Reclassification of Subspecies of *Acidovorax avenae* as *A. Avenae* (Manns 1905) emend., *A. cattleyae* (Pavarino, 1911) comb.nov., *A. citrulli* Schaad et al., 1978) comb.nov., and proposal of *A. oryzae* sp. nov.

Norman Schaad
USDA-ARS

Elena Postnikova
USDA-ARS

Aaron Sechler
USDA-ARS

Larry E. Claflin
Kansas State University

Anne K. Vidaver
University of Nebraska-Lincoln, avidaver1@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/plantpathpapers

Part of the Plant Pathology Commons

Schaad, Norman; Postnikova, Elena; Sechler, Aaron; Claflin, Larry E.; Vidaver, Anne K.; Jones, Jeffrey B.; Agarkova, Irina V.; Ignatov, Alexander; Dickstein, Ellen; and Ramundo, Bruce A., "Reclassification of Subspecies of *Acidovorax avenae* as *A. Avenae* (Manns 1905) emend., *A. cattleyae* (Pavarino, 1911) comb.nov., *A. citrulli* Schaad et al., 1978) comb.nov., and proposal of *A. oryzae* sp. nov." (2008). *Papers in Plant Pathology*. 133.
https://digitalcommons.unl.edu/plantpathpapers/133

This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Authors
Norman Schaad, Elena Postnikova, Aaron Sechler, Larry E. Claflin, Anne K. Vidaver, Jeffrey B. Jones, Irina V. Agarkova, Alexander Ignatov, Ellen Dickstein, and Bruce A. Ramundo
Reclassification of subspecies of *Acidovorax avenae* as *A. Avenae* (Manns 1905) emend., *A. cattleyae* (Pavarino, 1911) comb. nov., *A. citrulli* Schaad et al., 1978) comb. nov., and proposal of *A. oryzae* sp. nov.

Norman W. Schaad\(^a\), Elena Postnikova\(^a\), Aaron Sechler\(^a\), Larry E. Claflin\(^b\), Anne K. Vidaver\(^c\), Jeffrey B. Jones\(^d\), Irina Agarkova\(^c\), Alexander Ignatov\(^e\), Ellen Dickstein\(^d\), Bruce A. Ramundo\(^b\)

\(^a\)ARS-USDA, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Ft. Detrick, MD 21702, USA
\(^b\)Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
\(^c\)Department of Plant Pathology, University of Nebraska, Lincoln, NB, USA
\(^d\)Department of Plant Pathology, University of Florida, USA
\(^e\)Center “Bioengineering” RAS, Moscow, Russia

Abstract

The bacterium *Acidovorax avenae* causes disease in a wide range of economically important monocotyledonous and dicotyledonous plants, including corn, rice, watermelon, anthurium, and orchids. Genotypic and phenotypic relatedness among strains of phytopathogenic *A. avenae* subsp. *avenae*, *A. avenae* subsp. *citrulli*, *A. avenae* subsp. *cattleyae* and *A. konjaci*, as well as all other *Acidovorax* species, including *A. facilis*, the type strain of *Acidovorax*, was determined. The 16s rDNA sequencing confirmed previous studies showing the environmental species to be very distant from the phytopathogenic species. DNA/DNA reassociation assays on the different strains of *A. avenae* revealed four (A, B, C, and D) distinct genotypes. Taxon A included six *A. avenae* subsp. *avenae* strains from corn that had a mean reciprocal similarity of 81%; taxon B included six *A. avenae* subsp. *avenae* strains from rice that had a mean reciprocal similarity of 97%; taxon C contained 11 *A. avenae* subsp. *citrulli* strains from cucurbits (cantaloupe, watermelon, and pumpkin) that had a mean reciprocal similarity of 88%, and taxon D contained four *A. avenae* subsp. *cattleyae* strains from orchids that had a mean similarity of 98%. The mean reciprocal relatedness between taxa A, B, C, and D was less than 70%. Sequence analysis of 16S rDNA and the 16S–23S rDNA internally transcribed spacer region, as well as AFLP analysis, revealed the same four taxa. All four were easily differentiated phenotypically from each other and from all other recognized *Acidovorax* species. Strains of *A. avenae* did not contain 3-hydroxyoctanoic acid, which was found in all other species. On the basis of these and previous genetic and phenotypic results, we propose an emendation of the species *A. avenae*. *A. avenae* subsp. *citrulli* (C strains) and *A. avenae* subsp. *cattleyae* (D strains) should be elevated to species rank as *A. citrulli* and *A. cattleyae*, respectively. We further propose a new taxon for the B strains, *A. oryzae* sp. nov. with FC-143\(^T\) = ICPB 30003\(^T\) = ICMP 3960\(^T\) = ATCC 19882\(^T\) as the type strain.

Published by Elsevier GmbH.

Keywords: *Acidovorax*; Taxonomy; 16S and ITS sequencing; AFLP; Phenotypic tests; DNA/DNA reassociation; Emendation

\(^*\)Corresponding author.
E-mail address: norman.schaad@ars.usda.gov (N.W. Schaad).
\(^1\)Authors contributed equally to this work.

