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Abstract: The large chlorella virus PBCV-1, which contains double-stranded DNA (dsDNA), en-
codes a 94-codon open reading frame (ORF) that contains a motif resembling the signature se-
quence of the pore domain of potassium channel proteins. Phylogenetic analyses of the encoded
protein, Kcv, indicate a previously unidentified type of potassium channel. The messenger RNA
encoded by the ORF leads to functional expression of a potassium-selective conductance in Xen-
opus laevis oocytes. The channel blockers amantadine and barium, but not cesium, inhibit this
conductance, in addition to virus plaque formation. Thus, PBCV-1 encodes the first known viral
protein that functions as a potassium-selective channel and is essential in the virus life cycle.

Potassium channels function in eukary-
otes and prokaryotes as selective trans-

amino acids, TXXTXG(Y/F)G (2, 3).
In a functional channel, four subunits

port proteins for passive K¥ movement
across membranes (1). Common to vir-
tually all known K* channels is a pore
domain with eight highly conserved

surround a pore in which these res-
idues form the selectivity filter (4).

Sequenceanalysis of the 330-kb dsDNA
genome of the plaque-forming chlorella

virus PBCV-1 (family Phycodnaviridae) (5)
identified a short amino acid sequence in
a small ORF (ORF A250R) which resem-
bles the pore domain of Kt channel pro-
teins. ORF A250R is predicted to encode
a peptide of 94 amino acids (referred to as
Kev) with an isoelectric point of 8.7 and a
molecular weight of 10.6 kD (Figure 1A).
Hydropathy analysis of Kcv reveals two
putative transmembrane domains (Figure
1B) separated by 44 amino acids that con-
tain the K* channel signature sequence
TXXTXGFG (Figure 1A, amino acids 60
through 67) (2). The 26 amino acids sur-
rounding this motif display, on average,
61% similarity and 38% identity to the
pore domains of many K* channel pro-
teins (Figure 1C). Two structurally impor-
tant aromatic amino acids are also con-
served in the NH,-terminal portion of the
Kev pore domain. In the bacterial chan-
nel KcsA, two W residues (amino acids 67
and 68 in Figure 1C) are part of a structure
that acts as a cuff, keeping the pore open
at the appropriate diameter for K* pas-
sage (6). In Kcv as well as in several other
K* channel proteins, aromatic Y or F resi-
dues replace these residues (Figure 1C).
In contrast to the putative pore do-
main, the amino acid sequences of the
two Kcv transmembrane domains dif-
fer markedly from other K* channels. A
phylogenetic comparison with eukary-
otic Kir, Kv, and tandem K* channels,

A ¢ Y
% sim (id)
+ + ™ML + ++ Kevl IDCIYFGVTT HSTVGFGDIL PKTTGA 76
MLVFSKFL[IR _THPFMIHLFI LAMFVMIYKF FPGGFENNFS VANPDRKASW 50
Tandem-K 1st pore
P + + ™2 tok1/1 GNALYFCTVS LLTVGLGDIL PKSVGA 155 65 (50)
IDCIYFGVTT HSTVGFGDIL PKTTGAKLCT IAHIVTVFFI VLTL * 94 trek1/1 GSSFFFAGTYV ITTIGFGNIS PRTEGG 155 65 (39)
Tandem-K 2nd pore
C24A3/2 GTSLYFTLIS FTTIGFGDIL PSDYDF 279 58 (39)
- T12C9/2 MDAFYYSFIS LTTIGFGDIV PENHDY 496 62 (35)
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T T T T T T T T T
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Amino Acids prokaryotic K* channel genes
KcsA PRALWWSVET ATTVGYGDLY PVTLWG 88 62 (35)
ecoKch MTAFYFSIET MSTVGYGDIV PVSESA 198 65 (46)

Figure 1. (A) Predicted amino acid sequence of chlorella virus PBCV-
1 Kcev protein (GenBank accession AAC96618). Transmembrane re-
gions ( TM41, TM2) are underlined; pore region (P) is boldface; K* D
channel signature sequence is double underlined; positively charged
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amino acids are marked by (+); a putative phosphorylation site ( TRTE)
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is boxed. (B) Hydrophobicity profile (ordinate) was calculated accord-

ing to Kyte and Doolittle (24) with a moving window of 19 amino ac-
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ids and plotted against amino acid number (abscissa). (C) Alignment
of the Kev P domain with other K* channel proteins (25). Amino acids
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similar or identical to Kcv are boldface. Following each sequence, the
position of the last residue and the percent amino acid similarity and
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and two prokaryotic K* channel families
(7), places Kcv as an independent clus-
ter, indicating significant sequence devi-
ation (Figure 1D). Another unusual fea-
ture of Kcv is its short (12 amino acids)
cytoplasmic NH,-terminus containing a
consensus protein kinase ck2 phosphor-
ylation site (Figure 1A, amino acids 9
through 12). The COOH-terminus of the
Kev protein is part of the second trans-
membrane region; Kcv thus appears to
lack a COOH-terminal cytoplasmic tail.
These structural data and the phyloge-
netic analysis suggest that Kcv represents
a very primitive K* channel. This no-
tion is supported by phylogenetic analy-
ses of another viral protein that place the
DNA polymerases from Phycodnaviridae
near the root of all eukaryotic DNA poly-
merase delta proteins (5). This indicates
that at least some PBCV-1-encoded pro-
teins have long evolutionary histories.

