earlier detection of
faults. Numerous prioritization techniques have been de-
scribed in the research literature and they have been evalu-
ated through various empirical studies [11, 14, 15, 28, 29,

31, 33]. These studies have shown that several prioritization
techniques can improve a test suite’s rate of fault detection.
Most of these studies, however, have focused on a single
procedural language, C, and on a few specific types of test
suites, so whether their results generalize to other program-
ming and testing paradigms is an open question. Replica-
tion of these studies with populations other than those pre-
viously examined is needed, to provide a more complete
understanding of test case prioritization.

In this work, we set out to perform a replicated study, fo-
cusing on an object-oriented language, Java, that is rapidly
gaining usage in the software industry, and thus is practi-
cally important in its own right. We focus further on a new
testing paradigm, the JUnit testing framework, which is in-
creasingly being used by developers to implement test cases
for Java programs [1]. In fact, with the introduction of the
JUnit testing framework, many software development orga-
nizations are building JUnit test cases into their code bases,
as is evident through the examination of Open Source Soft-
ware hosts such as SourceForge and Apache Jakarta [2, 3].

The JUnit framework encourages developers to write test
cases, and then to rerun all of these test cases whenever
they modify their code. As mentioned previously, however,
as the size of a system grows, retest-all regression testing
strategies can be excessively expensive. JUnit users will
need methodologies with which to remedy this problem.1

We have therefore designed and performed a controlled
experiment examining whether test case prioritization can
be effective on object-oriented systems, specifically those
written in Java and tested with JUnit test cases. We ex-
amine prioritization effectiveness in terms of rate of fault
detection, and we also consider whether empirical results
show similarity (or dissimilarity) with respect to the results
of previous studies. As objects of study we consider four

1This may not be the case with respect to extreme programming, an-
other development methodology making use of JUnit test cases, because
extreme programming is intended for development of modest size projects
using a small number of programmers [32]. However, JUnit is also being
used extensively in the testing of Java systems constructed by more tra-
ditional methodologies, resulting in large banks of integration and system
tests. It is in this context that prioritization can potentially be useful.

Proceedings of the 15th International Symposium on Software Reliability Engineering (ISSRE’04) 
1071-9458/04 $ 20.00 IEEE 

Digital Object Identifier: 10.1109/ISSRE.2004.18
Publication Year: 2004 , Page(s): 113 - 124 



open source Java programs that have JUnit test suites, and
we examine the ability of several test case prioritization
techniques to improve the rate of fault detection of these
test suites, while also varying other factors that affect pri-
oritization effectiveness. Our results indicate that test case
prioritization can significantly improve the rate of fault de-
tection of JUnit test suites, but also reveal differences with
respect to previous studies that can be related to the Java
and JUnit paradigms.

In the next section of this paper, we describe the test
case prioritization problem and related work. Section 3 de-
scribes the JUnit testing framework, and our extensions to
that framework that allow it to support prioritization. Sec-
tion 4 presents our experiment design, results, and analysis,
describing what we have done in terms of experiment setup
to manipulate JUnit test cases. Section 5 discusses our re-
sults, and Section 6 presents conclusions and future work.

2 Background and Related Work

2.1 Test Case Prioritization

Test case prioritization techniques [15, 29, 33] schedule
test cases in an execution order according to some criterion.
The purpose of this prioritization is to increase the likeli-
hood that if the test cases are used for regression testing in
the given order, they will more closely meet some objective
than they would if they were executed in some other order.
For example, testers might schedule test cases in an order
that achieves code coverage at the fastest rate possible, ex-
ercises features in order of expected frequency of use, or
increases the likelihood of detecting faults early in testing.

Depending on the types of information available for pro-
grams and test cases, and the way in which those types of
information are used, various test case prioritization tech-
niques can be employed. One way in which techniques can
be distinguished involves the type of code coverage infor-
mation they use. Test cases can be prioritized in terms of
the number of statements, basic blocks, or methods they ex-
ecuted on a previous version of the software. For example,
a total block coverage prioritization technique simply sorts
test cases in the order of the number of basic blocks (single-
entry, single-exit sequences of statements) they covered, re-
solving ties randomly.

A second way in which prioritization techniques can be
distinguished involves the use of “feedback”. When prior-
itizing test cases, if a particular test case has been selected
as “next best”, information about that test case can be used
to re-evaluate the value of test cases not yet chosen prior to
picking the next test case. For example, additional block
coverage prioritization iteratively selects a test case that
yields the greatest block coverage, then adjusts the coverage
information for the remaining test cases to indicate cover-
age of blocks not yet covered, and repeats this process until

all blocks coverable by at least one test case have been cov-
ered. This process is then repeated on remaining test cases.

A third way in which prioritization techniques can be
distinguished involves their use of information about code
modifications. For example, the amount of change in a code
element can be factored into prioritization by weighting the
elements covered using a measure of change.

Other dimensions along which prioritization techniques
can be distinguished that have been suggested in the liter-
ature [14, 15, 22] include test cost estimates, fault sever-
ity estimates, estimates of fault propagation probability, test
history information, and usage statistics obtained through
operational profiles.