0723-2020/$ - see front matter Published by Elsevier GmbH.
doi:10.1016/j.syapm.2008.09.003
Introduction

Acidovorax avenae subsp. avenae (Pseudomonas avenae) and A. avenae subsp. cattleyae (synonymous with P. pseudoalcaligenes subsp. citrulli) have emerged worldwide as serious pathogens on corn (Zea mays L.) [40] and watermelon (Citrullus lanatus (Thunb.) Matsumura and Nakai) [42], respectively. Pseudomonas avenae, originally described in 1909 as the causal agent of leaf blight of oats (Avena sativa L.) [31], causes disease under conditions of high rainfall and high temperatures in numerous species of the family Gramineae, including wheat (Triticum aestivum L.), finger millet (Eleusine coracana (L.) Gaertn.), Italian millet (Setaria italica (L.) Beauv.), pearl millet (Pennisetum glaucum (L.) R. Br.), and proso millet (Panicum miliaceum L.) [4,9,32,33]. Additional hosts include tea (Thea sinensis L.), barley (Hordeum vulgare L.), mountain brome (Bromus carinatus Hook. & Arn.), rescue grass (B. catharticus Vahl), valsey grass (Paspalum urvillei Steud.), teosinte (Zea mexicana (Schrad.) Kuntze), and sugarcane (Saccharum officinarum L.) [2,13,17,19,50]. P. albopectinans, a pathogen of foxtail (Chaetochloa lutescens (Weigel) Stuntz) [36], was later shown to be synonymous with the oats and corn pathogen, P. avenae [40]. Additionally, the red stripe disease of sugarcane caused by P. rubrilineans [17] was shown to be synonymous with P. avenae [35]. More recently A. avenae subsp. avenae has emerged as a serious pathogen of rice (Oryza sativa L.) [16,24,26,27,34]. The causal agent of bacterial stripe of rice also has been referred to as “P. setariae” [14] and P. panici [34], however, neither epithet has been validly published [56]. A pathogen of orchids (Cattleya, Dendrobium, Oncidium, and Phalaenopsis), P. cattleyae, was described in 1946 [1]. A pathogen of konjac (Amorphophallus konjac K. Koch.), A. konjac, was described in 1983 [15]. All of these phytopathogenic bacteria were described previously as a heterogenous group of non-fluorescent, oxidase positive pseudomonads, which accumulated poly-β-hydroxybutyrate (PHB) and utilized D-arabinose [38].

Schaad et al. [41] described a non-fluorescent pseudomonad as the causal agent of a seedling blight of watermelon. The bacterium differed phenotypically from other known plant pathogenic pseudomonads and was classified as P. pseudoalcaligenes subsp. citrulli [41]. Later, Wall and Santos determined that the same organism caused a disease referred to as watermelon fruit blotch of mature watermelon fruit [42]. Additional hosts of A. avenae subsp. citrulli include melon/cantaloupe (Cucumis melo L. subsp. melo var. cantalupensis Naudin), cucumber (Cucumis sativus L.) [41], and pumpkin (Cucurbita pepo L.) [28]. The above non-fluorescent phytopathogenic pseudomonads together with P. pseudoalcaligenes subsp. cattleyae [1] and P. pseudoalcaligenes subsp. konjac [15] were all shown to be part of the “acidovorans” DNA–rRNA homology group [7].

Based on DNA/DNA and DNA–rRNA homologies [5] and phenotypic assays, Willems et al. [55] proposed that the above “generically misnamed phytopathogenic pseudomonads” be transferred to the newly proposed genus Acidovorax [54]. Strains of P. avenae [P. rubrilineans] from corn, sugar cane, Indian shot (Canna indica), teosinte, finger millet, and “P. setariae” from rice were all classified as A. avenae subsp. avenae. Strains of P. pseudoalcaligenes subsp. citrulli from Cucurbitaceae hosts were classified as A. avenae subsp. citrulli; strains of P. cattleyae from orchids were renamed as A. avenae subsp. cattleyae; and strains of P. pseudoalcaligenes subsp. konjac [15] from konjac were classified as A. konjac [55]. Recently two new phytopathogenic species of Acidovorax, A. anthurii on anthurium (Anthurium palnatum (L.) G. Don) [11] and A. valerianellae on lambs’ lettuce (Valerianella locusta (L.) Lat.) [12], as well as a denitrifying species, A. caeni from activated sludge [18], have been described.

The purpose of this study was to re-evaluate the phylogenetic relatedness among the above phytopathogenic A. avenae strains and between A. avenae and the phytopathogenic A. konjac, A. anthurii, and A. valerianellae. A polyphasic taxonomic study revealed considerable differences among the different subspecies of A. avenae and between the other species of Acidovorax. Therefore, we propose a new species, A. oryzae for the rice strains of A. avenae. We also propose A. avenae subsp. citrulli and A. avenae subsp. cattleyae be elevated to species rank as A. citrulli comb. nov. and A. cattleyae comb. nov.

Materials and methods

Source of strains and confirmation of identity

All the strains used in this study were obtained from the International Collection of Phytopathogenic Bacteria (ICPB) maintained at the USDA, ARS Foreign Disease-Weed Science Research Unit (FDWSRU), Fort Detrick, MD or from other recognized culture collections (Table S-1). Each culture was streaked onto yeast extract-dextrose CaCO3 (YDC) agar [23] and beige-colored, transparent, round, non-mucoid, convex colonies were retained. Cultures were maintained on YDC slants at room temperature and also archived at −80 °C [38].

Pathogenicity

Pathogenicity was determined for all A. avenae strains by inoculating 2–3 plants each of corn (cv. ‘Iochief’),
DNA preparation and DNA/DNA reassociation assays

DNA was extracted by a modified lysozyme, phenol/ chloroform/ isomyl alcohol method [43] and sheared using a French pressure cell (Spectronic Unicam, Rochester, NY), as described previously [43]. The purity and concentration of DNA was determined by measuring the 260/280 ratio using a “SmartSpec 3000” (Bio Rad, Richmond, CA) and only preparations with 260/280 ratios of 1.8 or greater were included. All samples were adjusted to 200 ng/μl and stored at −20 °C. The DNA/DNA reassociation assays were carried out using the S1 nuclease protocol [22], as described previously [43,44]. The probe and target DNA were reassociated at 71 °C for 23 h in the presence of 22.7% formamide. For every one percent formamide, the temperature can be decreased by 0.6 °C [22]. Using 22.7% formamide equated to reassociation at 84–85 °C in the absence of formamide \(T_m = 98.6–15 °C = 83.6 °C \) for A. avenae DNA with an average mol% G+C value of 72.2% [40]. Each reaction was repeated 3–5 times. The following phytopathogenic strains of Acidovorax from corn, FC-320T and 371; rice, FC-143T; tea, FC-501; watermelon, FC-247T and 513; konjac, FC-321T; orchid, FC-502; anthurium, CFBP 3232T; lamb’s lettuce, CFBP 4730T; finger millet, FC-500; and non-phytopathogenic A. facilis FC-208T, were labeled for DNA/DNA reassociation assays. Data for A. temperans, A. delafeldii, and A. defluvii were taken from Schulze et al. [45].

