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RESEARCH Open Access

In silico and Ex vivo approaches identify a role for
toll-like receptor 4 in colorectal cancer
Daniel A Sussman1*, Rebeca Santaolalla1, Pablo A Bejarano2, Monica T Garcia-Buitrago3, Maria T Perez4,
Maria T Abreu1 and Jennifer Clarke5

Abstract

Background: Inflammation increases the risk of colorectal cancer (CRC). We and others have described a role for
TLR4, the receptor for LPS, in colon cancer. To explore the relationships between TLR4 expression and CRC, we
combined the strength of transcriptome array data and immunohistochemical (IHC) staining.

Methods: TLR4 signal intensity was scored in the stromal and epithelial compartments. Detection of differential
expression between conditions of interest was performed using linear models, Cox proportional hazards models,
and empirical Bayes methods.

Results: A strong association between TLR4 expression and survival was noted, though a dichotomous relationship
between survival and specific TLR4 transcripts was observed. Increasing TLR4 expression was seen with advancing
tumor stage and was also over-expressed in some adenomas. IHC staining confirmed the positive relationship
between TLR4 staining score in the CRC tumor stroma and epithelium with tumor stage, with up to 47% of colon
cancer stroma positive for TLR4 staining. Increased TLR4 expression by IHC was also marginally associated with
decreased survival. We now also describe that pericryptal myofibroblasts are responsible for a portion of the TLR4
stromal staining.

Conclusions: Increased TLR4 expression occurs early in colonic neoplasia. TLR4 is associated with the important
cancer-related outcomes of survival and stage.

Keywords: Colon cancer, Colorectal cancer, TLR4, Bioinformatics, Transcriptome, Immunohistochemistry

Introduction
A growing body of evidence supports the notion that in-
flammation and colorectal cancer (CRC) are interrelated,
including clinical observations and animal models [1].
The colonic mucosa is in constant contact with a high
density of diverse microorganisms [2]. Antigens from
these microbes are recognized by pattern-recognition
receptors of the innate immune system. The toll-like
receptor (TLR) family represents a critical part of this
innate immune recognition, with each TLR recognizing
pathogen-associated- or damage-associated-molecular
patterns (DAMPs) [3]. In particular, TLR4 recognizes
lipopolysaccharide (LPS) from the outer membrane of
Gram-negative bacteria, the most common type of colonic

bacteria [4]. Moreover, TLR4 is a receptor for DAMPs
like hyaluronic acid and S100A9 [5,6]. Our laboratory
has studied the role of TLR4 in intestinal inflammation
and colitis-associated neoplasia, supporting the function
of TLR4 as a tumor promoter in human tissue and mur-
ine models [7,8]. Our work in sporadic CRCs also links
TLR4 to activation of the neoplastic Wnt/β-catenin
pathway [9].
In this study, we wished to characterize the role of TLR4

in the natural history of sporadic colonic neoplasia.
The objective was to identify the prevalence of altered
TLR4 RNA expression and tissue localization in sporadic
neoplasia, and to determine the relationship between
TLR4 expression and survival in CRC. We combined
the strengths of transcriptomic array data and immu-
nohistochemical (IHC) staining. Analysis of arrayed
data offers a method by which to efficiently query the
genomic and protein expression within a given tissue
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offering insight into the influence of gene expression
on patient phenotypes. In an effort to establish the in-
fluence of TLR4 on CRC behavior, we drew upon gen-
omic data sets and validated RNA expression profiles
with immunofluorescent (IF) staining for theTLR4 pro-
tein from tissue microarrays (TMAs) obtained from the
National Cancer Institute (NCI).
Our results demonstrate that TLR4 is expressed in ad-

enomas and CRCs. Up to 47% of sporadic colon cancers
express TLR4 protein with meaningful impact on sur-
vival and other clinical indices. Expression in tumors is
localized predominantly in the stromal compartment,
with a notable increase in pericryptal fibroblasts in the
lamina propria.

Methods
Gene expression profiling
Gene expression arrays were identified by search of the
Gene Expression Omnibus (GEO) database [10]. Data sets
were searched using the terms “colon cancer”, “colorectal
cancer”, “rectal cancer”, “colon polyp”, and “colorectal
neoplasia”. Searches were limited to expression data (mes-
senger RNA). Data sets were included if they contained
paired human samples ≥16 subjects, included accompany-
ing clinical data, and had annotation files indicating TLR4.
Studies were excluded if they used only animal or cell line
models.
Keyword search (November 2011) revealed 170 CRC

data sets. 97 pertained to human CRC, and 64 consisted
of greater than or equal to 16 samples. 29 contained infor-
mation on TLR4 expression with clinical characteristics of
interest, including demographics, histologic progression of
dysplasia, polyp size, histology, initial CRC stage, tumor
grade, metastasis, survival (overall [OS], disease specific
[DSS], disease free [DFS]), recurrence, and microsatellite
instability (MSI).We then reorganized data by pairs of
probes to observe the influence of varying transcript
length on outcomes. Eleven studies were ultimately se-
lected. A second GEO search was performed to identify
series that stratified expression data by tissue compart-
ment (ie, epithelium vs stroma) to further clarify TLR4
localization.

