
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department of

1-1-2006

Scaling a Dataflow Testing Methodology to the
MultiparadigmWorld of Commercial Spreadsheets
Marc Fisher II
University of Nebraska-Lincoln, fisherii@google.com

Gregg Rothermel
University of Nebraska-Lincoln, grother@cse.unl.edu

Tyler Creelan
Oregon State University, creelan@eecs.oregonstate.edu

Margaret Burnett
Oregon State University, burnett@eecs.oregonstate.edu

Follow this and additional works at: http://digitalcommons.unl.edu/cseconfwork
Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and Workshop Papers by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Fisher II, Marc; Rothermel, Gregg; Creelan, Tyler; and Burnett, Margaret, "Scaling a Dataflow Testing Methodology to the
MultiparadigmWorld of Commercial Spreadsheets" (2006). CSE Conference and Workshop Papers. Paper 137.
http://digitalcommons.unl.edu/cseconfwork/137

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork/137?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages

Scaling a Dataflow Testing Methodology
to the Multiparadigm World of Commercial Spreadsheets

Marc Fisher II, Gregg Rothermel
University of Nebraska-Lincoln
{mfisher, grother}@cse.unl.edu

Tyler Creelan, Margaret Burnett
Oregon State University

{creelan, burnett}@eecs.oregonstate.edu

Abstract

Spreadsheets are widely used but often contain
faults. Thus, in prior work we presented a dataflow
testing methodology for use with spreadsheets, which
studies have shown can be used cost-effectively by end-
user programmers. To date, however, the methodology
has been investigated across a limited set of spread-
sheet language features. Commercial spreadsheet en-
vironments are multiparadigm languages, utilizing fea-
tures not accommodated by our prior approaches. In
addition, most spreadsheets contain large numbers of
replicated formulas that severely limit the efficiency of
dataflow testing approaches. We show how to handle
these two issues with a new dataflow adequacy criterion
and automated detection of areas of replicated formu-
las, and report results of a controlled experiment inves-
tigating the feasibility of our approach.

1. Introduction

Spreadsheets are used by a wide range of end users
to perform a variety of important tasks, such as manag-
ing retirement funds, performing tax calculations, and
forecasting revenues. Evidence shows, however, that
spreadsheets often contain faults, and that these faults
can have severe consequences. For example, spread-
sheet errors caused Shurgard Inc. to overpay employ-
ees by $700,000 [21] and cost Transalta Corporation 24
million dollars through overbidding [8].

Researchers have been responding to these prob-
lems by creating approaches that address dependabil-
ity issues for spreadsheets, including unit inference
and checking systems [1, 2], visualization approaches
[6, 20], interval analysis techniques [3, 4], and ap-
proaches for automatic generation of spreadsheets from
a model [9]. Commercial spreadsheet systems such as
Microsoft Excel have also incorporated several tools
for assisting with spreadsheet dependability, including

dataflow arrows, anomaly detection heuristics, and data
validation facilities.

In our own prior research, we have presented an
integrated family of approaches to help end users im-
prove the dependability of their spreadsheets, called
the “What You See is What You Test” (WYSIWYT)
methodology. At the core of this methodology is a test-
ing approach that helps spreadsheet users identify prob-
lems in interactions between cell formulas – a prevalent
source of spreadsheet errors [14]. We have augmented
this methodology with techniques for automated test
case generation [12], fault localization [19], and test
reuse and replay mechanisms [10]. Our studies of the
WYSIWYT methodology itself [15, 18] suggest that it
can be effective, and can be applied by end users with
no specific training in the underlying testing theories.

Results such as these are encouraging; however,
to date, our work on spreadsheet dependability mech-
anisms, and our studies of them, have been performed
in the context of the research spreadsheet environment
Forms/3. Commercial spreadsheet environments are
multiparadigm languages with features such as higher-
order functions (functional paradigm), table query con-
structs (database query languages), user-defined func-
tions (implemented in an imperative sublanguage),
meta-program constructs, and pointers, and these fea-
tures are not accommodated by prior approaches. In
addition, most spreadsheets have large areas of repli-
cated formulas which require some form of aggregation
and abstraction to allow our methodologies to scale rea-
sonably (i.e., operate sufficiently efficiently). The only
previous approach to consider testing methodologies for
spreadsheet regions [5] has required a form of region
declaration, and thus does not provide unassisted dis-
covery of the testing needs of the informal regions that
exist in commercial spreadsheets.

In this paper, we address these two problems. To
support multiparadigmatic features, we devised a gen-
eralization of our prior test adequacy criterion that con-

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

17th International Symposium on Software Reliability Engineering, 2006. ISSRE '06.
Digital Object Identifier: 10.1109/ISSRE.2006.40
Publication Year: 2006 , Page(s): 13 - 22

Figure 1. An Excel spreadsheet. The numbered
rectangles are referenced in Section 4.

siders functions in the formulas to determine their pat-
terns of execution. For replicated formulas, we imple-
mented a family of techniques for combining them into
regions. Throughout this work, we focus on Excel, the
de-facto standard commercial spreadsheet environment,
but our methodology could be extended to the wide va-
riety of Excel work-alike environments, e.g. OpenOf-
fice/StarOffice or Gnumeric.

To assess the resulting new methodology we per-
formed an experiment within a prototype Excel-based
WYSIWYT system on a set of non-trivial Excel spread-
sheets. This experiment evaluates the costs of our
methodology along several dimensions, and also com-
pares the different techniques we have devised for find-
ing regions to a baseline (no-regions) approach. Our
results suggest that our algorithms can support the use
of WYSIWYT on commercial spreadsheets; they also
reveal tradeoffs among the region inference algorithms.