2.2 Previous Empirical Work

Early studies of test case prioritization focused on the
cost-effectiveness of individual techniques, the estimation
of a technique’s performance, or comparisons of techniques
[15, 28, 29, 31, 33]. These studies showed that various
techniques could be cost-effective, and suggested tradeoffs
among them. However, the studies also revealed wide vari-
ances in performance, and attributed these to factors involv-
ing the programs under test, test suites used to test them,
and types of modifications made to the programs.

Recent studies of prioritization have begun to examine
the factors affecting prioritization effectiveness [11, 22, 25].
Rothermel et al. [25] studied the effects of test suite design
on regression testing techniques, varying the composition of
test suites and examining the effects on cost-effectiveness
of test selection and prioritization. While this study did
not consider correlating attributes of change with technique
performance, Elbaum et al. [11] performed experiments
exploring characteristics of program structure, test suite
composition, and changes on prioritization, and identified
several metrics characterizing these attributes that correlate
with prioritization effectiveness.

More recent studies have examined how some of these
factors affect the effectiveness and efficiency of prioriti-
zation, and have considered the generalization of findings
through controlled experiments [12, 16, 26]. These studies
expose tradeoffs and constraints that affect the success of
techniques, and provide guidelines for designing and man-
aging prioritization and testing processes.

Most recently, Saff and Ernst [30] considered test case
prioritization for Java in the context of continuous testing,
which uses spare CPU resources to continuously run re-
gression tests in the background as a programmer codes.
They propose combining the concepts of test frequency and
test case prioritization, and report the results of a study that
show that prioritized continuous testing reduced wasted de-
velopment time. However, their prioritization techniques
are based on different sources of information than ours,
such as history of recent or frequent errors and test cost,
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rather than code coverage information. The measure of ef-
fectiveness they use also differs from ours: theirs involves
reduction of wasted time in development, whereas ours in-
volves the weighted average of the percentage of faults de-
tected over the life of a test suite.

With the exception of the work reported in [30], all of
this previous empirical work has concerned C programs and
system-level test suites constructed for code coverage, or
for partition-based coverage of requirements. In contrast,
the study we describe here examines whether prior results
generalize, by replicating previous experiments on a new
population of programs and test suites (Java and JUnit), and
examining whether the results are consistent with those of
the previous studies.

3 JUnit Testing and Prioritization

JUnit test cases are Java classes that contain one or more
test methods and that are grouped into test suites, as shown
in Figure 1. The figure presents a simple hierarchy having
only a single test-class level, but the tree can extend deeper
using additional nesting of Test Suites. The leaf nodes in
such a hierarchy, however, always consist of test-methods,
where a test-method is a minimal unit of test code.

. . .

test−method . . .

test−class

level

test−method
level

test−class test−class

test−method

test−class

test−method

Test Suite

Figure 1. JUnit test suite structure

JUnit test classes that contain one or more test methods
can be run individually, or a collection of JUnit test cases (a
test suite) can be run as a unit. Running individual test cases
is reasonable for small programs, but for large numbers of
test cases can be expensive, because each independent exe-
cution of a test case incurs startup costs. Thus in practice,
developers design JUnit test cases to run as sequences of
tests invoked through test suites that invoke test classes.

Clearly, choices in test suite granularity (the number and
size of the test cases making up a test suite) can affect the
cost of running JUnit test cases, and we want to investi-
gate the relationship between this factor and prioritization
results. To do this, we focus on two levels of test suite gran-
ularity: test-class level, a collection of test-classes that rep-
resents a coarse test suite granularity, and test-method level,
a collection of test-methods that represents a fine test suite
granularity. To support this focus we needed to ensure that
the JUnit framework allowed us to achieve the following
four objectives:

1. treat each TestCase class as a single test case for pur-
poses of prioritization (test-class level);

2. reorder TestCase classes to produce a prioritized order;
3. treat individual test methods within TestCase classes

as test cases for prioritization (test-method level);
4. reorder test methods to produce a prioritized order.

Objectives 1 and 2 were trivially achieved as a conse-
quence of the fact that the default unit of test code that can
be specified for execution in the JUnit framework is a Test-
Case class. Thus it was necessary only to extract the names
of all TestCase classes invoked by the top level TestSuite for
the object program2 (a simple task) and then execute them
individually with the JUnit test runner in a desired order.

Objectives 3 and 4 were more difficult to achieve, due
to the fact that a TestCase class is also the minimal unit of
test code that can be specified for execution in the normal
JUnit framework. Since a TestCase class can define mul-
tiple test methods, all of which will be executed when the
TestCase is specified for execution, providing the ability to
treat individual methods as test cases required us to extend
the JUnit framework to support this finer granularity. Thus
the principal challenge we faced was to design and imple-
ment JUnit extensions that provide a means for specifying
individual test methods for execution, as found in the total
set of methods distributed across multiple TestCase classes.

Since the fundamental purpose of the JUnit framework
is to discover and execute test methods defined in Test-
Case classes, the problem of providing test-method level
testing reduces to the problem of uniquely identifying each
test method discovered by the framework and making them
available for individual execution by the tester. We accom-
plished this task by extending (subclassing) various com-
ponents of the framework and inserting mechanisms for as-
signing numeric test IDs to each test method discovered.
We then created a SelectiveTestRunner that uses the new
extension components. The relationship between our exten-
sions and the existing JUnit framework is shown in Figure
2, which also shows how the JUnit framework is related to
the Galileo system for analyzing Java bytecode (which we
used to obtain coverage information for use in prioritiza-
tion). Our new SelectiveTestRunner is able to access test
cases individually using numeric test IDs.