Tissue microarrays
TMA slides were provided by the NCI Cancer Diagnosis
Program (CDP). Other investigators may have received
slides from these same array blocks. The CDP arranged
279 colon tissue specimens with 182 CRCs of mixed
stages and matched normal tissues on two slides [11].
Neoplastic tissue consisted of adenomas (n = 19) and
American Joint Committee on Cancer (AJCC) CRC
stage I (n = 24), II (n = 61), III (n = 72), and IV (n = 25).
Diverticulitis samples served as inflammatory, non-
cancer controls. De-identified clinical data were provided

by the CDP. Additional polyps with normal controls
were stained on proprietary TMAs (US Biomax).

IF scoring
IF staining was performed on TMAs to detect human
TLR4 (Novus Biologicals). Pan-cytokeratin was used as a
counterstain to highlight intestinal epithelium (Abcam),
and DAPI to counterstain nuclei. TLR4 detection was
enhanced using conjugated Tyramide with the fluoro-
chrome Alexa Fluor 488 (Invitrogen). Pan-cytokeratin
was detected using an anti-rabbit secondary antibody
conjugated with Alexa Fluor 647 (Invitrogen). Stained
slides were scanned (Olympus VS120) and viewed using
OlyVIA 2.4. A Leica TCS-SP5 Confocal was used for
triple IF images. Staining patterns, intensity quantifica-
tion, and extent TLR4 by surface area were determined
by two senior GI pathologists (PAB and MTG) masked
to diagnoses. A training subset was independently inter-
preted and inter-observer variation was determined.
Moderate agreement was noted for the stromal score
(weighted κ = 0.58 [95%CI 0.28-0.89]); moderate-to-
strong agreement was observed for epithelium (weighted
κ = 0.68 [95%CI 0.39-0.97]). Disagreement between scor-
ing was settled by consensus. TLR4 signal intensity was
scored in the stroma and epithelium. The signal intensity
was scored as 0, no TLR4 staining; 1+, low intensity; 2+,
moderate intensity; or 3+, high intensity. The extent
of surface area with TLR4 was scored on a scale of 0–
3 (0: no staining; 1+: present, but <20%; 2+: 20–50%;
and 3+: >50%). A TLR4 positivity score was calculated
by multiplying staining intensity and surface area data
by tissue compartment (range: 0–9) [7,12,13].
To qualify TMA observations, IHC was performed on

normal colon, adenomas, and CRCs for TLR4 (Novus Bio-
logicals), smooth muscle actin (α-SMA, Abcam), vimentin
(Cell Signaling), and CD68 (Dako) on curls from tissue
blocks. Secondary antibody conjugated with horseradish
peroxidase was used prior to incubation with the substrate
3,3′-diaminobenzidine. Samples were counterstained with
hematoxylin and scored (pathologist MTP).
Approval by the university’s Institutional Review Board

was obtained.

Data analysis
Gene expression data
Analysis included quality control assessments of processed
data. Differential expression discovery was performed using
linear models and empirical Bayes methods (t-tests and
ANOVA) via R statistical language [14]. Survival ana-
lyses were conducted using Cox proportional hazards,
with results corrected for multiple comparisons using
false discovery rate procedures [15]. Results were assessed
for biological relevance. Where processed data were un-
available, raw data were analyzed with Robust Multichip
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Average using background adjustment, quantile nor-
malization, and summarization; R language was used for
Affymetrix chips and compared to processed samples.
p-values <0.1 were considered significant. The p-value
cut-off of 0.1 was selected as this value represents a fa-
vorable compromise between false positive and true
positive rates in the setting of background “noise” asso-
ciated with the identification of differentially expressed
candidate RNAs with microarray data [16].

Tissue microarray data
TLR4 staining intensity, surface area, and intensity score
were correlated with clinico-pathologic endpoints. An
arbitrary TLR4 intensity score of >3 was selected to

denote positive TLR4 staining, with a score of >5 consid-
ered strongly positive. R software was used to reveal re-
lationships according to guidance provided by the CDP
[11]. Non-parametric Wilcoxon sum-rank tests were
performed for non-normal distributions.

Results
Gene expression data
11 data sets met our strict entry criteria (Figure 1A).The
most commonly included platform was an Affymetrix
chip employing four distinct TLR4 probes (Figure 1B).
For ease, we have relabeled these probes by transcript
length: v1552798 = Short, v221060 =Medium, v232068 =
Long1, and v224341 = Long2 (Figure 1C).