Phenotypic characters

Cells were grown overnight in liquid NBY shake cultures unless stated otherwise. Arginine dihydrolase activity [19] was determined at 28 and 37 °C. Lipase activity, starch hydrolysis, and PHB accumulation were determined as described previously [23]. For the oxidase test, filter paper impregnated with a 1% (w/v) solution of p-aminodimethylaniline oxalate (Difco, Detroit, MI) was used [38]. Gelatin hydrolysis and reduction of nitrate to nitrite was tested as described previously [8]. Degradation of pectate was tested using Hildebrand’s media at three pH levels [19]. Growth at 4 and 41 °C was determined by liquid NBY shake cultures in a New Brunswick Scientific (Edison, NJ) Innova refrigerated incubator shaker with a temperature variance of ±0.1 °C. The cultures were observed for growth after 3 and 10 days. Action on litmus milk was determined using reconstituted powdered skim milk, as described previously [8]. Acid production and utilization of carbohydrates were determined on Dye’s medium C containing bromthymol blue and a 1% final carbon source concentration [38], modified as follows: an overnight culture was adjusted to 0.1 OD₆₀₀ then serially diluted ten-fold to 10⁻⁴ and 10⁻⁶ was spotted into individual wells of a 24 well tissue culture plate containing 2 ml of the carbon source medium. All tests were repeated twice and read after 7 and 14 days, unless stated otherwise. The type strain and several additional strains (Table S-1) of each recognized phytopathogenic species and subspecies of Acidovorax along with the type strain of the genus, A. facilis, were included. Results for the phylogenetically distant environmental species

AFLP

The AFLP procedure was carried out as described previously [44]. Briefly, an AFLP template was prepared for PCR using a combination of MseI and EcoRI restriction endonucleases. Selective amplification was performed with MseI+C (5'-GAT GAG TCC TGA GTA AC-3') and EcoRI+0 (5'-GAC TGC GTA CCA ATT C-3') primers. The EcoRI+0 primer had an infrared fluorescent dye IRDye™ 700 (Li-Cor Inc., Lincoln, NE). The separation of amplified products was performed on a 6.5% polyacrylamide gel using a LI-COR Long ReadIR™ DNA Sequencer (LI-COR model 4200) and electrophoresis data were automatically collected and simultaneously recorded during the run. The data were analyzed with GelCompar (v. 4.2) software (Applied Maths, Kortrijk, Belgium) and dendrograms were generated using the unweighted pair group method with averages (UPGMA). Strains of A. anthurii and A. valerianellae were not included in the AFLP analysis.
A. temperans, A. defluvii, and A. caeni were from Willems et al. [55], Schulze et al. [45], and Heylen et al. [18], respectively.

Fatty acid analysis

The procedures used to prepare, extract, and differentiate fatty acids by gas–liquid chromatography have been described previously [39]. The fatty acid profiles of A. facilis strains, and each phytopathogen, including the newly described A. anthurii and A. valerianellae, were compared with those in the Sherlock Microbial Identification System MIDI database (MIDI, Inc., Newark, DE) and were used to determine the Euclidian distance to Acidovorax spp. Results for A. caeni were from Heylen et al. [18].

16S rDNA and 16S–23S rDNA internal transcribed spacer (ITS) region sequencing

Direct sequencing of 16S rDNAs was performed with the following primers: 27f-AGA GTT TGA TCA TGG TTC ACC and 1488r-CGG TTA CCT TGT TAC GAC [3]. The 16S rDNAs of the following strains were sequenced: phytopathogenic A. avenae subsp. avenae from corn (FC-320T), rice (FC-143T and 192), tea (FC-501), finger millet (FC-500), A. avenae subsp. citrulli from watermelon (FC-247T), A. anthurii from anthurium (CFBP 3232T), A. valerianellae from lambs’ lettuce (CFBP 4730T), and non-phytopathogenic strains of A. facilis (FC-208T) and Comamonas testosteroni (FC-418). Sequences of A. avenae subsp. cattleyae, A. temperans, A. konjaci, A. defluvii, A. delafieldii, and A. caeni were obtained from GenBank.

Sequencing of the ITS region was performed with the following primers: 1493f-AGT CGT AAC AAG GTA CTC AG and 23r-GTG CCA AGG CAT CCA CC, as previously described [29]. The following strains were sequenced: A. avenae FC-320T, FC-371, FB-966, FC-179 (corn); FC-501, and FC-506 (tea); FC-143T, FC-155, and FC-192 (rice); FC-247T (watermelon); FC-356, and FC-526 (melon); FC-528 (pumpkin); FC-500 (finger millet); FC-502, and FC-509 (orchids); A. konjaci FC-321T (konjac); A. anthurii CFBP 3232T (anthurium); A. valerianellae 4730T (lambs’ lettuce); and A. facilis FC-208T (soil). The PCR fragments of both regions were amplified, from DNA prepared as above for DNA/DNA reassociation assays, in a 9700 Sequence Detection System (Applied Biosystems Inc., Foster City, CA) with an initial denaturation at 94 °C for 2 min, followed by 30 cycles of denaturation at 94 °C for 30 s, annealing at 50 °C for 30 s, and extension at 72 °C for 45 s. Final extension was performed at 72 °C for 10 min. Aliquots of amplified samples were analyzed on 2.0% agarose gels. The fragments were purified using a “Wizard DNA Clean-Up System” (Catalog # A7280, Promega, Madison, WI), according to the manufacturer’s protocol, and sequenced with an Applied Biosystems model 310 sequencer and Big Dye Terminator cycle sequencing kit.