To determine if Kcv functions as an
ion channel, we expressed the protein
in Xenopus oocytes (8). At 36 hours after
Kcv mRNA injection, oocytes exhibited

-20 mV:
— = _77mV
—————————
1pAl —=175mV
100 ms
B Ix/uA -4
f Kev
-2 )
VimV _ - _— 1 Hp0
-200 -100 100
o -
coe® 2
\ L4

Figure 2. Heterologous expression of the
PBCV-1 encoded K* channel homolog Kcv in
Xenopus oocytes. (A) Currents recorded in 50
mM KCI from oocytes injected with water or
Kev mRNA were induced by voltage steps from
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distinct currents in voltage clamp assays
(9) which differed quantitatively and
qualitatively from control oocytes (Fig-
ure 2, A and B) (10). At voltages of +60
and -140 mV, average steady-state cur-
rents of Kcv mRNA-injected oocytes ex-
ceeded those of water-injected ones by
factors of 8.6 and 8.2, respectively (11).
The conductance introduced by Kcv
mRNA injection consisted of an instanta-
neous and a time-dependent component
(Figure 2A). The instantaneous I/ V rela-
tion deviated from linearity by decreas-
ing at extreme hyperpolarizing and de-
polarizing voltages. The time-dependent
current activated and deactivated at neg-
ative and positive voltages, respectively.
Figure 2B shows the instantaneous (I))
and steady state-current (I,) from Kcv
mRNA-injected oocytes and the steady-
state component of water-injected oo-
cytes as a function of voltage.

The selectivity of Kcv-mediated con-
ductance was determined by obtaining
I,/ V relationships at 2, 20, and 50 mM
KClI (Figure 2C). Lowering the external

C 10
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holding voltage to test voltages as indicated. (B) /; (solid symbols) and I, (open symbols) as a func-
tion of applied test voltages. Currents were measured after 3 ms (/) and at the end of the test pulse
(l5)- (€) I/V relations from a Kev mRNA-injected oocyte in 2, 20, and 50 mM KCI measured as in
(B). (D) Deactivation tail currents from a Kcv mRNA-injected oocyte in 50 mM KCI. Currents were
elicited by clamping the oocyte to -160 mV for 1 s to activate time-dependent conductance. To fol-
low current relaxation, voltage steps were applied in the ranges indicated. (E) Reversal voltages (V)
obtained from I/V relations (solid symbols, n = 9 oocytes) and tail currents (open symbols, n = 8
oocytes) in Nernst plot against extracellular K* concentration. Linear regression to mean V, from
both types of analysis has a slope of 60.0 mV/decade.

K* concentration (K*) caused the cur-

rent reversal voltage (VB to shift to more
negative voltages and the inward cur-
rent to decrease. Plotting V, versus K in
a Nernst plot yielded a slope of 60.0 mV
per decade (Figure 2E). Figure 2D shows
the time-dependent deactivation of the
current following activation at a condi-
tioning voltage of -160 mV. The current
reversed at -20 mV, a value close to the
reversal of I,. This result was confirmed
at all K+0 values investigated (Figure 2E).
Taken together, these analyses show that
Kcv is a channel that conducts K* ions.

The cation selectivity of Kcv-mediated
conductance was examined by replacing
KCI with NaCl in the bath solution. Both
the time-dependent and instantaneous
currents were strongly depressed (Fig-
ure 3). Furthermore, V, shifted negative
by 68 mV, indicating that the Kcv-medi-
ated conductance prefers K* over Na*t
ions. The Py /Py, permeability ratio from
n =10 I/V relations was 9.32 (12). Cur-
rent reduction at positive voltages sug-
gests an inhibitory effect of Na* on the
K* outward current.