To implement prioritization at the test-method level we
also needed to provide a way for the test methods to be ex-
ecuted in a tester-specified order. Because the JUnit frame-
work must discover the test methods, and our extensions
assign numeric IDs to tests in the order of discovery, to ex-
ecute the test cases in an order other than the one in which
they are provided requires that all test cases be discovered
prior to execution. We accomplished this by using a simple
two-pass technique. In the first pass, all the test methods rel-

2This process may need to be repeated iteratively if Test Suites are
nested in other Test Suites.

Proceedings of the 15th International Symposium on Software Reliability Engineering (ISSRE’04) 
1071-9458/04 $ 20.00 IEEE 



Classes

JUnit Framework Galileo

JUnitFilter (handles
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TestRunner
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Prioritization Extensions

JUnit Tests

object

Instrumentor

Figure 2. JUnit framework and Galileo

evant to the system are discovered and assigned numbers.
The second pass then uses a specified ordering to retrieve
and execute each method by its assigned ID. The tester (or
testing tool) is provided a means, via the SelectiveTestRun-
ner, of retrieving the IDs assigned to test methods by the
framework for use with prioritization.

4 Experiments

We wish to address the following research questions:

RQ1: Can test case prioritization improve the rate of fault
detection of JUnit test suites?

RQ2: How do the three types of information and informa-
tion use that distinguish prioritization techniques (type
of coverage information, use of feedback, and use of
modification information) impact the effectiveness of
prioritization techniques?

RQ3: Can test suite granularity (the choice of running test-
class level versus test-method level JUnit test cases)
impact the effectiveness of prioritization techniques?

In addition to these research questions, we examine
whether test case prioritization results obtained from sys-
tems written in an object-oriented language (Java) and using
JUnit test cases show different trends than those obtained
from systems written in a procedural language (C) using tra-
ditional coverage- or requirements-based system test cases.

To address our questions we designed several controlled
experiments. The following subsections present, for these
experiments, our objects of analysis, independent variables,
dependent variables and measures, experiment setup and
design, threats to validity, and data and analysis.

4.1 Objects of Analysis

We used four Java programs as objects of analysis: Ant,
XML-security, JMeter, and JTopas. Ant is a Java-based
build tool [4]; it is similar to make, but instead of being
extended with shell-based commands it is extended using

Java classes. JMeter is a Java desktop application designed
to load test functional behavior and measure performance
[5]. XML-security implements security standards for XML
[6]. JTopas is a Java library used for parsing text data [7].
Several sequential versions of each of these systems were
available and were selected for these experiments.

Table 1 lists, for each of our objects, “Versions” (the
number of versions),“Size” (the number of classes), “Test
Classes” (the number of JUnit test-class level test cases),
“Test Methods” (the number of JUnit test-method level test
cases), and “Faults” (the number of faults). The number of
classes corresponds to the total number of class files in the
final version. The numbers for test-class (test-method) list
the number of test classes (test methods) in the most recent
version. The number of faults indicates the total number of
faults available for each of the objects (see Section 4.3.3).

Table 1. Experiment objects

Subjects Versions Size Test Test Faults
Classes Methods

Ant 9 627 150 877 21
XML-security 4 143 14 83 6
JMeter 6 389 28 78 9
JTopas 4 50 11 128 5

4.2 Variables and Measures

4.2.1 Independent Variables

Our experiments manipulated two independent variables:
prioritization technique and test suite granularity.

Variable 1: Prioritization Technique

We consider nine different test case prioritization tech-
niques, which we classify into three groups to match an
earlier study on prioritization for C programs [15]. Table 2
summarizes these groups and techniques. The first group is
the control group, containing three “techniques” that serve
as experimental controls. (We use the term “technique” here
as a convenience; in actuality, the control group does not
involve any practical prioritization heuristics; rather, it in-
volves various orderings against which practical heuristics
should be compared.) The second group is the block level
group, containing two fine granularity prioritization tech-
niques. The third group is the method level group, contain-
ing four coarse granularity prioritization techniques.

Control techniques

• No prioritization (untreated): One control that we con-
sider is simply the application of no technique; this lets
us consider “untreated” JUnit test suites.

• Random prioritization (random): As a second control
we use random prioritization, in which we randomly
order the test cases in a JUnit test suite.

Proceedings of the 15th International Symposium on Software Reliability Engineering (ISSRE’04) 
1071-9458/04 $ 20.00 IEEE 



Table 2. Test case prioritization techniques.

Label Mnemonic Description
T1 untreated original ordering
T2 random random ordering
T3 optimal ordered to optimize rate of fault

detection
T4 block-total prioritize on coverage of block
T5 block-addtl prioritize on coverage of block

not yet covered
T6 method-total prioritize on coverage of method
T7 method-addtl prioritize on coverage of method

not yet covered
T8 method-diff-total prioritize on coverage of method

and change information
T9 method-diff-addtl prioritize on coverage of method/

change information, and adjusted
on previous coverage

• Optimal prioritization (optimal): To measure the ef-
fects of prioritization techniques on rate of fault detec-
tion, our empirical study uses programs that contain
known faults. For the purposes of experimentation we
can determine, for any test suite, which test cases ex-
pose which faults, and thus we can determine an opti-
mal ordering of test cases in a JUnit test suite for max-
imizing that suite’s rate of fault detection. This is not
a viable practical technique, but it provides an upper
bound on the effectiveness of our heuristics.