A

B

v1552798_a_at-----------------------Short Probe
v232068_s_at---------------------Long Probe 1
v224341_x_at---------------------Long Probe 2
v221060_s_at-------------------Medium Probe

Scale

RefSeq Genes 

C

Tissue Types and Sample Numbers
Normal Adenoma Cancer

GSE5206 GPL570 Affymetrix Human Genome U133 Plus 2.0 Array 100 Recurrence
GSE14333 GPL570 Affymetrix Human Genome U133 Plus 2.0 Array 290 Age
GSE16125 GPL5175 Affymetrix Human Exon 1.0 ST Array 36 OS

GPL3718 Affymetrix Mapping 250K Nsp SNP Array 36 OS
GSE17536 GPL570 Affymetrix Human Genome U133 Plus 2.0 Array 232 OS
GSE20916 GPL570 Affymetrix Human Genome U133 Plus 2.0 Array 24 36 Macrodissected samples - TLR4 Expression

GPL570 Affymetrix Human Genome U133 Plus 2.0 Array 20 10 10 LCM samples - TLR4 Expression
GSE33113 GPL570 Affymetrix Human Genome U133 Plus 2.0 Array 90 Metastases
GSE12225 GPL3676 NKI-CMF Homo sapiens 35k oligo array 79 TLR4 Expression Level, CRC Stage

GPL2641 Affymetrix Human Mapping 10K 2.0 Array 79 TLR4 Expression Level, CRC Stage
GSE31595 GPL570 Affymetrix Human Genome U133 Plus 2.0 Array 37 CRC Stage, Tumor Grade
GSE8671 GPL570 Affymetrix Human Genome U133 Plus 2.0 Array 32 32 Adenoma Size, RFS
GSE12945 GPL96 Affymetrix Human Genome U133A Array 62 DFS
GSE13294 GPL570 Affymetrix Human Genome U133 Plus 2.0 Array 155 MSI

Transcriptomic Data Sets Included in Analysis

GEO Series Platform Clinical Endpoints

[Note]: GEO=Gene Expression Omnibus, GSE=Gene Set Enrichment, OS=overall survival, LCM=laser capture micro-dissection, CRC=colorectal 
cancer, RFS=relapse-free survival, DFS=disease free survival, MSI=microsatellite instability

Transcript Name Transcript ID Length (bp) Protein ID Length (aa) Biotype Agilent TLR4 Ab for IHC
TLR4-001 ENST00000355622 4844 ENSP00000363089 839 Protein coding v221060_s_at v1552798_a_at v224341_x_at v232068_s_at - NB100-56566
TLR4-002 ENST00000394487 3908 ENSP00000377997 799 Protein coding v221060_s_at v1552798_a_at - - A_23_P60306 NB100-56566
TLR4-003 ENST00000472304 2741 No protein product - Processed transcript - - - - A_24_P69538 -

TLR4-004 ENST00000490685 539 No protein product - Processed transcript - - - - - -

[Note]: Table adapted from Ensembl Genome Browser (http://uswest.ensembl.org/index.html)

Complementary Probes
Affymetrix 

Figure 1 Data Sets and Description of Probes with Corresponding Transcripts. A) Transcriptome data sets included in analysis with GSE
Series Number as identified on GEO. Platform used, colon tissue type studied, numbers of tissues included, and clinical endpoints are listed.
B) TLR4 Gene and Transcripts. Assembly of known TLR4 gene and mRNA transcripts using University of California at Santa Clara Genome Browser.
The size of the transcript identified by the individual Affymetrix probes varies and we have denoted them as follows: v1552798aat (Short Probe),
v232068sat (Long Probe 1), v224341xat (Long Probe 2), and v221060sat (Medium Probe). C) TLR4 Transcript Table. Description of known transcript
variants by length of sequence and protein products where applicable. Complementary probes by platform manufacturer and antibodies for IHC
are detailed. This table was adapted from Ensembl Genome Browser.
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Demographics and colonic tumor location
Meaningful data regarding patient age at time of CRC
diagnosis was available in four studies (GSE14333,
GSE16125, GSE33113, and GSE31595). In one series,
increasing age was associated with higher TLR4 expres-
sion, but the effect was minor with a regression coeffi-
cient (coef ) = 1.02 (p = 0.018) (GSE14333) [17]. In the
remaining studies, no consistent relationship between
age, gender, ethnicity, colonic location, and TLR4 ex-
pression was noted. No relationship between TLR4 and
adenoma size was identified (GSE8671) [18].