2. Background: WYSIWYT
The WYSIWYT methodology [4, 12, 10, 17,

19] provides several techniques and mechanisms with
which end-user programmers can increase the depend-
ability of their spreadsheets. Underlying these ap-
proaches is a dataflow test adequacy criterion that helps
end users incrementally check the correctness of their
spreadsheet formulas as they create or modify a spread-
sheet. End-user support for this approach is provided
via visual devices that are integrated into the spread-
sheet environment, and let users communicate testing
decisions and track the adequacy of their testing efforts.

The basic computational unit of a spreadsheet is a
cell’s formula. Thus, our adequacy criterion is devel-
oped at the granularity of cells. Since many of the er-
rors in spreadsheets are reference errors, we focus on
dependencies between cells. This allows us to catch a
wide range of faults, including reference, operator, and
logic faults.

The test adequacy criterion underlying WYSIWYT
is based on a model of a spreadsheet called the Cell Re-
lation Graph (CRG). Figure 1 shows an Excel spread-
sheet, Grades, and Figure 2 shows a portion of the CRG
corresponding to row 4 of that spreadsheet. In the CRG,
nodes correspond to the cells in the spreadsheet. Within

R4C2

1. E

2. G

3. X

R4C10

27. X

26. RC[−2]/R3C[−2]

25. E

R4C3

4. E

5. 60

6. X

R4C5

10. E

12. X

11. RC[−2]/R3C[−2]

R4C6

13. E

15. X

14. RC[−2]/R3C[−2]

R4C9

24. X

23. RC[−2]/R3C[−2]

22. E

R4C4

7. E

8. 42

9. X

16. E

17. 65

18. X

R4C7

19. E

20. 45

21. X

R4C8

T

29. RC[−9]="G"

R4C11

28. E

30. AVERAGE(RC[−6]:RC[−5],RC[−2]:RC[−1])

32. X

F

31. AVERAGE(RC[−6],RC[−2]:RC[−1])

Figure 2. A CRG for the Grades spreadsheet

each CRG node there is a cell formula graph (CFG)
that uses nodes to represent subexpressions in formu-
las, and edges to represent the flow of control between
subexpressions. The CFG has two types of nodes, pred-
icate nodes such as node 29 in R4C11, and computation
nodes such as node 30 in R4C11.

The edges between CFGs in the CRG in Figure 2
represent du-associations, which link definitions of cell
values to their uses. A definition is an assignment to a
cell of a value; each computation node provides a defi-
nition of the cell in which it resides. A use of a cell C
is a reference to C in another cell. For each use U of
cell C, a du-association connects each definition of C to
U. CRGs can be generated efficiently for a spreadsheet
using the algorithms presented in Reference [17].

Based on the CRG model, we defined the out-
put influencing definition-use adequacy criterion (du-
adequacy) for spreadsheets. Under this criterion, a du-
association is considered exercised if, given the cur-
rent inputs, both the definition and the use node are
executed, and the cell containing the use or some cell
downstream in dataflow from it is explicitly marked by
a user as containing a value that is valid given the cur-
rent assignment of values to other cells. A test suite
is considered adequate if all feasible (executable) du-
associations in the CRG are exercised.

Spreadsheets often contain many duplicated formu-
las. In such cases it is impractical to require a tester to
make separate decisions about each cell containing one
of these duplicated formulas. Thus, in prior work [5],
we extended WYSIWYT to handle regions of duplicate
formulas. In that approach, a region is a set of cells
explicitly identified by the user as sharing the same for-
mula. (It is also possible that regions could be identi-

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

Figure 3. Spreadsheet fragment

fied based on copy/paste actions). Figure 2 shows the
regions identified by this process as boxes drawn using
dotted lines around the cells included in each region.
Cells R4C5, R4C6, R4C9, and R4C10 form a region and
all of the input cells (cells containing constants rather
than formulas) form another region.

To extend the du-adequacy criterion to spread-
sheets containing such regions we grouped nodes and
du-associations. Within a given region, two CFG nodes
are corresponding if they are in the same location in
their respective CFGs. In Figure 2, CFG nodes 11,
14, 23, and 26 are corresponding nodes. We defined
an equivalence class relationship over du-associations
such that two du-associations are in the same class if
and only if their definition nodes are corresponding and
their use nodes are corresponding. In Figure 2, du-
associations (11, 30), (14, 30), (23, 30), and (26, 30) are
in the same equivalence class. Our modified adequacy
criterion stated that if any du-association in an equiva-
lence class is tested, then all of the du-associations in
that class are tested.

3. Supporting the Multiparadig-
matic Nature of Cell Formulas
In Section 2, we presented the du-adequacy crite-

rion that has been used in WYSIWYT research to date
based on the CRG model of spreadsheets, but as out-
lined in Section 1, there are formula constructs in com-
mercial spreadsheet languages that this du-adequacy
criterion does not support. For example, consider cell
A3 in Figure 3. With two IF expressions added to-
gether, it is unclear what the definitions for A3 are. We
illustrate our new adequacy criterion by first describing
how we handle this (still purely declarative) subtlety,
and then demonstrate the criterion’s ability to scale to
multiparadigmatic aspects of spreadsheets.

We decompose the problem of handling formu-
las into two steps. The first step involves identifying
sources, a generalized form of definitions that represent
part of a cell’s computation, and destinations, a general-
ized form of uses. The second step involves connecting
sources to destinations to define interactions between
cells that need to be tested. To show how this process
works, we walk through it using Figure 3.

