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(Chamaecrista fasciculata) hemoglobin: The
structural transition from a nonsymbiotic
hemoglobin to a leghemoglobin
Sabarinathan K. Gopalasubramaniam,1 Frank Kovacs,2 Fernando Violante-Mota,1
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INTRODUCTION

Nonsymbiotic and symbiotic hemoglobins (Hbs) are O2-

binding proteins that have been identified in plants. Sym-

biotic Hbs (or leghemoglobins (Lbs) when isolated from

legumes) are specifically synthesized in the nodules of N2-

fixing plants. A major function for Lbs is to facilitate the

diffusion of O2 to the actively respiring bacteroids during

N2-fixation.1,2 Nonsymbiotic Hbs (nsHbs) are synthesized

in diverse organs from plants growing in normal and

stressed conditions (reviewed in Ross et al.3).

Nonsymbiotic Hbs are classified into class-1 and class-2

(nsHb-1 and nsHb-2, respectively).4 The O2-affinitiy of

nsHb-1 and nsHb-2 is very high and high, respectively.4–6

The very high O2-affinity of nsHb-1 results from an

extremely low O2-dissociation rate constant, thus it has

been proposed that major functions for nsHbs-1 in plant

cells are other than O2-transport, such as to modulate the

levels of NO and maintain the energy status and redox

potential.7–10 In contrast, the O2-dissociation rate con-

stant for nsHbs-2 is higher than that of nsHbs-1, thus a

likely function for nsHbs-2 is O2-transport.4,7

For many years Hbs were only identified in N2-fixing

plants; however, during the last few decades Hbs have been

detected in numerous (non-N2-fixing) land plants, ranging
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ABSTRACT

Nonsymbiotic hemoglobins (nsHbs) and leghemoglobins

(Lbs) are plant proteins that can reversibly bind O2 and

other ligands. The nsHbs are hexacoordinate and appear to

modulate cellular concentrations of NO and maintain

energy levels under hypoxic conditions. The Lbs are penta-

coordinate and facilitate the diffusion of O2 to symbiotic

bacteroids within legume root nodules. Multiple lines of evi-

dence suggest that all plant Hbs evolved from a common

ancestor and that Lbs originated from nsHbs. However, little

is known about the structural intermediates that occurred

during the evolution of pentacoordinate Lbs from hexacoor-

dinate nsHbs. We have cloned and characterized a Hb

(ppHb) from the root nodules of the ancient caesalpinoid

legume Chamaecrista fasciculata. Protein sequence, modeling

data, and spectral analysis indicated that the properties of

ppHb are intermediate between that of nsHb and Lb, sug-

gesting that ppHb resembles a putative ancestral Lb. Pre-

dicted structural changes that appear to have occurred dur-

ing the nsHb to Lb transition were a compaction of the CD-

loop and decreased mobility of the distal His inhibiting its

ability to coordinate directly with the heme-Fe, leading to a

pentacoordinate protein. Other predicted changes include

shortening of the N- and C-termini, compaction of the pro-

tein into a globular structure, disappearance of positive

charges outside the heme pocket and appearance of negative

charges in an area located between the N- and C-termini. A

major consequence for some of these changes appears to be

the decrease in O2-affinity of ancestral nsHb, which resulted

in the origin of the symbiotic function of Lbs.

Proteins 2008; 72:252–260.
VVC 2008 Wiley-Liss, Inc.
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from primitive bryophytes to evolved monocots and

dicots (reviewed in Garrocho-Villegas et al.11), indicating

their widespread occurrence in land plants. Also,

sequence comparison showed that the hb gene structure

is identical in primitive and evolved nsHbs and Lbs, that

is, nshb and lb genes are interrupted by three introns

located at identical positions. This evidence suggests that

nsHbs and Lbs evolved from a common ancestor.11,12

The detection of nsHb with both symbiotic and non-

symbiotic specificities in N2-fixing plants suggests that

symbiotic Hbs and Lbs originated from nshb genes.13–17

Although it is not yet certain that Hb is essential for N2-

fixation in nonlegume plants, such as in Parasponia

andersonii and actinorhizal plants, Lb is essential for N2-

fixation in nodulating legumes.18 Thus, a specialization

from nsHb to Lb apparently occurred during the evolu-

tion of N2-fixing legumes. Hoy et al.19 analyzed the crys-

tal structure of barley and rice nsHb-1 and soybean Lba

and proposed that functional (O2-transporting) Lbs ori-

ginated after the stabilization of an open pentacoordinate

conformation of nsHbs. However, the structural changes

that occurred during the nsHb to Lb transition are

largely not known. Also, nsHbs or Lbs that resemble a

putative ancestor of Lbs have not yet been identified.

This information is of interest to complement our under-

standing about the evolution of plant Hbs.

The Caesalpinoideae is the oldest subfamily in the

Leguminosae family20,21 and contains non-nodulating

and nodulating species.22,23 Thus, the evolution of a

nsHb into a functional Lb probably occurred in a caesal-

pinoid legume. Here we report the characterization of a

Hb (ppHb) from the nodulating caesalpinoid Chamae-

crista fasciculata (Partridge pea), and describe a number

of structural changes that probably occurred during the

evolution of its symbiotic function.