TLR4 expression is increased in colon adenomas and CRC
In an effort to clarify the temporal relationship between
TLR4 expression and colonic neoplasia, we identified data
sets reporting normal tissue, adenomatous polyps, and
CRC. Skrzypczak, et al. examined surgical specimens from
105 patients comparing CRC to matched normal tissue.
All four TLR4 probes were significantly different between
carcinoma and matched normals, with lower median ex-
pression observed in normal tissue (Normal vs Carcinoma:
Short 3.48 vs 4.63, p = 4.16 × 10−7; Medium, 3.25 vs 4.78,
p = 4.97 × 10−5; Long1, 4.66 vs 6.58, p = 3.22 × 10−8;
Long2, 5.63 vs 7.07, p = 8.61 × 10−9)(GSE20916) [19].
We then asked whether TLR4 expression is increased

in the important adenocarcinoma precursor, adenoma-
tous polyps. All four probes for TLR4 were significantly
different between normal tissue and adenomas or cancer
(Figure 2A). TLR4 expression was higher in adenomas
than cancers; length of TLR4 transcript had no influence.
This observation was confirmed in a separate series con-
sidering all CRC stages in aggregate (GSE12225) [20]. This
series found that malignant neoplastic tissue had lower
TLR4 expression than adenomas from patients with
CRCs (adenoma vs malignancy: 0.54 vs 0.06, coef = −0.43,
p = 0.021) (GSE12225). This relationship held true among
all colon cancer stages. Tumor fractions consisting of a
mixture of adenoma and carcinoma, earlier stages of can-
cer, and carcinomas with lymph node metastasis, all had
lower TLR4 expression than adenomas with low-grade
dysplasia (coef = −1.81, p = 0.043; coef = −1.56, p = 0.058;
and coef = −1.27, p = 0.05, respectively) (GSE12225).
RMA expression analysis was performed to show fold
change (FC) for TLR4 expression between tissue types.
TLR4 FC increase was highest for adenoma-compared-to-
normal (mean FC in Figure 2B). The data demonstrate
that TLR4 expression is at least doubled in adenomas and
colon cancers compared with normal tissue.

TLR4 expression shifts to the stromal compartment in CRC
One of the shortcomings of arrayed tissues is that RNA
expression data are derived from a composite of epithelial
cells and the surrounding stroma. For CRC, this distinc-
tion is important to discern whether the tumor-promoting

signal comes from the malignantly transformed epithelial
cells or the surrounding stromal components. One data
set in GEO consisting of 13 CRCs and 4 matched normal
tissues separated tissue into epithelial and stromal com-
partments by laser capture microdissection (GSE35602)
[21]. TLR4 expression was higher in the stromal tissue
than malignant epithelium of CRC (coef = 1.21, p = 0.077).
Matched normal tissues derived from colon remote
from tumor showed trends toward lower TLR4 expres-
sion in CRC epithelium compared to normal epithelium
(coef = 0.68, p = 0.18). Among normal tissues, TLR4
expression was similar in the stroma and epithelium,
while in tumors expression was higher in the stroma
relative to epithelium, i.e., the relative expression of
stromal TLR4:epithelial TLR4 is higher in malignant
tissue than matched normals.

TLR4 expression is associated with CRC stage
We next sought to determine the relationship between
TLR4 expression and CRC stage. It is often difficult to pre-
dict which patients with stage II and stage III colon cancer
will benefit from chemotherapy [22,23]. Thorsteinsson,
et al. studied 37 patients with stage II and III colon cancer;
TLR4 expression was significantly higher in stage III tu-
mors than stage II for two of the four TLR4 probes
(Medium, p = 0.061 and Long2, p = 0.092) (GSE31595)
[24]. TLR4 expression was numerically, but not statisti-
cally, higher in stage III tumors for the remaining probes
(Short, p = 0.466 and Long1, p = 0.117).
By contrast, advanced rectal cancer with nodal metasta-

ses has decreased TLR4 expression compared with earlier
stage rectal cancer (coef = −0.44, p = 0.079) (Table 1)
(GSE12225) [20]. This relationship also held true when
comparing subjects with nodal metastases or advanced
local disease, T3N0, with node-negative, early stage
rectal cancer (coef = −0.53, p = 0.029) (GSE12225).

TLR4 expression is strongly associated with survival
In a large series of 232 CRCs, TLR4 expression was related
to OS when all stages of CRC were considered in aggre-
gate (Figure 3A) (GSE17536) [25]. Specifically, TLR4 was
significantly associated with both DSS and OS in AJCC
stages 2 and 4. Across all stages, we found that for two
of the TLR4 probes (Short and Long2) a higher expres-
sion correlated with improved OS (exp(coef )short = 4.04,
p = 0.019; exp(coef)long2 = 3.69, p = 0.06). By contrast, the
remaining probes (Medium and Long1) showed decreased
expression with improved survival (exp(coef)medium = 0.26,
p = 0.019; exp(coef)long1 = 0.22, p = 0.034).
The association between survival and TLR4 expres-