To determine the cell interactions for this example,
we need to determine the sets of sources and destina-
tions for each of the cells. Cells A1, A2 and B1 are

4: A1 > 0 9: 08: A2

2: IF 3: IF

1: +

5: A1 7: A2 > 06: 0

Figure 4. AST for formula in A3

simple cases that can be handled in the same fashion as
in previous versions of WYSIWYT. Any formula that
does not include conditional functions, functions that
operate on or return references, or user-defined func-
tions has only a single source. Any references in such a
formula become destinations.

Cell A3 is more interesting. To facilitate discus-
sion of its handling we use the AST in Figure 4. To
determine sources for complex formulas such as this,
we follow two steps. The first step is to identify the
source components that represent different patterns of
computations that can be performed by functions in the
formula. The second is to combine these source com-
ponents into the sources that represent the patterns of
computation for the formula.

The formula for Cell A3 contains two function calls
that need to be considered; namely each of the IF
subexpressions. All IF’s have two possible patterns of
evaluation, one that corresponds to the predicate eval-
uating to true, and one that corresponds to the predi-
cate evaluating to false. We would like to capture these
differing patterns of evaluation in the definition of our
source components. One approach we considered was
to convert all Excel functions into an equivalent UDF,
and use the technique described later in Section 3.2 to
determine source components and destinations. How-
ever, because this requires at least as much effort as
considering the functions individually (since we do not
have access to source code for the built-in functions,
we would have to reverse-engineer UDF code for each
of them), and because of imprecisions involved in the
handling of UDFs, we chose to consider them individ-
ually. Consider the first IF (node 2 and its children in
the AST); for this IF, we recognize two source compo-
nents, (2, T) and (2, F). (The 2 indicates the AST node,
and T or F indicates which “behavior” we are interested
in). Similarly, for node 3 and its children we create the
source components (3, T) and (3, F).

The source components are combined to form
sources for cell A3. We consider two methods for doing
this. One method is to consider sets of feasible combi-
nations of source components. For cell A3, these com-
binations are {(2,T), (3, T)}, {(2, T), (3, F)}, {(2, F),
(3, T)} and {(2, F), (3, F)}. For the current input as-
signment, the source {(2, T), (3, F)} is exercised. This
method captures all of the possible computation pat-

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

terns for the formula and could be used when particu-
larly rigorous testing is needed, but generates a number
of sources exponential in the number of function calls
in the formula.

The second method is to create a source for each
source component in the formula. This creates fewer
sources (in general), and on any given execution, al-
lows multiple sources to be exercised. In our example,
for the given inputs, sources (2, T) and (3, F) would be
exercised. For the rest of the discussion, we assume we
are using this simpler method.

Destinations for A3 are defined in the same way as
uses were for du-adequacy. The destinations are (4, A1,
T), (4, A1, F), (5, A1), (7, A2, T), (7, A2, F), and (8, A2).

Next we build a set of interactions that we wish
to test. As we did with du-adequacy, we consider all
source-destination pairs. For the example we have been
considering these are {(A1, (4, A1, T)), (A1, (4, A1, F)),
(A1, (6, A1)), (A2, (7, A2, T)), (A2, (7, A2, F)), (A2, (9,
A2), ((2, T), B1), ((2, F), B1), ((3, T), B1), ((3, F), B1)}.

Since the process of generating source compo-
nents, sources, and destinations is syntax-driven, it
can be automated using standard parsed representations
(such as ASTs) of cell formulas. In addition, determin-
ing which source components and destinations are ex-
ercised requires only execution traces of the formulas,
which are easy to gather in a spreadsheet engine [17].

An additional question involves the interaction of
our new du-adequacy criterion with the region mech-
anism for handling duplicated formulas described in
Section 2. In that description we defined correspond-
ing definitions and uses, and used those to define cor-
responding du-associations. For our new du-adequacy
criterion we can use a similar process, defining corre-
sponding source components and destinations based on
the locations of the constructs in the cell formulas. Then
two sources, S1 and S2, are corresponding if for each
source component Ci in S1 there is at least one corre-
sponding source component in S2, and for each source
component C j in S2 there is at least one correspond-
ing source component in S1. Interactions are consid-
ered corresponding if their sources and destinations are
corresponding.

3.1. Handling Built-in Excel Functions
The previous section described our new adequacy

criterion, but we still have to demonstrate how it can be
applied to the built-in Excel functions that give rise to
the multiparadigmatic nature of the language. To facili-
tate consideration of this, we partition the built-in func-
tions into a small number of classes according to lan-
guage features to which they relate: higher-order func-
tions, meta-programming constructs, pointers, query-

ing, and matrix operations. These partitions include all
of the functions listed in the Excel 2003 documentation
that are purely functional (Excel also includes functions
such as NOW that access the state of the environment)
and are not strictly computational (functions such as
SUM and AVERAGE that perform simple arithmetic pro-
cedures on their parameters).

3.1.1. Handling higher-order functions. Although
higher-order functions are often considered to be a pro-
gramming language feature commonly associated with
functional programming languages, there is support for
a form of higher-order functions in Excel formulas.
More precisely, Excel has a small number of functions
that allow the dynamic construction of predicate ex-
pressions used for simple iterative computations, in-
cluding SUMIF, COUNT, COUNTA, COUNTBLANK, and
COUNTIF. To show how our approach handles these,
we consider the formula = SUMIF(A1 : A2,“> 0”). The
first parameter of SUMIF is a reference to a range of
cells. The second parameter is a predicate to be ap-
plied to each of the cells referred to by the first pa-
rameter, which, if it evaluates to true, causes that cell’s
value to be added to the running total. We can convert
the SUMIF into a corresponding formula using addition
and IF. For our example, this would be = IF(A1 >
0,A1,0) + IF(A2 > 0,A2,0). Notice that this trans-
formed version is the same as the formula in cell A3 of
Figure 3, and the source components and destinations
are the same.