Block level techniques

• Total block coverage prioritization (block-total): By
instrumenting a program we can determine, for any test
case, the number of basic blocks in that program that
are exercised by that test case. We can prioritize these
test cases according to the total number of blocks they
cover simply by sorting them in terms of that number.

• Additional block coverage prioritization (block-addtl):
Additional block coverage prioritization combines
feedback with coverage information. It iteratively se-
lects a test case that yields the greatest block cover-
age, adjusts the coverage information on subsequent
test cases to indicate their coverage of blocks not yet
covered, and repeats this process until all blocks cov-
ered by at least one test case have been covered. If
multiple test cases cover the same number of blocks
not yet covered, they are ordered randomly. When all
blocks have been covered, this process is repeated on
the remaining test cases until all have been ordered.

Method level techniques

• Total method coverage prioritization (method-total):
Total method coverage prioritization is the same as to-
tal block coverage prioritization, except that it relies on
coverage measured in terms of methods.

• Additional method coverage prioritization (method-
addtl): Additional method coverage prioritization is
the same as additional block coverage prioritization,
except that it relies on coverage in terms of methods.

• Total diff method prioritization (method-diff-total):
Total diff method coverage prioritization uses modi-
fication information; it sorts test cases in the order of
their coverage of methods that differ textually (as mea-
sured by a Java parser that parses pairs of individual
Java methods through the Unix “diff” function). If
multiple test cases cover the same number of differing
methods, they are ordered randomly.

• Additional diff method prioritization (method-diff-
addtl): Additional diff method prioritization uses both
feedback and modification information. It iteratively
selects a test case that yields the greatest coverage of
methods that differ, adjusts the information on subse-
quent test cases to indicate their coverage of methods
not yet covered, and then repeats this process until all
methods that differ and have been covered by at least
one test case have been covered. If multiple test cases
cover the same number of differing methods not yet
covered, they are ordered randomly. This process is
repeated until all test cases that execute methods that
differ have been used; additional method coverage pri-
oritization is applied to remaining test cases.

The foregoing set of techniques matches the set exam-
ined in [15] in all but two respects. First, we use three
control techniques, considering an “untreated” technique in
which test cases are run in the order in which they are given
in the original JUnit test cases. This is a sensible control
technique for our study since in practice developers would
run JUnit test cases in their original ordering.

Second, the studies with C programs used statement and
function level prioritization techniques, where coverage is
based on source code, whereas our study uses coverage
based on Java bytecode. Analysis at the bytecode level is
appropriate for Java environments. Since Java is a plat-
form independent language, vendors or programmers might
choose to provide just class files for system components. In
such cases we want to be able to analyze even those class
files, and bytecode analysis allows this.

The use of bytecode level analysis does affect our choice
of prioritization techniques. As an equivalent to C “function
level” coverage, a method level granularity was an obvious
choice. As a statement level equivalent, we could use ei-
ther individual bytecode instructions, or basic blocks of in-
structions, but we cannot infer a one-to-one correspondence
between Java source statements and either bytecode instruc-
tions or blocks.3 We chose the basic block because the basic

3A Java source statement typically compiles to several bytecode in-
structions, and a basic block from bytecode often corresponds to more than
one Java source code statement.
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block representation is a more cost-effective unit of analy-
sis for bytecode. Since basic blocks of bytecode and source
code statements represent different levels of granularity, re-
sults obtained on the two are not directly comparable, but
we can still study the effect that an increase in granularity
has on prioritization in Java, as compared to in C.

Variable 2: Test Suite Granularity

To investigate the impact of test suite granularity on the ef-
fectiveness of test case prioritization techniques we consid-
ered two test suite granularity levels for JUnit test cases:
test-class level and test-method level as described in Sec-
tion 3. At the test-class level, JUnit test cases are of rela-
tively coarse granularity; each test suite and test-class that
is invoked by a TestSuite is considered to be one test case,
consisting of one or more test-methods. At the test-method
level, JUnit test cases are relatively fine granularity; each
test-method is considered to be one test case.

4.2.2 Dependent Variables and Measures

Rate of Fault Detection

To investigate our research questions we need to measure
the benefits of the various prioritization techniques in terms
of rate of fault detection. To measure rate of fault detec-
tion, we use a metric, APFD (Average Percentage Faults
Detected), introduced for this purpose in [15], that mea-
sures the weighted average of the percentage of faults de-
tected over the life of a test suite. APFD values range from
0 to 100; higher numbers imply faster (better) fault detec-
tion rates. More formally, let T be a test suite containing n
test cases, and let F be a set of m faults revealed by T. Let
TFi be the first test case in ordering T′ of T which reveals
fault i. The APFD for test suite T′ is given by the equation:

APFD = 1 − TF1 + TF2 + . . . + TFm

nm
+

1
2n

Examples and empirical results illustrating the use of this
metric are provided in [15].

4.3 Experiment Setup

To perform test case prioritization we required several
types of data. Since the process used to collect this data
is complicated and requires significant time and effort, we
automated a large part of the experiment.