Sequences were analyzed with the Sequence Navigator 1.01 program (Applied Biosystems) and compared using the Gene Inspector 1.5 f program (Textco, Inc., Research Triangle Park, NC). Alignments were verified manually.

Results

Pathogenicity

All strains originating from rice were pathogenic to both rice and corn (Table S-2). In contrast, strains from corn were pathogenic to corn but not rice (Table S-2). Strain FB-965, originating from corn, was not pathogenic to corn, wheat, or rice. Corn strains differed by their reaction on wheat (data not shown): strains FC-179, FC-320, FB-966, and FC-371 were pathogenic, whereas strains FC-358, FC-369 were not. Rice strains were not pathogenic to wheat. All A. avenae subsp. citrulli strains were pathogenic to watermelon, but not to corn. Orchid strains FC-502, 507, and 509, were pathogenic to Phalaenopsis and Cattleya, but not Dendrobiyum. Water-soaked lesions were visible after 7–10 days and the tissue became black after 14–21 days. Strain FC-503 was weakly virulent on Phalaenopsis and Cattleya. Control plants injected with water did not develop any symptoms.

DNA preparation and DNA/DNA reassociation assays

Results of DNA/DNA reassociation assays revealed four (A, B, C, and D) distinct genotypes among the A. avenae strains (Table 1), based upon 70% or greater similarity [37,48,53]. Taxon A included six A. avenae subsp. avenae strains from corn that had a mean reciprocal similarity of 81%; taxon B included six A. avenae subsp. avenae strains from corn that had a mean reciprocal similarity of 97%; taxon C contained 11 A. avenae subsp. citrulli strains from cucurbits that had a mean reciprocal similarity of 88%; and taxon D contained four A. avenae subsp. cattleyae strains from orchids that had a similarity of 98%. The mean reciprocal relatedness between taxa A, B, C, and D was less than 70% (Table 1). The two tea strains were 100% similar to each other but shared less than 70% relatedness to any of the four taxa above. The single strains from millet and finger millet and the six strains of A. avenae were moderately related but all showed less
Taxon A, mean internal relatedness: 181%^a	Tester DNA	Strain	320^T	371	500	501	143^T	247^T	513	502^T	208^T	7169^T	411^T	5943^T	321^T	3232^T	CFBP	4730^T	CFBP	
Aaa	FC 320^T	100^b	85^c	63	65	53	43	41	27	4	18^e	4^e	17^e	1	8	3				
Aaa	FC 135	91	79	63	67	53	40	34	–	7	–	–	–	–	–	–	–	–		
Aaa	FC 371	90	100^b	65	–	58	–	–	23	7	–	–	–	7	4	4				
Aaa	FC 965	87	85	58	–	48	40	35	30	6	–	–	–	8	–	–	–	–		
Aaa	FC 966	70	–	66	52	–	–	–	–	–	–	–	–	–	–	–	–	–		
Aaa	FC 369	–	72	68	61	53	–	–	–	–	10	–	–	–	–	–	–	–	–	
Taxon B, mean internal relatedness: 97%	Tester DNA	Strain	320^T	371	500	501	143^T	247^T	513	502^T	208^T	7169^T	411^T	5943^T	321^T	3232^T	CFBP	4730^T	CFBP	
Aaa	FC 143^T	43	52	48	68	100^b	45	43	–	6	–	–	–	–	8	5				
Aaa	FC 499	49	46	50	57	99	43	40	–	6	–	–	–	–	–	–	–			
Aaa	FC 192	62	49	56	63	90	–	–	22	5	–	–	–	6	5	8				
Aaa	FC 500	62	62	43	58	98	–	–	23	6	–	–	–	–	–	–	–			
Aaa	FC 504	44	48	44	56	98	–	–	30	6	–	–	–	8	9	3				
Aaa	FC 155	53	46	39	61	100	–	–	–	–	5	–	–	–	–	–	–	–		
Taxon C, mean internal relatedness: 88%	Tester DNA	Strain	320^T	371	500	501	143^T	247^T	513	502^T	208^T	7169^T	411^T	5943^T	321^T	3232^T	CFBP	4730^T	CFBP	
Aaca	FC47^T	30	35	25	38	40	100^b	79	21	6	20^e	8^e	19^e	6	5	6				
Aaca	FC 183	–	28	35	35	47	92	92	–	5	–	–	–	–	–	–	–			
Aaca	FC 374	–	30	27	35	44	100	83	30	9	–	–	–	6	5	6				
Aaca	FC 376	30	–	–	–	–	94	93	–	–	–	–	–	–	–	–	–			
Aaca	FC 379	–	–	–	–	–	97	92	–	–	–	–	–	–	–	–	–			
Aaca	FC 440	–	30	26	38	39	96	83	25	6	–	–	–	7	6	6				
Aaca	FC 464	–	–	–	–	–	91	84	–	–	–	–	–	–	–	–	–			
Aaca	FC 513	30	32	31	38	42	82	100	–	6	–	–	–	–	7	6	4			
Aaca	FC 526	–	30	–	37	45	85	–	–	3	–	–	–	–	–	–	–			
Aaca	FC 528	26	36	31	36	42	80	–	–	0	–	–	–	–	–	–	–			
Aaca	FC 356	–	29	25	39	37	80	–	–	8	–	–	–	–	–	–	–			
Taxon D, mean internal relatedness: 98%	Tester DNA	Strain	320^T	371	500	501	143^T	247^T	513	502^T	208^T	7169^T	411^T	5943^T	321^T	3232^T	CFBP	4730^T	CFBP	
Aaa	FC 502^T	34	37	38	44	40	42	35	100^b	9	18^e	12^e	22^e	7	19	17				
Aaa	FC 503	–	42	27	44	47	–	–	96	10	–	–	–	10	–	–	–			
Aaa	FC 507	35	32	39	40	47	–	–	99	6	–	–	–	9	7	–	–			
Aaa	FC 509	30	37	–	42	46	–	–	100	7	–	–	–	5	–	17				
Aaa	FC 185	60	64	60	67	46	44	38	31	3	–	–	–	5	3	3				
Aaa	FC 500	55	57	100^b	66	53	41	39	22	2	–	–	–	–	–	6				
Aaa	FC 501	63	66	58	100^b	55	39	36	41	5	–	–	–	7	4					
Aaa	FC 506	–	59	54	100	55	–	–	28	8	–	–	–	14	–	–				
Aaa	FC 180	54	59	53	64	44	39	35	23	2	–	–	–	5	5	4				