One issue with this method is that it generates
sources and destinations for each of the IF functions,
without consideration for the symmetry between the IF
expressions. To address this, we can exploit the sym-
metry in a fashion similar to that used for regions. By
defining sets of corresponding source components and
destinations, and applying the modified du-adequacy
criterion, we can greatly reduce the number of interac-
tions. In the above example, (2, T) and (3, T) are one
set of corresponding source components, and (4, A1, F)
and (7, A2, F) are one set of corresponding destinations.

3.1.2. Handling meta-programming constructs. Ex-
cel includes a class of functions that allow meta-
programming constructs. Meta-programming con-
structs allow programming logic based on attributes
of the source code rather than attributes of the data.
These include ISBLANK, CELL, AREAS, COLUMN,
COLUMNS, ROW, and ROWS. ISBLANK is a predicate
that returns true if and only if the referenced cell’s
formula is blank. CELL allows a user to query for
cell formatting, protection, and address information.
AREAS, COLUMNS, and ROWS return information about

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

the number of areas, columns, or rows included in a cell
reference. COLUMN and ROW return the position (col-
umn or row) of the first cell in a cell reference. For
each of these functions, the important thing to note is
that they do not operate on values, and instead oper-
ate on features of the spreadsheet akin to the source
code of most other languages. Consider the formula
= ROW(A1). This formula returns the value 1, regardless
of the value in cell A1. Therefore we do not create des-
tinations for the references in parameters to these func-
tions or propagate testing decisions to the referenced
cells.

3.1.3. Handling pointer constructs. Excel has three
functions that are similar to pointer arithmetic as
found in some imperative languages such as C:
INDIRECT, OFFSET, and INDEX. Consider the for-
mula = OFFSET(A1,B1,C1). Assume that cells B1 and
C1 have values 1 and 2 respectively. In this case, the call
to OFFSET returns a reference to cell C2 (1 row down
and 2 columns right from cell A1). There are two poten-
tial issues with these functions. First, they can use ref-
erences in their arguments. For INDEX and OFFSET,
the first argument is a reference to a cell or range that
is used as a starting point, and the additional arguments
provide an offset relative to the original cell or range.
Since the value in the range referred to in the first ar-
gument (A1 in the example) is not used, we do not cre-
ate any destinations for this reference or propagate test-
ing decisions back to the referencing cells. However,
any references used in the other arguments (B1 and C1)
are dereferenced, and the corresponding values (1 and
2) are used in the calculation, therefore we can create
destinations for these references and propagate testing
decisions to the referenced cells just as we do for com-
putational functions.

The second issue with these functions is the han-
dling of the returned reference (C2 in the example).
For purposes of propagating testing decisions, it makes
sense to treat the returned reference as we would a reg-
ular reference. The issue of generating destinations for
the returned reference is more complicated. In gen-
eral, these functions allow a reference to any cell in any
spreadsheet ever created, although in practice their use
will be much more limited (for INDEX we know the
returned reference will be in the range provided in the
first parameter, and for OFFSET we know the returned
reference will be in the worksheet referenced in the first
parameter). Since in many cases it may be intractable
to calculate all of the references that can be returned by
these functions, we require an approximation to deter-
mine which destinations to create.

There are several approaches that can be used for
this. We could create no destinations for the returned
reference; this minimizes the effort required of both the
system and the user testing the spreadsheet, but may
cause some interactions to be untested. We could gen-
erate the set of destinations based on the history of the
spreadsheet by keeping track of the returned references
of these functions and creating a new destination any
time a cell that had not been used before is referenced.
This method forces the user to make testing decisions
that are influenced by each of the interactions seen by
the system, but could still miss possible interactions.
It also has the undesirable effect of having input cell
changes potentially change the testedness of the spread-
sheet (by creating new, necessarily untested, interac-
tions). A third possibility is to create destinations for
any cells that could be referenced by the function (in
the case of INDIRECT, we would limit this to cells in
the workbook containing the function call). This would
prevent the methodology from missing any interactions,
but could create a large number of infeasible interac-
tions. Further experimentation is needed to determine
which of these possibilities is best, but for now our pro-
totype does not create any destinations for the returned
references.

3.1.4. Handling query constructs. Excel has four
functions, LOOKUP, HLOOKUP, VLOOKUP, and
MATCH, that search for values in a range or array
and return either a corresponding value or position.
These are similar to standard query operations found
in database query languages. Consider the formula
= HLOOKUP(6,A1 : B3,2): the function searches
through the cells in the top row of the range A1 : B3, in
order from left to right, until it finds a cell with a value
equal to or greater than 6, and returns a corresponding
value from the second row of the range A1 : B3.

For these functions, we use a method similar to that
used for higher-order functions, converting the func-
tion to a series of nested IF expressions and defin-
ing corresponding source components and destinations.
The formula = HLOOKUP(6,A1 : B3,2) is converted
to = IF(A1 >= 6,B1,IF(A2 >= 6,B2,IF(A3 >=
6,B3,#N/A!))). This formula has two sets of corre-
sponding destinations, {A1,A2,A3} and {B1,B2,B3}
and three sets of corresponding source components,
{(IF1,T),(IF2,T),(IF3,T)}, {(IF1,F),(IF2,F)} and
{(IF3,F)}.