sion was corroborated by a strong correlation between
TLR4 expression (Short and Long2) and DFS among
290 colon cancer patients ranging from Duke’s stages A
through D (exp (coef ) 0.78, p = 0.0008 and exp (coef )
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1.47, p = 0.0006) (GSE14333) [17]. TLR4 expression
levels were divided into quartiles by probe. Survival
curves were constructed per probe, meant to represent
low, average, and high expression (Figure 3B, 3C). For
Long2, higher expression of TLR4 was associated with
lower probability of DFS (Figure 3B). The inverse rela-
tionship was demonstrated for Short (Figure 3C). This
association between DFS and TLR4 expression was not
supported by other GSE series examining the endpoints of
OS, DFS (GSE12945) [26], relapse-free survival (GSE8671)
[18] and recurrence-free survival (GSE33113) [27]. In a
separate series of 48 sporadic colon cancer samples, no
association between TLR4 expression and survival was
observed (exp (coef) = 1.13, p = 0.61) (GSE16125) [28].

When differentiating colon from rectal cancers, the
tumor location was not significant in any models of
survival, p > 0.80.

TLR4 expression is strongly associated with recurrence after
chemotherapy
Among 100 stage 3 colon cancers, significant associations
between TLR4 expression and tumor recurrence were ob-
served [29] with higher expression for all four probes
among patients with recurrence compared to those with-
out (p-values = 0.036, 0.076, 0.087, and 0.056 for probes
Short, Probe, Long1, and Long2, respectively) (GSE5206).
These data suggest that specific TLR4 transcripts may be

Figure 2 TLR4 Expression by Colon Tissue Type. A) Mean TLR4 expression for normal colon, adenoma, and CRC stratified by each of the 4
probes for TLR4. Mean TLR4 expression was higher in colonic neoplasia than normal tissue for all probes with the macro-dissected specimens
from GSE20916. B) Fold change for TLR4 expression was calculated using RMA. Mean FC for the normal-to-CRC, normal-to-adenoma, and
adenoma-to-cancer samples for each TLR4 probe are presented. The lowest grade of histology is the reference standard for comparison within
each column. The highest TLR4 fold change (FC) is in adenoma-compared-to-normal among all tissues tested.
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incorporated in predictive models of colon cancer survival
and recurrence.

Lower TLR4 expression and microsatellite instability (MSI)
Microsatellite unstable tumors are associated with defects
in mismatch repair but have improved prognosis [30].
We investigated the relationship between MSI and
TLR4 expression. Among 77 microsatellite stable (MSS)
and 78 MSI colon cancers, TLR4 expression strongly
correlated with MSI status, with MSI tumors having sig-
nificantly lower TLR4 expression than MSS compara-
tors (GSE13294) [31].MSI was associated with lower
expression of TLR4.

IHC staining for TLR4
The data from bioinformatics analysis of expression arrays
demonstrate an increase in TLR4 genomic expression in
neoplastic colon tissue, with relatively high expression in
the stromal compartment in particular. We next wished to
examine whether this could be seen at the protein level
using NCI TMAs. TMAs consisting of 182 independent
cancers, 19 adenomas, and matched normal tissue were
examined for TLR4 expression (Figure 4A,4B) [11]. Select
cores were excluded from the analysis due to poor sample
integrity or staining quality (18 out of 239). The stroma of
82/174 (47.1%) of CRCs was positive for TLR4 expression
(score > 3). 62/174 (35.6%) of tumor stroma were strongly
positive (score > 5). The epithelium of 11/174 (6.32%) of
CRCs was positive for TLR4 expression; 6/174 (3.45%) of
tumor epithelia were strongly positive.

TLR4 staining in the tumor stroma and epithelium increases
with tumor stage
Using semi-quantitative scoring, a positive relationship
was noted between TLR4 staining score in the tumor
stroma and tumor stage, controlling for histology grade,
with significantly higher intensity score for stages 3 and
4 compared to stage 1 (Stage 1 = 2.80, Stage 2 = 3.24,
Stage 3 = 4.36, Stage 4 = 3.75; p = NS, 0.0004, and 0.04,
respectively) (Figure 4C,4D,4E). A positive relationship
was noted between TLR4 staining score in the tumor
epithelium and tumor stage, controlling for histology
grade, with significantly higher intensity score for stages
2 and 3 compared to stage 1 (Stage 1 = 0.17, Stage 2 =
0.64, Stage 3 = 0.64, Stage 4 = 0.92; p =0.01, 0.002, and
NS, respectively). These data suggest that TLR4 protein
expression mirrors what we found in the transcriptome
data.