^a 33P-labelled probe DNAs, percentage annealing.

^b 33P-labelled probe DNAs, percentage annealing.
<table>
<thead>
<tr>
<th>Taxon</th>
<th>probes</th>
<th>relatedness</th>
</tr>
</thead>
<tbody>
<tr>
<td>A:B</td>
<td></td>
<td>51%</td>
</tr>
<tr>
<td>B:C</td>
<td></td>
<td>42%</td>
</tr>
<tr>
<td>A:C</td>
<td></td>
<td>32%</td>
</tr>
<tr>
<td>A:D</td>
<td></td>
<td>33%</td>
</tr>
<tr>
<td>B:D</td>
<td></td>
<td>35%</td>
</tr>
<tr>
<td>C:D</td>
<td></td>
<td>31%</td>
</tr>
</tbody>
</table>

a Mean internal % DNA relatedness: mean calculated from heterologous pairwise tests (non-bolded figures) within the taxon (boxed figures) but excluding 100% homologous values.

b Controls: homologous reassociations (bolded figures) between the probe and tester single-stranded DNAs from the same strain were set to 100% DNA relatedness; heterologous reassociations between the probe and salmon sperm single-stranded DNAs (not shown) were set to 0% DNA relatedness.

c Heterologous pairwise reassociations (non-bolded figures) between 33P-labeled and tester single-stranded DNAs; average of at least two determinations presented.

d Pair-wise test not performed.

e Data from Schulze et al., [45] using Tm –25 °C.

f Mean reciprocal % DNA relatedness calculated from pair-wise, heterologous tests between two taxa.
than 70% relatedness to the other taxa. The strains from konjac and strains of *A. anthurii* and *A. valerianellae* had 19% or less similarity with strains of *A. avenae*. All other strains of *Acidovorax* shared a similarity of 25% or less with *A. avenae* (Table 1).

AFLP analysis

Similarities between the non-phytopathogenic strains (*A. facilis*, *C. testosteroni*, and *P. pseudoalcaligenes*) and the phytopathogenic strains (except *A. konjaci*) were less than 18% (Fig. 1). These AFLP data correlated highly with DNA/DNA homology groupings: strains that fell into the same DNA/DNA homology group also clustered closely with AFLP. Phylogenetic analysis of AFLP patterns revealed four major host-based clusters among the phytopathogenic strains: corn (with minimal internal linkage of 68%), rice (44%), cucurbits (58%), and orchids (68%). Strains from konjac clustered into a distinct group separately from the other phytopathogens at a similarity coefficient of less than 20%.

Phenotypic characteristics

Results with *A. avenae* (Table S-3) were in good agreement with the previous data of Willems et al. [55] and Schaad et al. [41]. Strains of *A. avenae* were easily distinguished from each other and from all other described species *A. konjaci*, *A. delafeldii*, *A. temperans*, *A. defluvii*, *A. anthurii*, *A. valerianellae*, *A. caeni*, and *A. facilis* (Table S-3).

Fatty acids

None of the phytopathogenic strains, except *A. valerianellae*, *A. anthurii* and *A. konjaci*, contained the 3-hydroxyoctanoic acid (8:0 3-OH). In contrast, fatty acid 8:0 3-OH was present in *A. facilis* (Table S-4) and the other non-phytopathogenic species [18].

16S rDNA and 16S–23S rDNA internal transcribed spacer (ITS) region sequencing

The phytopathogenic *A. avenae* strains from rice, tea, corn, watermelon, and orchid, were highly related by 16S rDNA sequencing forming a tight cluster with three lineages (Fig. 2). The percentage similarity values among the *A. avenae* strains ranged from 99.7% to 100% (1–5 nucleotides different). The strains from corn and rice differed by two nucleotides (nts). *A. konjaci*, *A. anthurii* and *A. valerianellae* were 98.1% (28 nts), 98.3% (25 nts), and 98.0% (30 nts) similar to *A. avenae* FC-320T, respectively. All were clearly distinguishable from the non-phytopathogenic *A. temperans*, *A. facilis*, *A. defluvii*, *A. caeni*, and *A. delafeldii* (Fig. 2) with similarities of 96.7–98.4% (24–49 nts different). The newly described plant pathogenic *A. anthurii* formed a separate...
group more closely related to *A. konjaci*, whereas *A. valerianellae* was more distant (Fig. 2).

The ITS similarities among strains of *A. avenae* from corn, rice, cucurbits, and orchids ranged from 97.3% (orchid vs. cucurbit strains) to 99.0% (corn vs. rice strains) (Table 2) (16 and 6 nts), respectively. Tea strains, FC-501 and FC-506 and finger millet strain FC-500 shared 99.5% (3 nts) and 99.7% similarity (2 nts), respectively, with the type strain of *A. avenae* subsp. *avenae*. The other three plant pathogenic species, *A. konjaci*, *A. anthurii* and *A. valerianellae* shared similarities of only 81.8% (109 nts)–87.8% (73 nts) with the *A. avenae* strains from corn, rice, cucurbits, and orchids.