3.1.5. Handling matrix constructs. Excel has several
matrix processing functions (Excel uses the term arrays)
such as MMULT. Formulas using these functions are typ-
ically assigned to a range of cells. Although there is

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

function SUMGREATERTHAN(R, V)
1. total = 0
2. for each cell C in R
3. if C > V then
4. total = total + C
5. return total

Figure 5. A user-defined function

some similarity between these ranges and the regions
with shared formulas as used in Forms/3, it is primar-
ily superficial. A matrix formula in Excel computes a
single value (that happens to be a matrix), and “dis-
tributes” the value over a range of cells. In our new
methodology, cells that participate in a matrix formula
are treated as an aggregate cell with a single decision
box to validate the value of that cell. When validated,
the testing decision propagates backwards through all
referenced cells. References to cells involved in a ma-
trix formula are treated as normal destinations with a
single source, but unless the reference is a range ref-
erence that includes all cells involved in the formula,
testing decisions are not propagated backwards through
the formula. In all other respects, matrix functions are
treated as simple computational functions.

3.2. Handling Imperative Code in Spreadsheets
Excel allows imperative code to be added to

spreadsheets for a variety of tasks. One of the most
common uses is for creating user-defined functions
(UDFs). To integrate UDFs into our new adequacy cri-
terion, we need to statically determine the source com-
ponents and destinations relevant to those UDFs, and
dynamically determine which source components and
destinations are exercised when tests are applied. We
use program analysis techniques on the UDFs to deter-
mine the source components and destinations.

To determine the destinations in the UDF, we con-
sider references in the parameters of the UDF. For each
reference, we create a destination. To determine which
destinations are executed, we use dynamic slicing on
the return value of the UDF. In the case of a range being
passed in as a parameter to the UDF, we create a desti-
nation for each cell in the range, and classify these des-
tinations as corresponding destinations (similar to the
corresponding destinations created for SUMIF). There-
fore, for the formula = SUMGREATERTHAN(A1 : A2,0),
the destinations are {A1, A2}, and they are correspond-
ing destinations. If the functionally equivalent formula
in A3 in Figure 3 was replaced with this formula, both
destinations would be considered exercised (and would
in fact be considered exercised regardless of the inputs).
This difference is one of the reasons we have chosen
to handle the built-in functions on a case-by-case basis
rather than by converting them into equivalent UDFs.

Determining the source components of the UDF is
more complicated. Since source components represent
subcomputations of formulas, one approach is to con-
sider the subcomputations, or statements (which can be
generalized to flow graph nodes), of the function. Then
we have a source component for each statement. For
SUMGREATERTHAN, the source components are {1, 2,
3, 4, 5}, and if the formula considered above was substi-
tuted for the formula in cell A3 in Figure 3, all of these
source components would be considered exercised (if
A1 was changed to a value less than 0, then 4 would not
be exercised); again this is weaker than the source com-
ponents for the equivalent IF or SUMIF expressions.

4. Handling Replicated Formulas
The notion of aggregating cells into regions of sim-

ilar cells in spreadsheets is not new. For example, Sa-
janiemi defines a number of methods for doing so [20],
and others have extended his definitions [6]. However,
prior work has focused on using these regions for vi-
sualization and auditing tasks. To use regions for our
testing methodology we require that it be possible to
define corresponding source components and destina-
tions between the cells in the region, and to efficiently
update regions as formulas change; neither of these re-
quirements is met by the approaches of [6, 20].

We divide the task of inferring regions into two
sub-tasks. The first subtask involves determining
whether cells are similar, and the second involves
grouping similar cells into regions.

4.1. Determining Whether Cells are Similar
The first step in developing a region inference al-

gorithm is to define a criterion for determining whether
two cells belong in the same region. Work by Sajaniemi
[20] defines a number of equivalence relationships over
cells. For our purposes, we consider his formula equiva-
lence and similarity relationships, and define a variation
on these that we call formula similarity.

Two cells are formula equivalent if and only if
one cell’s formula could have directly resulted from a
copy action applied to the other cell’s formula. Sa-
janiemi goes on to show that, under a certain referenc-
ing scheme, formula equivalence can be determined by
textual comparison of the formulas. Most commercial
spreadsheets include support for the necessary referenc-
ing scheme; in Excel it is called R1C1-style.

Sajaniemi defines two cells as being similar if and
only if they are formula equivalent and format equiva-
lent (two cells are format equivalent if all formatting op-
tions, e.g. font, background color, or border color, are
the same), or neither contains any references to other
cells and they are format equivalent. In order to find

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

regions in the widest variety of situations we choose to
ignore format equivalence. Therefore, we define two
cells as formula similar if and only if they are formula
equivalent or neither contains any references to other
cells.

4.2. Finding Regions
The second issue we considered when defining our

region inference techniques is the spatial relationships
between cells. Prior work has focused on rectangular
areas. However, it is not necessary that regions be rect-
angular, and by allowing non-rectangular regions we al-
low larger regions to be found, thereby decreasing test-
ing and computational effort (as well as avoiding prob-
lems with updating rectangular regions). Therefore, we
consider three different candidate spatial relationships
for inferring regions: discontiguous, contiguous, and
rectangular. For each relationship, we describe our al-
gorithm for finding regions in an existing spreadsheet,
and we then discuss mechanisms for incrementally up-
dating regions as the spreadsheet is updated (algorithms
and run time analyses are available in Reference [13]).

4.2.1. Discontiguous regions. Using formula similar-
ity and no additional constraints yields the most gen-
eral concept of what constitutes a region: all cells in a
worksheet that are formula similar are in the same re-
gion. Under this concept, regions can be discontiguous,
containing cells that are not neighbors.

Discontiguous regions can be identified by iterating
through the cells in a spreadsheet and looking up region
identifiers in a hashtable indexed by cell formula. This
process is linear in the number of cells. This technique
finds two regions in Grades (Figure 1): (1) the cells in
the areas labeled 1, 2 and 3, and (2) the cells in the area
labeled 4.