Tumor stroma, epithelium, and grade
TLR4 staining scores were recorded in the tumor
stroma and stratified by tumor grade as follows: well-
differentiated = 3.91, moderately-differentiated = 3.02,
poorly-differentiated = 3.59, undifferentiated = 3.64
(ANOVA comparing all four categories, p = 0.0005).
The TLR4 staining score in the tumor epithelium was
classified by tumor grade: well-differentiated = 0.57,
moderately-differentiated = 0.84, poorly-differentiated =
0.00, or undifferentiated = 0.23 (ANOVA comparing all
four categories, p = 9.99 × 10−9). Well-differentiated tu-
mors had a higher stroma:epithelium TLR4 staining

Table 1 TLR4 expression and tumor stage

Rectal cancer - GSE12225

Experimental group Control Coef p-value

Adenocarcinoma Adenoma

AC + CA + CC + CC(N) AA −0.4333 0.0208*

T2 stage with nodal metastases No nodal Metastases

T2N1 + T2N2 + T2N3 T0N0 + T1N0 + T2N0 + T3N0 + TisN0 −0.442 0.0787*

T2 stage with nodes and T3 stage without nodes Lower stage without nodes

T2N1 + T2N2 + T2N3 + T3N0 TisN0 + T0N0 + T1N0 + T2N0 −0.529 0.0289*

Stage III relative to stage II - GSE31595

Probe Coef p-value

Short probe 0.105 0.466

Medium probe 0.43 0.061*

Long probe 1 0.744 0.117

Long probe 2 0.695 0.092*

Notes:
[1] Coef = regression coefficient, AA = Adenoma, AC = Adenoma fraction from cases with a carcinoma focus, CA, tumor fractions consisting of a mixture of
adenoma and carcinoma tissue, CC = carcinomas without lymph node metastasis, CC (N) = carcinomas with lymph node metastasis, TxNx = tumor size/extension
and nodal status as part of the TNM staging system, * = statistically significant.
TLR4 expression is significantly lower in later stage than earlier stage rectal cancer (coef < 0 signifies a negative relationship of the experimental compared to
control group, while coef > 0 signifies a positive relationship of the experimental compared to control group). Subjects having nodal metastases express lower
TLR4 than those without (GSE12225). In a separate series of patients with stage II and III colon cancer, TLR4 expression was higher in stage III tumors than stage II
for two of the four TLR4 probes (Medium Probe and Long Probe 2) (GSE31595).
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ratio than moderately-differentiated tumors (6.86 vs
3.59, respectively). Poor- and un-differentiated tumors
had modest stromal staining but little to absent epithe-
lial staining.

Survival and recurrence
A trend toward statistical significance was observed be-
tween increased TLR4 stromal staining and decreased
OS (p = 0.16) after correcting for both stage and grade.

Figure 3 CRC Survival and Relationship to TLR4 Expression. A) DSS, OS, DFS, and RFS are shown with their associated exponential regression
coefficients (exp (coef)) and significance levels. Note that the direction of the coefficients varied depending on probe. B and C) Cox Proportional
Hazard Curves (GSE14333) for DFS based on level of TLR4 expression. Three curves are generated for each probe based on quartiles of TLR4
expression. These graphs demonstrate that probability of DFS is significantly associated with TLR4 expression, and the direction of the association
is probe-dependent. B) For TLR4 long probe 2,DFS is lowest in the group with the highest level of expression (75th percentile). Cut-off values for
TLR4 expression were as follows: 5.0 (25th percentile), 6.8 (50th percentile), and 8.0 (75th percentile). C) For the TLR4 Short Probe, higher levels of
expression result in improved DFS. The same cut-off values were used as in Figure 3B.
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Marginal significance was observed for the relationship
describing increased epithelial TLR4 staining and de-
creased OS (p = 0.11). No relation between TLR4 ex-
pression and time to tumor recurrence was noted.

TLR4 staining in polyps
Given the small number of interpretable adenomatous
tissue cores on the NCI TMA (n = 15), an additional
TMA with adenomas and normal controls was stained.
Small sample sizes prevented achievement of significance
for all endpoints. Mean TLR4 stromal staining scores were
lower in adenomatous polyps (n = 14) than normal tissue
(n = 12) controls (adenoma 2.29 versus normal 3.5, W =
95, p = 0.58). Mean TLR4 epithelial staining scores were
lower in adenomatous polyps than normal tissue controls
(adenoma 0.57 versus normal 0.67, W = 67, p = 0.30).
Mean TLR4 stromal and epithelial staining scores among
inflammatory polyps (IP) were higher than normal tissue
controls (stroma: IP 5.6 vs normal 3.5, p = 0.22 and epithe-
lium: IP 1.8 versus normal 0.67, p = 0.81). These under-
powered observations support the expected finding that
inflamed polyps would manifest higher TLR4 levels.