Figure 3 illustrates our experiment process. There were
three types of data to be collected prior to applying prior-
itization techniques: coverage information, fault-matrices,
and change information. We obtained coverage information
by running test cases over instrumented objects using the
Galileo system for analysis of Java bytecode in conjunction
with a special JUnit adaptor. This information lists which

information
coverage Prioritization

Galileo
(Bytecode
 Analyzer)

Reordered

Test Suites

Techniques

matrices
fault

untreated

diff−total

diff−addtl

random

optimal

APFD Computation

information
change

addtl

total

APFD

JUnit tests

Object

Figure 3. Overview of experiment process

test cases exercised which blocks and methods; a previous
version’s coverage information is used to prioritize the cur-
rent set of test cases. Fault-matrices list which test cases
detect which faults and are used to measure the rate of fault
detection for each prioritization technique. Change infor-
mation lists which methods differ from those in the pre-
ceding version and how many lines of each method were
changed (deleted and added methods are also listed.).

Each prioritization technique uses some or all of this data
to prioritize JUnit test suites based on its analysis; then
APFD scores are obtained from the reordered test suites.
The collected scores are analyzed to determine whether the
techniques improved the rate of fault detection.

4.3.1 Object Instrumentation

To perform our experiment, we required objects to be in-
strumented to support the techniques described in Section
4.2.1. We instrumented object class files in two ways: all
basic blocks, and all method entry blocks, using the Galileo
bytecode analysis system (see Figure 2).

4.3.2 Test Cases and Test Automation

As described previously, test cases were obtained from each
object’s distribution, and we considered test suites at the
two levels of granularity previously described. To execute
and validate test cases automatically, we created test scripts
that invoke test cases, save all outputs from test execution,
and compare outputs with those for the previous version.
As shown in Figure 2, JUnit test cases are run through JU-
nitFilter and TestRunner (SelectiveTestRunner) over the in-
strumented classes.
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4.3.3 Faults

We wished to evaluate the performance of prioritization
techniques with respect to detection of regression faults.
The object programs we obtained were not supplied with
any such faults or fault data. To obtain faults, we con-
sidered two approaches: mutation and fault seeding. The
first approach would allow us to generate a large number of
faults, but these faults would not be representative of real
faults. The second approach cannot cost-effectively pro-
duce a large number of faults, but it can generate more real-
istic faults than those created by mutation. Thus, we chose
the second approach, and following the procedure described
in [20], and also used in the study described in [15], we
seeded faults. Two graduate students performed this fault
seeding; they were instructed to insert faults that were as
realistic as possible based on their experience with real pro-
grams, and that involved code inserted into, or modified in
each of the versions. To be consistent with previous stud-
ies, we excluded any faults that were detected by more than
20% of the test cases at both granularity levels.

4.4 Threats to Validity

In this section we describe the internal, external, and
construct threats to the validity of our experiments, and the
approaches we used to limit the effects that these threats
might have.

Internal Validity

The inferences we have made about the effectiveness of pri-
oritization techniques could have been affected by two fac-
tors. The first factor involves the potential faults in our ex-
periment tools. To control for this threat, we validated tools
through testing on various sizes of Java programs. The sec-
ond factor involves the faults seeded in our objects. Our
procedure for seeding faults followed a set process as de-
scribed in Section 4.3.3, which reduced the chances of ob-
taining biased faults. However some of our objects (XML-
security and JTopas) ultimately contained a relatively small
number of faults, and this might affect results.

External Validity

Three issues limit the generalization of our results. The
first issue is object program representativeness. Our ob-
jects are of small and medium size. Complex industrial
programs with different characteristics may be subject to
different cost-benefit tradeoffs. The second issue involves
testing process representativeness. If the testing process we
used is not representative of industrial processes, our re-
sults might not generalize. Control for these threats can be
achieved only through additional studies with a wider popu-
lation. The third issue involves fault representativeness. We
used seeded faults that were as realistic as possible, but they

were not real faults and were limited to one type of artificial
fault. Future study will need to consider other fault types.

Construct Validity

The dependent measure that we have considered, APFD,
is not the only possible measure of rate of fault detection
and has some limitations. For example, APFD assigns no
value to subsequent test cases that detect a fault already de-
tected; such inputs may, however, help debuggers isolate
the fault, and for that reason might worth measuring. Also,
APFD does not account for the possibility that faults and
test cases may have different costs. Future studies will need
to consider other measures for purposes of assessing effec-
tiveness.

4.5 Data and Analysis

To provide an overview of all the collected data we
present boxplots in Figure 4. The left side of the figure
presents results from test case prioritization applied to test-
class level test cases, and the right side presents results
from test case prioritization applied to test-method level test
cases. The top row presents results for an all programs to-
tal, and other rows present results per object program. Each
plot contains a box showing the distribution of APFD scores
for each of the nine techniques, across each of the versions
of the object program. See Table 2 for a legend of the tech-
niques.

The data sets depicted in Figure 4 served as the basis for
our formal analyses of results. The following sections de-
scribe, for each of our research questions in turn, the exper-
iments relevant to that question, presenting those analyses.

4.5.1 RQ1: Prioritization effectiveness

Our first research question considers whether test case pri-
oritization can improve the rate of fault detection for JUnit
test cases applied to our Java objects.