The following 16S rDNA and ITS sequences were deposited in GenBank: 16S rDNA sequences included DQ360414 (FC-143, ATCC19882, rice), DQ360415 (FC-501, Supp86, tea) and DQ360416 (FC-500, Supp150, finger millet). ITS sequences included EU368726 (FC-320, corn), DQ360417 (FC-502, Supp 364, orchid), DQ360418 (FC-247, ATCC 29625, watermelon), DQ360420 (FC-143, rice), DQ360422 (FC-500, finger millet), DQ360423 (FC-501, tea), DQ360425 (FC-208; ATCC11228, soil).

Discussion

The results support the elevation of two subspecies of *Acidovorax* to species rank, and the naming of a new species. In this regard, the results agree with some of the groupings previously reported by Willems et al. [55], who observed two main DNA/DNA similarity groups at the species level within the phytopathogenic strains. Group one, related at a 54–100% similarity, contained strains of [*P.* *avenae*, [*P.* *rubrilineans*, “[*P.* *setariae*”, [*P.* *cattleyae*, and [*P.* *pseudoalcaligenes* subsp. *citrulli*. Within this group, three subgroups were delineated; subgroup one contained strains of [*P.* *avenae*, [*P.* *rubrilineans*, and “[*P.* *setariae*” which were 75–100% similar; subgroup two contained strains of [*P.* *cattleyae* which were 95% similar; and subgroup three contained strains of [*P.* *pseudoalcaligenes* subsp. *citrulli*, which were 93–100% similar. Group two contained [*P.* *konjaci*. Willems et al. [55] proposed combining the corn, sugarcane, and rice strains of group one into *Acidovorax* as a single subspecies, *A. avenae* subsp. *avenae*, based on a DNA/DNA similarity range of 74–100%. However, our DNA/DNA reassociation assays showed the corn and rice strains were not the same species, since they shared a mean reciprocal similarity of only 51% (range 43–68%). These DNA data agree with previous results showing differences between corn and rice strains in cell protein profiles [25,51] serology [10,25], and carbohydrate utilization [41]. Therefore, we agree that the corn and rice strains should be considered as separate species [50]. Although not cited by Willems et al. [55], rice strains had been shown earlier to differ phenotypically from [*P.* *avenae* [16]. Goto and Ohata suggested the rice organism be called “*P. setariae* until more conclusive evidence will be established” [17]. Discrepancies between the DNA/DNA reassociation data of Willems et al. [55] and our findings are most likely due to differences in protocols used for DNA/DNA reassociation. The much less robust spectrophotometric method used by Willems et al. [55] is based on an initial renaturation rate technique [5], which does not allow reciprocal tests [6] and uses an equal amount of labeled and unlabeled DNA. Since no S1 nuclease is included, mismatched fragments and loops are not degraded and results often

![Fig. 2. 16S rDNA neighbor-joining consensus tree of strains of Acidovorax avenae subsp. avenae (A. avenae), A. avenae subsp. cattleyae (A. cattleyae), A. avenae subsp. citrulli (A. citrulli), A. konjaci, A. anthurii, A. valerianellae, A. temperans, A. delafeldii, A. defluvii, A. caeni, Comamonas testosteroni, and A. facilis. Distance between strains was measured as a number of nucleotide differences. Data for strains designated AF and Y were obtained from GenBank. Strains FC-143 and 192 are proposed to be named A. oryzae.](image-url)
Table 2. Summary of characters useful for differentiating between species of Acidovorax. A. avenae (Aa), A. oryzae (Ao), A. citrulli (Ac), and A. cattleyae (Aca)

<table>
<thead>
<tr>
<th>Character</th>
<th>Species</th>
<th>Aa (6)</th>
<th>Ao (6)</th>
<th>Ac (11)</th>
<th>Aca (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA/DNA relatedness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. avenae</td>
<td>81</td>
<td>53</td>
<td>39</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>A. oryzae</td>
<td>46</td>
<td>97</td>
<td>43</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>A. citrulli</td>
<td>47</td>
<td>43</td>
<td>88</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>A. cattleyae</td>
<td>35</td>
<td>45</td>
<td>39</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>ITS similarity to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. avenae</td>
<td>100</td>
<td>99.0</td>
<td>98.0</td>
<td>98.3</td>
<td></td>
</tr>
<tr>
<td>A. oryzae</td>
<td>99.0</td>
<td>100</td>
<td>97.8</td>
<td>98.0</td>
<td></td>
</tr>
<tr>
<td>A. citrulli</td>
<td>98.0</td>
<td>97.8</td>
<td>100</td>
<td>97.3</td>
<td></td>
</tr>
<tr>
<td>A. cattleyae</td>
<td>98.3</td>
<td>98.0</td>
<td>97.3</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Utilization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d-arabitol</td>
<td>-d</td>
<td>-</td>
<td>V+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Sodium citrate</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Maltose</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>d-fucose</td>
<td>V+</td>
<td>+</td>
<td>(V+)²</td>
<td>-²</td>
<td></td>
</tr>
<tr>
<td>d-mannitol</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Lipase production</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Gelatin liquefaction</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Litmus milk</td>
<td>Alk</td>
<td>Alk</td>
<td>Alk(P)</td>
<td>Alk</td>
<td></td>
</tr>
<tr>
<td>Reaction to PCR³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aaaf5, Aaaf3/Aaar2</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Aac2/Aacr2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Hosts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corn</td>
<td>Rice</td>
<td>Cucurbits</td>
<td>Orchard</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Number in parenthesis represents the number of strains tested.

1DNA/DNA reassocations were carried out at Tm−15; figures are a mean percentage.

1ITS. 16S–23S internally transcribed spacer region; figures are a percentage.

²d = 80% or more of all strains positive; (+), delayed positive; −, 80% or more of all strains negative; V+, 50–79% positive; V−, 19–49% negative.