To incrementally update regions there are several
operations to consider. A cell’s formula could be
changed (through user entry or a copy/paste operation),
a cell could be inserted into the spreadsheet, or a cell
could be deleted from the spreadsheet. First suppose
cell C’s formula is changed. In this case, C is removed
from the region it is in, and if C is the only cell in its
region, that region is deleted. Next the technique finds
the region to which C should be added; this is done by
looking up the new region in the hashtable used to find
the regions initially. This is a constant time operation.

When a cell (or cells) is (are) added to a spread-
sheet, all of the cells below (or to the right of, at the
user’s discretion) the inserted cell are shifted down (or
to the right). This also causes references to the shifted
cells to be updated to reflect the cells’ new locations.
Each cell that references a cell that is shifted must have
its region information updated. References change in a

similar manner when cells are deleted from the spread-
sheet, and are treated similarly.

4.2.2. Contiguous regions. The discontiguous algo-
rithm is simple and efficient; however, it is important to
consider what kinds of regions end users will be able to
make use of. Allowing discontiguous regions requires
the creation of some device to indicate the relationship
between the disconnected areas that comprise regions,
which could be difficult to do in a fashion that users can
understand and use. Therefore, it may be useful to re-
quire regions to be contiguous.

To find contiguous regions, our technique iterates
through the cells in a spreadsheet, comparing their for-
mulas to those of their neighboring cells, and merging
formula similar cells into regions. With an efficiently
implemented merge operation, the cost of this approach
is linear in the number of cells in the spreadsheet. This
technique finds three regions in Grades (Figure 1): (1)
the cells in the areas labeled 1 and 2, (2) the cells in the
area labeled 3, and (3) the cells in the area labeled 4.

With contiguous regions, to update regions when
a formula in cell C in region R is changed, there are
two factors to consider. First, C is removed from R,
but then it must be determined whether C is required to
keep two or more areas of R connected. This can occur
only if two or more of the cells adjacent to C were in R.
To determine whether R should be split, a search is per-
formed on the cells in R starting with one of the cells
adjacent to C. If all cells in R that were adjacent to C
can be reached, it is not necessary to split the region. If
any adjacent cells are not reached in the search, then the
cells traversed in the search must be split off from the
rest of the region. If two or more adjacent cells are not
reached, the search process is repreated with another ad-
jacent cell. In addition, it is also possible that changing
the formula allows two neighbor regions to be merged.
If the changed cell now has the same formula as two
of its neighbors and those cells are in different regions,
they need to be merged. Because of the need to poten-
tially split or merge regions, this operation is linear in
the size of R and of any other regions adjacent to C. A
similar procedure is performed when a cell is deleted or
inserted, taking into account changing references as in
Section 4.2.1.

4.2.3. Rectangular regions. Forms/3 required regions
to be rectangular, and Excel users may tend to think
of their spreadsheets in rectangular blocks. Thus we
also consider an algorithm that creates rectangular re-
gions. To find rectangular regions, our technique first
iterates through the cells, comparing their formulas to
those of the cells directly above or below, creating all
regions one cell wide of maximum height. It then iter-

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

ates through these regions, comparing them to the re-
gions on either side of them, and merging the adjacent
regions with formula similar formulas with the same
height. Again, assuming an efficient region merge al-
gorithm, this technique is linear in the number of cells.
This technique finds four regions in the Grades spread-
sheet in Figure 1, one for each of the labeled areas.

When a formula in cell C in region R is changed,
the region is split into five regions. This can be done
in many ways, but to be consistent with our algorithm
for finding regions it proceeds as follows: one region
includes all cells in R to the left of C, one region in-
cludes all cells in R to the right of C, one includes the
cells in R directly above C, one includes the cells in R
directly below C, and the last includes only C (depend-
ing on where the modified cell is located in the original
region, one or more of these regions may include no
cells). Each of these regions is then compared with its
neighbor regions to determine whether they should be
merged. The total cost of this operation depends on the
number of cells in the region that is broken up and its
neighboring regions.

There is one important thing to note about this ap-
proach: it does not guarantee that the regions created
are the same as they would be if we re-ran the batch
operation. For example, in Figure 1, if the formula of
cell I9 was changed to match the formulas in area 3, I9
would be assigned to its own region. However, if this
formula had been the same as the formulas in area 3
when the batch operation was performed, area 3 would
have been divided into two regions (one for column I
with I9 and one for column J). (Any update algorithm
that attempted to recreate the regions that were inferred
by the batch rectangular regions algorithm could poten-
tially have wide-ranging effects on the structure of the
updated regions that could be confusing to the user.) A
similar procedure is performed when a cell is deleted
or inserted, taking into account the issues mentioned in
Section 4.2.1.

5. Assessment

Ultimately, our techniques must be empirically
studied in the hands of end users, to address questions
about their usability and effectiveness. Such studies,
however, are expensive, and before undertaking them, it
is worth first assessing the more fundamental questions
of whether our techniques for handling formulas and re-
gions scale cost-effectively to real world spreadsheets,
and how our different region inference algorithms per-
form when applied to real spreadsheets. If such assess-
ments prove negative, they obviate the need for human
studies; if they prove positive, they provide insights into

the issues and factors that should be considered in de-
signing and conducting human studies.

More formally we consider the following research
questions:

RQ1: How much does the use of WYSIWYT as ex-
tended slow down commercial spreadsheets, and
how does this vary with region inference algo-
rithms?

RQ2: How much savings in testing effort can be gained
by each of the region inference algorithms?

RQ3: How do the different region inference algorithms
differ in terms of the regions they identify?