An initial indication of how each prioritization technique
affected a JUnit test suite’s rate of fault detection in this
study can be obtained from Figure 4. Comparing the box-
plots of optimal (T3) to those for untreated (T1) and ran-
dom (T2), it is apparent that an optimal prioritization order
could provide substantial improvements in rates of fault de-
tection. Comparing results for untreated (T1) to results for
actual, non-control techniques (T4 through T9) for both test
suite levels, it appears that all non-control techniques yield
improvement. However, the comparison of the results of
random orderings (T2) with those produced by non-control
techniques shows different results: some techniques yield
improvement with respect to random while others do not.

To determine whether the differences observed in the
boxplots are statistically significant we performed two sets
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Figure 4. APFD boxplots, all programs. The horizontal axes list techniques, and the vertical axes list APFD scores. The left
column presents results for test-class level test cases and the right column presents results for test-method level test cases.
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test-class level
Source SS d.f MS F-stat p-value
Technique 7943 6 1323 2.09 0.058
Program 25942 3 8647 13.7 < 0.0001
Residuals 77584 123 630

multiple comparison with a control by Dunnett’s method
critical point: 2.603

Estimate Std. Err Lower Upper
Bound Bound

T4-T1 11.7 8.15 -9.47 32.9
T5-T1 23.5 8.15 2.28 44.7 ****
T6-T1 11.3 8.15 -9.91 32.5
T7-T1 22.8 8.15 1.56 44.0 ****
T8-T1 12.6 8.15 -8.65 33.8
T9-T1 20.6 8.15 -0.61 41.8

test-method level
Source SS d.f MS F-stat p-value
Technique 30711 6 5118 7.02 < 0.0001
Program 18902 3 6300 8.64 < 0.0001
Residuals 89637 123 728

multiple comparison with a control by Dunnett’s method
critical point: 2.603

Estimate Std. Err Lower Upper
Bound Bound

T4-T1 15.0 8.76 -7.83 37.8
T5-T1 44.6 8.76 21.80 67.4 ****
T6-T1 14.6 8.76 -8.16 37.4
T7-T1 43.0 8.76 20.20 65.8 ****
T8-T1 19.3 8.76 -3.49 42.1
T9-T1 31.8 8.76 9.02 54.6 ****

Table 3. ANOVA and Dunnett’s method, untreated vs
heuristics, all programs.

of analyses, considering test-class and test-method levels
independently for all programs. The analyses were:

1. UNTREATED vs NON-CONTROL: We consider
untreated and non-control techniques to determine
whether there is a difference between techniques (us-
ing ANOVA), and whether there is a difference be-
tween untreated orders and the orders produced by
each non-control technique (using Dunnett’s method
for multiple comparison with a control [19]).

2. RANDOM vs NON-CONTROL: We perform the
same analyses as in (1), against the random ordering.

Table 3 presents the results of analysis (1), for a sig-
nificance level of 0.05. The ANOVA results indicate that
there is no difference between the techniques at the test-
class level (p-value = 0.058), but there is a significant differ-
ence at the test-method level (p-value < 0.0001). Dunnett’s
method reports that block-addtl and method-addtl are dif-
ferent from untreated at the test-class level, and block-addtl,
method-addtl, and method-diff-addtl are different from un-
treated at the test-method level. Cases that were statistically

test-class level
Source SS d.f MS F-stat p-value
Technique 3481 6 492 1.06 0.389
Program 23262 3 7754 14.1 < 0.0001
Residuals 67272 123 546

multiple comparison with a control by Dunnett’s method
critical point: 2.603

Estimate Std. Err Lower Upper
Bound Bound

T4-T2 -1.140 7.59 -20.90 18.6
T5-T2 10.600 7.59 -9.14 30.4
T6-T2 -1.580 7.59 -21.30 18.2
T7-T2 9.880 7.59 -9.87 29.6
T8-T2 -0.326 7.59 -20.10 19.4
T9-T2 7.720 7.59 -12.00 27.5

test-method level
Source SS d.f MS F-stat p-value
Technique 18519 6 3086 4.94 < 0.0001
Program 20613 3 6871 10.99 < 0.0001
Residuals 76848 123 624

multiple comparison with a control by Dunnett’s method
critical point: 2.603

Estimate Std. Err Lower Upper
Bound Bound

T4-T2 -6.85 8.11 -28.0 14.3
T5-T2 22.80 8.11 1.72 43.9 ****
T6-T2 -7.18 8.11 -28.3 13.9
T7-T2 21.20 8.11 0.09 42.3 ****
T8-T2 -2.50 8.11 -23.6 18.6
T9-T2 10.00 8.11 -11.1 31.1

Table 4. ANOVA and Dunnett’s method, random vs
heuristics, all programs.

significant are marked by “****” (which indicates confi-
dence intervals that do not include zero).

Table 4 presents the results of analysis (2). Similar to
the first analysis, the ANOVA results indicate that there is
no difference between the techniques at the test-class level
(p-value = 0.389), but there is a significant difference at the
test-method level (p-value < 0.0001). Dunnett’s method re-
ports that no individual prioritization technique differs from
random at the test-class level, but block-addtl and method-
addtl differ from random at the test-method level.

4.5.2 RQ2: The effects of information types and use on
prioritization results

Our second research question concerns whether differences
in the types of information and information use that dis-
tinguish prioritization techniques (type of coverage infor-
mation, use of feedback, type of modification information)
impact the effectiveness of prioritization.