Increased TLR4 expression in the epithelium and pericryptal
myofibroblasts (PCMs) in CRCs
Using cytokeratin staining to identify epithelium, we found
that TLR4 is over-expressed in a subset of tumors and
that the expression increases from normal to adenoma
to cancer. We also observed increased TLR4 staining in
the cytokeratin-negative stroma. Given the increased
stromal staining of TLR4, we wished to clarify which
cell types comprise the TLR4-positive stroma in CRCs.
Clinical insights from hematoxylin sections suggested
fibroblasts as the source for this increased intensity.
IHC staining of unmatched normal colon, adenoma, and
CRC patient samples for TLR4, vimentin, and CD68 was
performed in a limited cohort to identify myofibroblasts
and macrophages, respectively (Figure 5). In the stromal
compartment of a subset of CRCs, IHC staining for TLR4
localized to the PCMs. Vimentin and CD68 staining in
the stromal compartments of CRCs with low and high
expression of TLR4 confirmed that the increased TLR4
signal was localized to PCMs and not related to tumor-
associated macrophages.

Discussion
We have leveraged available transcriptome databases and
well-designed TMAs to address the biologic role of TLR4
in colon dysplasia. The current work both confirms hy-
potheses engendered from our basic science work and
generates new hypotheses about TLR4 signaling and spor-
adic CRC. In our animal models, we have found that mice
constitutively expressing TLR4 have an increased severity
of chemically-induced colitis and develop more colonic tu-
mors [8]. This tumor burden could be attenuated using
TLR4-inhibiting antibody. Bringing relevance to humans
with colitis-associated cancers (CACs), TLR4 is over-
expressed in the majority, with increasing expression with
dysplastic progression [8]. We have further shown that
TLR4 leads to activation of the Wnt/β-catenin pathway
which is activated in most sporadic CRCs [9]. Analogous
to CACs, we have found an association between TLR4
expression in sporadic CRC and the progression of neo-
plasia, stage, DFS, and MSS. In particular, an increased
expression of TLR4 in the tumor stroma relative to the
malignant epithelium was noted. These expression data
were validated with IHC showing a similar stroma:
epithelium gradient. 35.6% of CRCs demonstrate high
levels of TLR4 protein in the tumor stroma, while 3.45%
have high levels in the tumor epithelium. Within the
stroma, high TLR4 signal localized to the PCMs in
particular.
Others using different methodology and smaller num-

bers demonstrated that TLR4 is associated with tumor
stage. Cammarota, et al. have previously reported that
stromal TLR4 expression in CRCs is associated with
disease progression [13]. In this series, CRC relapse was
predicted by increased stromal TLR4 for stage pT3,
lending credence to the predictive capability of this
marker [13]. Our study corroborated these findings
using a larger sample of tissues, and answered the subse-
quent question of whether TLR4 transcripts can be associ-
ated with additional CRC endpoints. We confirmed that
TLR4 transcript levels were related to colonic dysplasia,
CRC stage, and survival.
In a separate series, Wang, et al. demonstrated high

TLR4 expression in 20% of CRCs by immunostaining
and its association with shorter OS. Both the expression
of TLR4 and its co-receptor MyD88 were associated
with the presence of liver metastases [12]. In xenograft
models of CRC, TLR4 silencing with RNA interference

(See figure on previous page.)
Figure 4 Immunofluorescent staining of TMAs. A) Low power (10x) view of NCI TMA slide stained for TLR4 (green), intestinal epithelium/
pan-cytokeratin (red), and nucleus/DAPI (blue). B) Representative tissue cores from normal (I), adenomatous polyps (II), and CRC (III and IV) are
shown. C and D) TLR4 staining score by tissue type and tissue compartment (stroma vs epithelium) are shown. C) TLR4 staining in the tumor
stroma had a significantly higher average intensity score for stages 3 and 4 CRC when compared to stage 1. D) TLR4 staining in the tumor
epithelium had a significantly higher average intensity score for stages 2 and 3 when compared to stage 1. E) TLR4 staining by compartment
broken down by stage (controlling for grade) and grade (controlling for stage).
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decreases the metastatic tumor burden in the liver [32].
Proliferation of TLR4-expressing breast tumors has also
been stunted with TLR4-inhibition in vitro [33]. In con-
trast, data from unrelated CRC cell line populations sup-
port the loss of expression or down-regulation of TLR4
in metastases compared to earlier stage tumors [34].
The conflicting observations with respect to TLR4’s role
in CRC metastases likely is a reflection of the biologic
variation in CRCs, with TLR4 being over-expressed in a
subset. Our study did not find a clear association with
metastases.
Our study used IF and IHC to understand the location

of TLR4 expression in colonic neoplasia. In agreement
with Cammarota and Wang, we found that TLR4 protein
expression in the stromal compartment was associated
with more advanced stages of colon cancer. But we also
found that normal stroma has TLR4 positive cells, largely
CD68+ macrophages. Our transcriptome data demon-
strated high TLR4 expression in adenomas relative to
normal tissue and, to a lesser degree, higher expression
relative to cancer. We speculate that adenomas may
represent a more homogeneous tissue than cancer or
that TLR4 plays an important role in tumor promotion
from adenoma to cancer.
Our study and Cammarota found that stromal TLR4