These results indicate that Kcv forms
a K*-selective channel in oocytes (13).
Kcv is the smallest Kt channel protein
known, primarily because of its short
NH,- and COOH-termini. The NH2- and
COOH-terminal domains of other K*

A
50 mM K+
20 mV ——————mee
Nee——— e A B 1\
N——
T 158 mv
50 mM Na*
_—-— mV
MV e -81mV
~ -162mV
1A
100 ms

o S

po
o o o

Figure 3. Selectivity of the Kcv-mediated con-
ductance. Currents were elicited in response
to voltage steps from resting voltage to test
voltages in the ranges indicated. The bath so-
lution in (A) contained 50 mM KCI or 50 mM
NaCl. (B) I/V relation of data in (A).
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channel proteins contribute to pore as-
sembly and voltage sensitivity (14). De-
spite lacking these domains, Kcv displays
several distinct properties with moder-
ate voltage-sensitivity including (i) a de-
crease in I, near both voltage extremes,
(ii) a hyperpolarization-induced time-de-
pendent activation, and (iii) a depolariza-
tion-induced time-dependent decrease of
the conductance (Figure 2, A and B).
Oocytes expressing Kcv were exposed
to amantadine, an antiviral drug which at
concentrations < 1 pM inhibits the influ-
enza virus M2 protein (15). Amantadine
inhibited the Kcv-mediated conductance
(Figure 4A). Inhibition of I, was voltage-
independent (Figure 4A, lower panel). To
quantify inhibition, we measured the ef-
fect of amantadine on the physiologically
relevant steady-state current: At +60 and
-140 mV, I was half-inhibited by 2 and
0.8 mM amantadine, respectively (16).
Thus, the effective concentration is about
three orders of magnitude higher than
required to inhibit M2. Amantadine inhi-
bition of Kcv-mediated conductance re-
versed within minutes after removal of

A LA 2 0 mM
B 1 mM
6 mM
-150 =100 -50
T T T 1
- V/mV
L1
| -2
I-L, Amafli,0
0.5
<&
V/mV
T T T 1
-200 -100 0 100

Figure 4. Inhibition of Kcv-mediated conduc-
tance and virus replication by K* channel
blockers. [(A), upper panel] I/V in Kev mRNA-
injected oocytes with addition of O (®), 1 (¢),
and 6 (A) mM amantadine to the bath so-
lution. [(A), lower panel] Relative block (1 -
’i,Ama/li,O) from data in upper panel as a func-
tion of voltage (amantadine: ¢ 1 mM, ¢ 6
mM). [(B), upper panel] [/V relations in Kcv
mRNA-injected oocytes before (®) and after
(m) adding 1 mM BaCl, to the bath solution.

the drug. In contrast, amantadine inhibi-
tion of M2 is essentially irreversible (15).
These results, together with the fact that
the two viral-encoded proteins have little
or no structural similarity, suggest that
amantadine inhibits the Kev and M2 pro-
teins by different mechanisms (17).

Kcv-mediated conductance was also
exposed to the typical K* channel block-
ers Cs* and Ba?*. Addition of 10 mM
CsCl had only modest effects on the Kev-
mediated conductance. The inward cur-
rent at -140 mV was inhibited by 9 + 4%,
whereas the outward current at +60 mV
was unaffected (n = 4 oocytes). In con-
trast, Ba?t reduced the Kcv-mediated
conductance in a voltage-dependent
manner (Figure 4B) (18). This behavior
supports the hypothesis that Ba>*blocks
inward current in K* channels after be-
ing drawn into the pore by negative volt-
age (19).

A plaque reduction assay (20) was
employed to determine the importance
of Kcv to virus replication (21). Amanta-
dine inhibited PBCV-1 plaque formation
by 50% at 2.8 £ 0.2 mM (1 = 4) (16), that

B ~ 0.6

LjuA

1-L; p./T;
- ®
-
0.5
V/mV
-200 -100 0 100
C 1
£ 05
2
-
I I A 1
0 5 10 40
Amantadine (mM)

[(B), lower panel] Relative block (1 - ’i,Ba/’i,o) from data in the upper panel as function of voltage.
Data fitted (solid line) with Woodhull block model (18), yielding b, = 0.93, & = 0.91, and KO =
650 pM (n = 3 oocytes). (€) Relative inhibition (1 - A/A;) of virus plague formation (0) and Kcv-
mediated /.  at +60 mV (®) and -140 mV (A) as function of amantadine concentration in the ex-
ternal medium. Mean of four experiments; SE is smaller than symbols.
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is, at approximately the same millimolar
concentration that affected the Kcv-me-
diated conductance (Figure 4C). Plaque
formation was also inhibited 50% by 2.6
+ 0.16 mM Ba?t (n = 3), a concentration
sufficient to abolish Kev inward current.
Cesium (10 mM) had no apparent effect
on PBCV-1 replication. These results, to-
gether with the finding that the Kcv gene
is expressed early after virus infection
(22) indicate that PBCV-1 replication de-
pends, in a yet unknown manner, on a
functional Kcv channel.

In conclusion, chlorella virus PBCV-1
encodes a functional K* channel protein,
Kev, which is important for virus replica-
tion. Prior to this study, only four virus-
encoded proteins were thought to have
ion channel activities: influenza virus A
M2 protein, influenza virus B NB protein,
and the human immunodeficiency vi-
rus proteins Vpu and Vpr (23). PBCV-1 is
the first virus known to encode a K*-se-
lective channel. Because of its exception-
ally small size, Kcv may become a useful
tool to study basic principles of channel
assembly and function.
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