To investigate these questions, we implemented
a prototype in Excel using Java and VBA. The Java
component performs the underlying analysis required
for determining du-associations and tracking coverage,
while the VBA component evaluates formulas and ex-
pressions and displays our visual devices. The proto-
type version used for this study provides support for
most of the functions described in Section 3, treating
unsupported functions as simple computational func-
tions for purposes of testing. (It does not yet support
imperative code in spreadsheets.)

5.1. Experimental procedure
As objects of analysis, we drew a sample of the

spreadsheets from the EUSES Spreadsheet Corpus [11],
selecting from the 1826 of those spreadsheets that con-
tained formulas and did not use macros. The 176 se-
lected spreadsheets ranged in size from 41 to 12,121
non-empty cells, with a mean of 1,235 non-empty cells.

Our experiment involved two independent vari-
ables: region inference algorithm and spreadsheet size.

We used all three region inference algorithms de-
scribed in Section 4: D-Regions, C-Regions, and
R-Regions. As a baseline we also used a version
without region inference, No-Regions.

To measure spreadsheet size we used the number
of non-empty cells in the spreadsheet.

We explored three dependent variables: time re-
quired for analysis on load, number of interactions in
the spreadsheet, and number of regions found.

To measure time for analysis on load, we measured
the time that was spent in the analysis portion of load-
ing the spreadsheet. This measure allows us to estimate
how much overhead the use of WYSIWYT requires.
This measure includes the time required to infer regions
and find all interactions in the spreadsheet.

To approximate the testing effort required by the
different region algorithms we use the number of in-

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

Figure 6. Analysis time on load vs. size

teractions in the spreadsheet. This works as an upper-
bound on the amount of testing required, since any du-
adequate test suite requires, at most, the same number
of tests as there are du-associations.

Due to the properties of the algorithms, we know
that if two of our region inference algorithms find the
same number of regions in a spreadsheet, they have
found identical regions. Thus, measuring the number
of regions found lets us quickly determine whether two
algorithms act identically, and we can then further in-
spect interesting cases when this metric differs. For
the No-Regions algorithm, the number of regions is
equal to the number of cells.

For each spreadsheet, we ran four different execu-
tions that each sequentially opened a spreadsheet, col-
lected our measures, and then closed the spreadsheet.
We did an execution for each of the four region infer-
ence algorithms utilizing the prototype Excel interface
and Java analysis engine described in [7].

5.2. Data and Analysis

RQ1. Our goal with RQ1 is to determine how much
our algorithms slow down the normal operation of Ex-
cel. We chose to look at load time because it is dur-
ing the loading of the spreadsheet that the most work in
calculating regions and interactions must occur and be-
cause previous work has demonstrated that reasonable
bounds hold on the time required to respond to other
user actions within the WYSIWYT methodology [17].

Figure 6 plots analysis time on load against spread-
sheet size. Looking at the different techniques, it
appears that the No-Regions approach is gener-
ally slower than the other three approaches. To ex-
plore this, we considered the differences in time be-
tween techniques using paired t-tests. As suggested by
the graph, there were significant differences between
No-Regions and the other techniques (mean differ-
ences between 9.24 and 9.69, p-values < .05), with no
significant differences between any of the region tech-
niques. For the techniques with regions, there does not
appear to be any correlation between size of spreadsheet

No-Regions R-Regions C-Regions D-Regions
interactions 1162.90 81.30 81.23 50.26
regions 1234.99 39.60 39.46 20.16

Table 1. Mean # of interactions and regions

and time; however, with the No-Regions approach it
appears that such a correlation might exist. A bivariate
linear correlation analysis of the data resulted in a Pear-
son value of .863 significant with a p-value of less than
.01, indicating a reasonably strong correlation between
analysis time for No-Regions and spreadsheet size.
RQ2. Table 1 shows the total number of interactions
found by each technique. No-Regions has more than
14 times as many interactions as any of the other tech-
niques on average (significant, paired t-test, p-value
< .05). Both C-Regions and R-Regions had a
slightly larger number of interactions than D-Regions
(significant, paired t-test, p-value < .05), and approxi-
mately the same number of interactions as each other.
These results suggest that testing effort could be re-
duced dramatically through the use of our region infer-
ence algorithms.
RQ3. Examination of the number of regions found
by the different techniques shows that for 172 of
the spreadsheets R-Regions found the same num-
ber of regions as C-Regions. This implies that
R-Regions found regions identical to those found by
C-Regions in these cases.

D-Regions found fewer regions than
R-Regions and fewer than C-Regions, as in-
dicated in Table 1 (significant, paired t-test, p-value
< .05). Further examination shows that D-Regions
found the same set of regions as C-Regions on only
36 spreadsheets.

5.3. Discussion

Our analysis timings show that it is feasible to per-
form WYSIWYT analysis on real spreadsheets, and
that with region inference and our formula extensions,
WYSIWYT seems to scale quite well to larger spread-
sheets. In addition, from the point of view of timing,
it does not seem to make much difference which region
inference algorithm is used.

As expected, D-Regions found significantly
fewer (therefore larger) regions than the other tech-
niques, which led to fewer interactions in the spread-
sheet, implying less testing effort. The lack of dif-
ference between C-Regions and R-Regions, how-
ever, was somewhat surprising, although useful. As
mentioned in Section 4, R-Regions are difficult to
update and efficient updating algorithms could lead
to an inconsistent state, a problem that C-Regions
does not suffer from. Since the vast majority of con-

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

tiguous regions in the study are inherently rectangu-
lar in nature, there seems to be little reason to use
R-Regions. However, since there is a significant dif-
ference between the regions identified by D-Regions
and R-Regions, user studies are needed to determine
which of these methodologies provides the best balance
between usability and efficiency for users.