expression is associated with cancer outcomes. In addition
to the previous documentation of TLR4 expression by
the submucosal vascular endothelium or hematopoietic
mononuclear cells, our study demonstrated that PCMs
also contribute to the TLR4 expression found in the
stroma [13]. These PCMs have previously been recog-
nized as a discrete cell type in colonic adenomas, dis-
playing a unique pattern of surface markers [35,36].
Increased density of these fibroblasts has been de-
scribed in the stroma of digestive tract neoplasia [37].
They may originate from deeper layers of the intestine,
and have been proposed as tumor propagators via the
epithelial-to-stromal transition [38,39]. We propose that
TLR4 on the surface of these PCMs may play a role in
the interaction between the epithelial and stromal com-
partments to promote neoplasia. These myofibroblasts
have been shown in vitro to respond to TLR signals and
may therefore contribute to tumor promotion by secret-
ing trophic factors in response to bacterial ligands [40].

One of the interesting findings among the platforms
containing multiple TLR4 probes was a marked diver-
gence of transcripts with clinical outcomes. In particular,
the direction and magnitude of specific TLR4 transcript
expression on survival was evident, where TLR4 probes
fall into two distinct groups, each of which targets a dif-
ferent transcript variant. There exist four recognized
mRNA TLR4 products (Figure 1B) [41]. Four probes from
the commercial platform correspond to longer transcripts,
while the remaining two probes are associated specifically
with shorter mRNAs. The dichotomous relationship
between RNA transcripts and clinical outcomes raises
the possibility that different TLR4 transcripts or their
relative ratios have different biological activities and
consequences. The immunology literature supports the
notion that alternative splicing of genes involved in in-
nate immunity regulates their function [42-44]. In par-
ticular, alternative splicing has been observed in TLR
family members expressed in response to LPS [43].
This splicing phenomenon may explain the opposing
survival results observed herein. Epigenetic events, like
hypermethylation of gene promoters which occur fre-
quently in CRCs, may also play a role in the expression
of varying transcripts [45]. Other post-transcriptional
regulatory events may also contribute; trafficking of
transcripts by microRNAs offers another plausible ex-
planation. miR21, a microRNA present in many tu-
mors, also has been shown to down-regulate TLR4 [46].
We speculate that the type of TLR4 mRNA/protein prod-
uct regulates biological events, as may non-coding TLR4
transcripts found in genome browsers (Figure 1C). Bench
and animal experiments are required to interrogate
the mechanism for the functional differences in TLR4
transcripts.
The authors acknowledge the limitations of this study.

Most notably, the TMA histologic scoring was based on
cores; accordingly, TLR4 positivity may have been
underestimated given the heterogeneous nature of CRCs
and sampling error inherent in cores. We did not incu-
bate TMA controls with only secondary antibody (TLR4)
without the primary antibody; our controls consisted of
unmatched, uninvolved colonic tissue. Finally, RNA ex-
pression and protein staining conclusions were drawn
from unmatched samples in some instances.

(See figure on previous page.)
Figure 5 Pericryptal Myofibroblasts are Responsible for Increased TLR4 Expression in a Subset of CRCs. A) CRCs were separated into two
groups representing low- and high- stromal expression of TLR4 by IHC staining. In normal tissue, stromal TLR4 expression is mainly due to
macrophages (Green: TLR4, Red: CD68, Merge: TLR4 + CD68 + DAPI (blue)). Conversely, in CRCs increased vimentin and decreased CD68 staining
in the pericryptal space confirm that this signal was due to pericryptal myofibroblasts and not related to tumor-associated macrophages.
B) Double-stained immunofluorescence for TLR4 (green) and vimentin (red) in normal (I), adenoma (II), and colon adenocarcinoma (III) (10×). In
the stromal compartment of CRCs, immunofluorescent staining for TLR4 localized to the pericryptal myofibroblasts in a subset of samples. C) IHC
staining of colon adenocarcinoma for TLR4, vimentin, and α-SMA (40×). Staining co-localizes to the pericryptal space, confirming the signal arises
from pericryptal myofibroblasts. D, E, and F) An increase in IHC staining for α-SMA and vimentin was noted in CRCs when compared to normal
or low grade dysplasia. A decrease in staining for CD68 positive macrophages was observed with higher degrees of dysplasia.

Sussman et al. Journal of Experimental & Clinical Cancer Research 2014, 33:45 Page 11 of 13
http://www.jeccr.com/content/33/1/45



Conclusions
TLR4 may play distinct roles in the transition from nor-
mal colon to adenoma and from a local to a more ad-
vanced tumor. In our animal models, the absence of
TLR4 protects against developing dysplasia. In animals
with colonic tumors, treatment with an anti-TLR4 anti-
body results in smaller tumors. Our animal data com-
bined with the human data presented in the current
manuscript argue for studying TLR4 antagonists in can-
cer. These findings also support further investigation of
TLR4 in predictive models of colon cancer outcomes.
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