1Based on the polymerase chain reaction (PCR) using the same strains for DNA/DNA reassocations.

lead to artificially higher DNA similarity values [21]. The S1 nuclease method used in our study has been shown to lower similarity values by as much as 15–20% [22,21] when compared to the spectrophotometric method. Also, Willems et al. [54] used a less stringent renaturation temperature of 82 °C, whereas we used 84 ± 1 °C (71 ± 1 °C in the presence of 22.7% formaldehyde). This discrepancy in reassociation temperature occurred because of the different mol% G + C content used to determine the renaturation temperature. Willems et al. [55] used a mol% G + C content of 69.8% in determining their reassociation temperature for A. avenae, rather than the previously reported 72.2% [40]. Use of such a reduced temperature would result in a lower stringency and therefore a higher percentage similarity [5]. Schulze et al. [45] reported 70% and 77% similarity between A. avenae subsp. avenae and cattleyae and between A. avenae subsp. avenae and citrulli, respectively. In contrast, our results showed a mean similarity of 33% and 32%, respectively. They used a single strain and reported observing differences of up to 21%, and suggested the variation was due to differences in DNA quality. Also, they used a stringency of 65 °C whereas we used 71 °C.

Our AFLP results agreed with the DNA/DNA similarity results and clearly showed each of the four taxa including the corn and rice strains were easily differentiated from each other and from the non-phytopathogens, as well as A. konjaci. These results support the use of AFLP assays for identification of some phytopathogenic bacteria at the species level [30].

The 16S and ITS sequencing results clearly differentiated between A. avenae strains, as well as between A. avenae and all other species of Acidovorax. Our results agree with previous results showing most phytopathogenic A. avenae subsp. avenae, subsp. citrulli, and subsp. cattleyae strains could be differentiated easily from each other by phenotypic traits [4,15,20,40,41,55], cellular protein profiles [25], and serology [24]. A. valerianellae was the only pathogen that failed to grow at 41 °C [12, this study]. A. anthurii and A. valerianellae were easily separated from A. avenae. Unlike A. avenae, A. anthurii did not utilize l-tryptophan [11] and A. valerianellae failed to utilize d-sorbitol, adipate, ethanolamine, reduce nitrate, liquefy gelatin, or produce lipase [this study, 12]. Neither A. anthurii nor A. valerianellae utilized d-xylose, or produced alkaline from litmus milk, whereas A. avenae did (Table S-3). Both contained the fatty acid 3-hydroxyoctanoic acid (8:0 3-OH). All A. avenae species utilized d-glucose and adipate, whereas A. caeni did not. A. avenae did not contain the fatty acid 8:0 3-OH, whereas A. caeni did [18]. Strains of A. delafieldii, A. temperans, and A. defluvii were very different from A. avenae (Table S-3). A. defluvii failed to grow at 37 °C [45], did not utilize d-glucose, d-sorbitol or ethanolamine, and nor did it liquefy gelatin (Table S-3), but it contained the fatty acid 8:0 3-OH [18,45]. Our results do not agree that all strains of recognized Acidovorax species contain the fatty acid 8:03-OH [18] unless one places the plant species into another genera.

These genetic (16S, ITS sequencing, DNA/DNA reassociation assays, AFLP analysis) and phenotypic data, including fatty acid profiles, support an emendation of the species A. avenae. Since A. avenae Group A corn strains and Group B rice strains have less than 70% DNA/DNA similarity, differ serologically [24], have distinct protein patterns [25], and can be differentiated phenotypically, we propose a new species, A. oryzae, for Group B strains from rice. We propose Group C strains from cucurbits and Group D strains from orchids be elevated to species rank as A. citrulli and A. cattleyae,
respectively. Although strains from tea, vasey grass, finger millet, and millet shared a moderate DNA/DNA similarity of 54% to 68% with *A. avenae*, suggesting separate species, we would suggest that these strains be classified as *Acidovorax* spp. until additional strains are tested.

Summary of characters

Table 2 summarizes some of the most important characters for distinguishing between *Acidovorax avenae*, *A. oryzae*, *A. citrulli*, and *A. cattleyae*.

Protologues

Abbreviations for culture collections and depositories of type strains are:

- ATCC = American Type Culture Collection, Manassas, VA, USA;
- CFBP = Collection Francaise de Bacteries Phytopathogenes, Angers, France;
- ICMP = International Collection of Microorganisms from Plants, Auckland, New Zealand;
- ICPB = International Collection of Phytopathogenic Bacteria, USDA, Ft. Detrick, MD;
- LMG = Laboratorium Microbiologie Gent, Belgium;
- NCPPB = National Collection of Plant Pathogenic Bacteria, England;
- IBSBF = Instituto Biologico, Sao Ceca de Bacteriologia Fitopatologica, Campinas, SP, Brazil.

Acidovorax avenae (Manns 1909) Willems et al., 1992

Acidovorax avenae (a.ve’na. e. N.L. gen. n. avenae, of Avena, a genus of oat plants).

The species is pathogenic to corn and oats, whereas pathogenicity to wheat is variable. *Acidovorax avenae* can be distinguished from *A. oryzae*, *A. citrulli*, and *A. cattleyae* by DNA/DNA reassociation assays (Table 1), PCR, AFLP analysis (Fig. 1), and several phenotypic traits (Tables 2 and S-3) [14,16]. Nitrate is reduced and an alkaline reaction is produced in litmus milk. Arginine is not hydrolyzed. All strains react with PCR primers Aaaf5 or Aaaf3/Aaar2, whereas *A. citrulli* is variable. *Acidovorax avenae* utilizes ethanol, whereas *A. oryzae* does not. *A. citrulli* does not utilize sodium citrate or maltose, whereas *A. oryzae* does. *Acidovorax avenae* utilizes d-mannitol, reduces nitrate and hydrolyzes lipid, whereas *A. citrulli* does not. *A. oryzae* does not utilize d-arabitol, whereas *A. cattleyae* does. *Acidovorax oryzae* utilizes d-fucose whereas *A. avenae* and *A. citrulli* are variable, and *A. cattleyae* is negative. Arginine is not dihydrolyzed. All strains react with PCR primers Aaaf5 or Aaaf3/Aaar2, whereas *A. oryzae* and *A. citrulli* do not (Table 2) [47].