6. Conclusions
In this paper we have presented a new test ade-

quacy criterion, aimed at supporting not only the usual
dataflow relationships between formulas, but also the
more challenging multiparadigmatic features of com-
mercial spreadsheets. We show how the adequacy crite-
rion can be applied to Excel’s support for higher-order
functions, meta-programming constructs, pointer con-
structs, query language mechanisms, matrix constructs
and user-defined functions. We also present algorithms
to support the high degree of formula replication com-
mon in commercial spreadsheets. Finally, we report
on the first studies of WYSIWYT to ever be conducted
within a commercial spreadsheet environment.

In our continuing work, we are considering ap-
proaches for handling other features of commercial
spreadsheets. Charts could be handled as a special form
of cell that have targets for each cell whose value is used
to generate the chart. External data sources are a form
of input cell into the system; replacing them with tem-
porary user-settable input cells would allow the user to
test the logic of the spreadsheet. Using an anomaly de-
tection mechanism on the data feeds themselves similar
to that proposed in Reference [16] could help to ensure
that the data feeds are reliable.

Through this work we hope to provide a system
that can be used to further evaluate dependability de-
vices with end users using large-scale spreadsheets, and
in particular, that can be used in long-term studies.

Acknowledgements. This work was supported in part by
the EUSES Consortium via NSF Grant ITR-0325273.

References

[1] R. Abraham and M. Erwig. Header and unit inference
for spreadsheets through spatial analyses. In Symp. on
Vis. Lang. and Human-Centric Comp., 2004.

[2] T. Antoniu, P. A.Steckler, S. Krishnamurthi,
E. Neuwirth, and M. Felleisen. Validating the unit
correctness of spreadsheet programs. In Int’l Conf. on
Soft. Eng., 2004.

[3] Y. Ayalew and R. Mittermeir. Interval-based testing for
spreadsheets. In Int’l Arab Conf. on Inf. Tech., 2002.

[4] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Sum-
met, and C. Wallace. End-user software engineering

with assertions in the spreadsheet paradigm. In Int’l
Conf. on Soft. Eng., 2003.

[5] M. Burnett, A. Sheretov, B. Ren, and G. Rothermel.
Testing homogeneous spreadsheet grids with the “What
You See Is What You Test” methodology. IEEE Trans.
on Soft. Eng., 28(6):576–594, 2002.

[6] M. Clermont. Analyzing large spreadsheet programs. In
Working Conf. on Reverse Eng., 2003.

[7] T. Creelan and M. Fisher II. Scaling up an end-user de-
pendability framework for spreadsheets. Technical Re-
port 04-60-09, Oregon State University, 2004.

[8] D. Cullen. Excel snafu costs firm $24m. The Register,
June 19 2003.

[9] M. Erwig, R. Abraham, I. Cooperstein, and S. Koll-
mansberger. Automatic generation and maintenance of
correct spreadsheets. In Int’l Conf. on Soft. Eng., 2005.

[10] M. Fisher II, D. Jin, G. Rothermel, and M. Burnett. Test
reuse in the spreadsheet paradigm. In Int’l Symp. on Soft.
Rel. Eng., 2002.

[11] M. Fisher II and G. Rothermel. The EUSES Spread-
sheet Corpus: A shared resource for supporting experi-
mentation with spreadsheet dependability mechanisms.
In Work. on End-user Soft. Eng., 2005.

[12] M. Fisher II, G. Rothermel, D. Brown, M. Cao, C. Cook,
and M. Burnett. Integrating automated test generation
into the WYSIWYT spreadsheet testing methdology.
ACM Trans. on Soft. Eng. and Meth., 15(2), 2006.

[13] M. Fisher II, G. Rothermel, T. Creelan, and M. Bur-
nett. Scaling a dataflow testing methodology to the mul-
tiparadigm world of commercial spreadsheets. Techni-
cal Report TR-UNL-CSE-2005-0003, University of Ne-
braska - Lincoln, 2005.

[14] R. Panko. What we know about spreadsheet errors. J. of
End User Comp., pages 15–21, Spring 1998.

[15] S. Prabhakararao, C. Cook, J. Ruthruff, E. Creswick,
M. Main, M. Durham, and M. Burnett. Strategies
and behaviors of end-user programmers with interactive
fault localization. In Symp. on Human-Centric Lang.
and Env., 2003.

[16] O. Raz, P. Koopman, and M. Shaw. Semantic anomaly
detection in online data sources. In Int’l Conf. on Soft.
Eng., 2002.

[17] G. Rothermel, M. Burnett, L. Li, C. DuPuis, and
A. Sheretov. A methodology for testing spreadsheets.
ACM Tran. on Soft. Eng. and Meth., 27(1):110–147,
2001.

[18] K. Rothermel, C. Cook, M. Burnett, J. Schonfeld,
T. Green, and G. Rothermel. WYSIWYT testing in the
spreadsheet paradigm: An empirical evaluation. In Int’l
Conf. on Soft. Eng., 2000.

[19] J. Ruthruff, M. Burnett, and G. Rothermel. An empirical
study of fault localization for end-user programmers. In
Int’l Conf. on Soft. Eng., 2005.

[20] J. Sajaniemi. Modeling spreadsheet audit: A rigorous
approach to automatic visualization. J. of Vis. Lang. and
Comp., 11(1):49–82, 2000.

[21] A. Scott. Shurgard stock dives after auditor quits over
company’s accounting. The Seattle Times, Nov 18 2003.

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	1-1-2006

	Scaling a Dataflow Testing Methodology to the MultiparadigmWorld of Commercial Spreadsheets
	Marc Fisher II
	Gregg Rothermel
	Tyler Creelan
	Margaret Burnett