Comparing the boxplots (Figure 4) of block-total to
method-total and block-addtl to method-addtl for both test
suite levels, it appears that the level of coverage information
utilized (fine vs coarse) has no effect on techniques. Com-
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paring the results of block-total to block-addtl and method-
total to method-addtl for both test suite levels, it appears
that techniques using feedback do yield improvement over
those not using feedback. Finally, comparison of the re-
sults of method-total to method-diff-total and method-addtl
to method-diff-addtl shows no apparent effect from using
modification information on prioritization effectiveness.

To determine whether the differences observed in
the boxplots are statistically significant we performed
an ANOVA and all-pairwise comparison using Tukey’s
method [8], considering test-class level and test-method
level independently, for all non-control techniques and all
programs. Table 5 presents the results of these analyses.

Overall, the results indicate that there is a significant
difference between techniques at the test-method level (p-
value = 0.00022); but no significant difference between
techniques at the test-class level (p-value = 0.377).

The all-pairwise comparison shows the following with
respect to information types and information use:

• Coverage information. The results indicate that there
is no difference between block-level and method-level
techniques at either test suite level, considering block-
total versus method-total (T4 - T6) and block-addtl
versus method-addtl (T5 - T7). Different levels of cov-
erage information did not impact the effectiveness of
prioritization.

• Use of Feedback. The results indicate a significant
difference between techniques that use feedback and
those that do not use feedback at the test-method level,
namely block-total versus block-addtl (T4 - T5) and
method-total versus method-addtl (T6 - T7). How-
ever, there was no significant difference at the test-
class level.

• Modification information. The results indicate no sig-
nificant difference between techniques that use modifi-
cation information and those that do not use modifica-
tion information, namely method-total versus method-
diff-total (T6 - T8) and method-addtl versus method-
diff-addtl (T7 - T9), at either test suite level.

4.5.3 RQ3: Test suite granularity effects

Our third research question considers the impact of test suite
granularity, comparing test-class level to test-method level.
The boxplots and the analysis related to our first two re-
search question suggest that there is a difference between
the two levels of test suite granularity, thus we performed an
ANOVA for non-control techniques and all programs com-
paring test-method level to test-class level. The results in-
dicate that there is suggestive evidence that test suite granu-
larity affected the rate of fault detection for block-addtl (T5,
p-value = 0.038) and method-addtl (T7, p-value = 0.048)
techniques.

test-class level
Source SS d.f MS F-stat p-value
Technique 3195 5 639 1.076 0.377
Program 25738 3 8579 14.44 < 0.0001
Residuals 62346 105 593

all pair comparison by Tukey’s method
critical point: 2.903

Estimate Std. Err Lower Upper
Bound Bound

T4-T5 -11.700 7.91 -34.7 11.2
T4-T6 0.438 7.91 -22.5 23.4
T4-T7 -11.000 7.91 -34.0 11.9
T4-T8 -0.817 7.91 -23.8 22.1
T4-T9 -8.860 7.91 -31.8 14.1
T5-T6 12.200 7.91 -10.8 35.1
T5-T7 0.723 7.91 -22.2 23.7
T5-T8 10.900 7.91 -12.0 33.9
T5-T9 2.890 7.91 -20.1 25.8
T6-T7 -11.500 7.91 -34.4 11.5
T6-T8 -1.260 7.91 -24.2 21.7
T6-T9 -9.300 7.91 -32.2 13.7
T7-T8 10.200 7.91 -12.7 33.2
T7-T9 2.170 7.91 -20.8 25.1
T8-T9 -8.040 7.91 -31.0 14.9

test-method level
Source SS d.f MS F-stat p-value
Technique 17882 5 3576 5.28 0.00022
Program 22367 3 7455 11.0 < 0.0001
Residuals 71112 105 677

all pair comparison by Tukey’s method
critical point: 2.903

Estimate Std. Err Lower Upper
Bound Bound

T4-T5 -29.700 8.44 -54.000 -5.34 ****
T4-T6 0.332 8.44 -24.000 24.70
T4-T7 -28.100 8.44 -52.400 -3.71 ****
T4-T8 -4.340 8.44 -28.700 20.00
T4-T9 -16.800 8.44 -41.200 7.49
T5-T6 30.000 8.44 5.670 54.40 ****
T5-T7 1.630 8.44 -22.700 26.00
T5-T8 25.300 8.44 0.998 49.70 ****
T5-T9 12.800 8.44 -11.500 37.20
T6-T7 -28.400 8.44 -52.700 -4.04 ****
T6-T8 -4.670 8.44 -29.000 19.70
T6-T9 -17.200 8.44 -41.500 7.16
T7-T8 23.700 8.44 -0.631 48.00
T7-T9 11.200 8.44 -13.100 35.50
T8-T9 -12.500 8.44 -36.800 11.80

Table 5. ANOVA and Tukey’s method, all heuristics , all
programs.

5 Discussion

Our results strongly support the conclusion that test case
prioritization techniques can improve the rate of fault de-
tection for JUnit test suites applied to Java systems. The
prioritization techniques we examined outperformed both
untreated and randomly ordered test suites, as a whole, at
the test-method level. Overall, at the test-class level, priori-
tization techniques did not improve effectiveness compared
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to untreated or randomly ordered test suites, but individual
comparisons indicated that techniques using additional cov-
erage information did improve the rate of fault detection.