Type strain: FC-143T = ICPB 30003 (PS 177)T = ATCC 19882T = NCPPB 1392T = ICMP 3183T = CFBP 2425T = IBSBF 193T.

Acidovorax oryzae sp. nov.

Acidovorax oryzae (o.ry’za. e. L. gen. n. oryzae, of rice, of Oryza (a genus of rice plants)).

The species infects rice. *Acidovorax oryzae* can be distinguished from *A. avenae*, *A. citrulli*, and *A. cattleyae* by DNA/DNA reassociation assays (Table 1), AFLP analysis (Fig. 1), and several phenotypic traits (Tables 2 and S-3) [14,16]. Gelatin is weakly liquefied. d-mannose and d-fructose are utilized by *A. oryzae*, whereas utilization by *A. avenae* and *A. citrulli* is variable. *Acidovorax oryzae* utilizes ethanol, whereas *A. avenae* does not. *A. oryzae* does not utilize sodium citrate or maltose, whereas *A. oryzae* does. *Acidovorax oryzae* utilizes d-mannitol, reduces nitrate and hydrolyzes lipid, whereas *A. citrulli* does not. *A. oryzae* does not utilize d-arabitol, whereas *A. cattleyae* does. *Acidovorax oryzae* utilizes d-fucose whereas *A. avenae* and *A. citrulli* are variable, and *A. cattleyae* is negative. Arginine is not dihydrolyzed. All strains react with PCR primers Aaaf5 or Aaaf3/Aaar2, whereas *A. oryzae* and *A. citrulli* do not (Table 2) [47].

Type strain: FC-143T = ICPB 30003 (PS 177)T = ATCC 19882T = NCPPB 1392T = ICMP 3960T.

Acidovorax citrulli (Schaad et al. 1978) comb. nov.

Acidovorax citrulli (ci.trul’li. N.L. gen. n. citrulli, of Citrullus, a genus of melon plants).

The bacterium infects many plants in the Cucurbitaceae. *Acidovorax citrulli* can be distinguished from *A. avenae*, *A. oryzae*, and *A. cattleyae* by DNA/DNA reassociation assays (Table 1), AFLP analysis (Fig. 1), and several phenotypic traits (Tables 2 and S-3) [19,41,55]. Gelatin is weakly liquefied and delayed (Tables 2 and S-3) [41]. The bacterium does not reduce nitrate, or produce lipase, whereas *A. avenae* and...
A. oryzae do. Alkali is produced in litmus milk and a precipitate forms (Tables 2 and S-3); no precipitate is produced by A. avenae, A. oryzae, or A. cattleyae. Acidovorax citrulli does not utilize D-mannitol whereas A. oryzae, A. avenae and A. cattleyae do (Tables 2 and S-3). The organism utilizes sodium citrate, ethanol, ethanolamine, citraconate, adipate, D-ribositol (Tables 2 and S-3), β-alanine, D-arabinose, D-galactose, D-ribose, D-l-tartrate [15]; 2-ketogluconate [55] but not L-histidine, and L-threonine [55]. Arginine is not dihydrolyzed. Acidovorax citrulli reacts with PCR primers Aacf2/Aacr2, whereas A. avenae, A. oryzae, and A. cattleyae do not (Table 2) [46].

Type strain: FC-247T = ICPB 30064T = ATCC 29625T = ICMP 7500T = IBSBF 1851T.

Acidovorax cattleyae (Pavarino 1911) comb. nov.

Acidovorax cattleyae (cat.tle’ya. e. N.L. gen. n. cattleyae, of Cattleya, a genus of orchid plants).

The organism naturally infects Cattleya, Dendrobium, Phalaenopsis, and their hybrids. Acidovorax cattleyae can be distinguished from A. avenae, A. citrulli, and A. oryzae by DNA/DNA reassociation assays (Table 1), AFLP analysis (Fig. 1), and several phenotypic traits (Tables 2 and S-3) [1,20,55]. Nitrate is reduced. A. cattleyae utilizes D-glucose, D-xylene, D-mannitol, D-sorbitol, sodium citrate, adipate, D-mannose, citraconate, D-arabitol, ethanolamine, ethanol (Tables 2 and S-3), L-arabinose, dulcitol, galactose, glycerol, lactose, sucrose [1] and does not utilize D-fucose. The bacterium utilizes sodium citrate, whereas A. oryzae does not, and D-mannitol, whereas A. citrulli does not (Table 2). A. cattleyae utilizes D-arabitol, whereas A. avenae and A. oryzae do not. A. cattleyae does not utilize maltose, whereas A. avenae does. It does not liquefy gelatin, whereas A. avenae, A. oryzae, and A. cattleyae do.

Type strain: FC-507T = ICMP 30134 (PC21)T = ATCC 33619T = NCPPB 961T = LMG 2364T = ICMP 2826T = CFBP 2423T = IBSBF 209T.

All strains are available in the International Collection of Phytopathogenic Bacteria (ICPB) maintained at the USDA ARS, FDWSRU, Fort Detrick, MD (N.W. Schaad and A. Sechler, Curators).

Acknowledgements

We thank Vern Damsteegt, Bill Bruckart, and Nina Shishkoff, for reviewing the manuscript and A. Mavridis, Y. Takikawa, and M. LeSaux, for supplying several cultures. We thank Y. Takikawa for reviewing the manuscript for our nomenclatural changes. We especially thank Jean Euzéby for editing our protologues.

The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.syapm.2008.09.003.

References