We also observed that random test case orderings outper-
formed untreated test case orderings at both test suite levels.
We conjecture that this difference is due to the construction
of the JUnit test cases supplied with the objects used in this
study. It is typical in practice for developers to add new test
cases at the end of a test suite. Since newer test cases tend to
exercise new code, we conjecture that these new test cases
are more likely to be fault-revealing than previous test cases.
Randomly ordered test cases redistribute fault-revealing test
cases more evenly than original, untreated test case orders.
Of course prioritization techniques, in turn, typically out-
perform random orderings. The practical implication of this
result, then, is that the worst thing JUnit users can do is not
practice some form of prioritization.

We now consider whether the results we have observed
are consistent with those from the previous studies with C
programs and coverage- or requirements-based test suites.
Both this study (at the test-method level) and previous stud-
ies [13, 15, 25, 29] showed that prioritization techniques
improved the rate of fault detection compared to both ran-
dom and untreated orderings. Also, both this study and
earlier studies found that techniques using additional cover-
age information were usually better than other techniques,
for both fine and coarse granularity test cases. There were
sources of variation between the studies, however.

Regarding the impact of granularity, previous studies on
C showed that statement-level techniques as a whole were
better than function-level techniques. This study, however,
found that block-level techniques were not significantly dif-
ferent overall from method-level techniques. There are two
possible reasons for this difference. First, this result may be
due to the fact that the instrumentation granularity we used
for Java programs differs from that used for C programs, as
we explained in Section 4.2.1. Block-level instrumentation
is not as sensitive as statement-level instrumentation since
a block may combine a sequence of consecutive statements
into a single unit in a control flow graph.

A second related factor that might account for this result
is that the instrumentation difference between blocks and
methods is not as pronounced in Java as is the difference
between statements and functions in C. Java methods tend
to be more concise than C functions, possibly due to object-
oriented language characteristics [21] and code refactoring
[17], which tend to result in methods containing small num-
bers of blocks. For example, constructors, “get” methods,
and “set” methods frequently contain only one basic block.
A study reported in [24] supports this interpretation, pro-
viding evidence that the sizes of the methods called most
frequently in object-oriented programs are between one and
nine statements on average, which generally corresponds

(in our measurements on our objects) to only one or two
basic blocks. Since instrumentation at the method level is
less expensive than instrumentation at the basic-block level,
if these results generalize, these results have implications
for practitioners attempting to select a technique.

Where test suite granularity effects are concerned, con-
trary to the previous study [25], this study showed that fine
granularity test suites (test-method level) were more sup-
portive of prioritization than coarse granularity test suites
(test-class level). Although some techniques (block-addtl
and method-addtl) at the test-class level improved rate of
fault detection, overall analysis showed that test-class level
test suites did not support improvements in APFD. Since
the scope of each test case in a test-class level test suite is
limited to a specific class under test,4 one possible expla-
nation for this result involves the fact that, in our objects,
faults are located only in a few of the classes under test,
and the number of faults in several cases is relatively small.
The test-class level boxplots for the Ant program (Figure
4), which has a larger number of faults (21) overall, show a
different trend from the other plots, supporting this notion.

6 Conclusions and Future Work

We have presented a study of prioritization techniques
applied across four Java programs, to JUnit test suites
provided with those programs. Although several studies
of test case prioritization have been conducted previously,
most studies have focused on a single procedural language,
C, and on only a few specific types of test suites. Our
study, in contrast, applied prioritization techniques to an
object-oriented language (Java) tested under the JUnit test-
ing framework, to investigate whether the results observed
in previous studies generalize to other language and testing
paradigms.

Our results regarding the effectiveness of prioritization
techniques confirm several previous findings [13, 15, 25,
29], while also revealing some differences regarding prior-
itization technique granularity effects and test suite granu-
larity effects. As discussed in Section 5, these differences
can be explained in relation to characteristics of the Java
language and JUnit testing.

The results of our studies suggest several avenues for fu-
ture work. First, we intend to perform additional studies us-
ing larger Java programs and additional types of test suites,
and a wider range and distribution of faults. Second, since
our studies, unlike previous studies, did not find differences
between prioritization technique granularity levels, it would
be interesting to investigate what types of attributes caused
this result through a further analysis of the relationship be-
tween basic block size and method size, and the ratio of ex-
ecution of simple methods to complex methods. Third, con-

4This is true in the objects that we considered; in general, however, the
scope of a unit test could be subject to a developers’ specific practices.
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trary to our expectation, code modification information did
not improve cost-effectiveness significantly. This result was
also observed in C programs, and it is worth investigating
what types of factors other than fault distribution in a code
base could be involved in this outcome. Fourth, because our
analysis revealed a sizable performance gap between priori-
tization heuristics and optimal prioritization, we are investi-
gating alternative techniques. One such alternative involves
employing measures of static and dynamic dependencies in
the code to estimate locations where faults can reside.

Through the results reported in this paper, and this future
work, we hope to provide software practitioners, in partic-
ular practitioners who use Java and the JUnit testing frame-
work, with cost-effective techniques for improving regres-
sion testing processes through test case prioritization.
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