METHODS

Plant growth and root nodules harvest

Seeds of Partridge pea (Chamaecrista fasciculata

(Michx). Green) were obtained from plants grown in a

field near Mead, NE. Seeds were scarified by gentle tum-

bling with coarse sand for 5 min. Scarified seeds were

mixed with a rhizobial commercial inoculum (Cowpea

type, Bradyrhizobium sp. (Vigna), Royal Peat, Becker

Underwood, Ames, IA) and planted in 10 inch clay pots

in sterilized sand and raised in a greenhouse under natu-

ral light with �328C day and �288C night. After germi-

nation, plants were thinned to three seedlings/pot and

watered twice weekly with a N2-free nutrient solution.24

Plants were otherwise watered with distilled water as

needed. Root nodules were harvested from both young

and mature (<2 and >5 week old plants, respectively)

plants, frozen in liquid N2, and stored at 2808C until

used.

cDNA library construction

Library construction was essentially according to

Tobias et al.25 Briefly, total RNA was extracted from fro-

zen root nodules using the Concert Plant RNA reagent

(Invitrogen). Messenger RNA was purified using the Fast-

Track 2.0 mRNA isolation system (Invitrogen). First

strand cDNA synthesis was primed with a NotI-oligo(dT)

adapter primer followed by second strand synthesis using

the Superscript Plasmid System (Invitrogen). The result-

ing cDNAs were ligated to SalI adapters, digested with

NotI and directionally cloned into the pSPORT1 cloning

vector (Invitrogen). Plasmids containing cDNA inserts

were transformed into Ultramax DH5aFT chemically

competent Escherichia coli (Invitrogen). One hundred

individual clones were randomly isolated and insert DNA

was partially sequenced at the University of Nebraska-

Lincoln Genomics Core Facility. A total of five clones

containing cDNA sharing homology to known plant Hbs

were selected and fully sequenced in both directions to

assemble the full length cDNA and deduce the amino

acid sequence of the Partridge pea Hb (ppHb).

Sequence analysis and prediction
of the ppHb structure

Multiple sequence alignment and cluster analysis of

ppHb and selected plant Hbs were performed by using

the Neighbor Joining Method of the Clustal X pro-

gram.26 Sequence alignment was manually verified.

Sequence similarity and identity values between ppHb

and individual plant Hbs were obtained from pairwise

Table I
Sequence Similarity and Identity Between ppHb and Selected nsHbs and Lbs

Plant Hb Similarity (%) Identity (%)

Nonsymbiotic Hbs
Soybean nsHb1 83 68
Parasponia andersonii nsHb1 82 66
Trema orientalis nsHb1 82 67
Tomato nsHb1 78 64
Barley nsHb1 78 57
Rice nsHb1 77 56
Ceratodon purpureus nsHb 71 46
Physcomitrella patens nsHb 69 44
Cotton nsHb2 68 53
Tomato nsHb2 63 48
Arabidopsis nsHb2 62 45

Symbiotic Hbs
Sesbania rostrata Lb 62 46
Soybean Lba 59 42
Cowpea LbII 59 40
Yellow Lupin Lb 59 42

Sequences of plant Hbs were obtained from the GenBank database (with the

accession numbers reported by Garrocho-Villegas et al.11) and aligned by pairwise

with ppHb using the BLAST program. Similarity values show amino acid position

with identical polarity (negative, positive, or nonpolar) in aligned sequences.

Identity values show identical amino acids in aligned sequences.

The Structural Origin of Leghemoglobin
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Figure 1
Nucleotide and deduced protein sequences of cDNA clone 11 that codes for C. fasciculata Hb (ppHb). Arrows show distal and proximal His at positions 62 and 97,

respectively. Putative polyadenylation signals are double-underlined. Peptides arising from native ppHb and identified by mass spectrometry are shaded in gray. The ppHb

cDNA sequence is deposited in the GenBank database under the accession number EF534200.

S.K. Gopalasubramaniam et al.
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sequence alignments using the BLAST program27 from

the GenBank database (http://www.ncbi.nlm.nih.gov).

The tertiary structure of ppHb was predicted by homol-

ogy modeling28 using the crystal structure of rice (non-

symbiotic) Hb1 (PDB ID 1D8U) as template. The ppHb

and rice Hb1 amino acid sequences (GenBank accession

numbers EF534200 and U76030, respectively) were

aligned using the Homology module of the Insight II

program (Accelrys), and amino acids were automatically

substituted. The best rotamer for all side chains was

searched automatically using the default parameters of

the Homology module. The energy of the whole struc-

ture was minimized (100 steps of the steepest descent

minimization) using the Discovery force field from

Insight II, and the best rotamers for all amino acid side

chains were searched again. The refined ppHb model was

analyzed using routines available from the SwissPDB-

Viewer program (http://ca.expasy.org/spdbv/) (below).

Images were edited using the VMD program.29

Expression and purification of
recombinant ppHb

A cDNA coding for ppHb was subcloned into the

expression vector pET28a (Novagen) and transformed

into E. coli following the manufacturer’s instructions.

Recombinant ppHb was purified to homogeneity by

Nickel-interaction chromatography, followed by ion-

exchange chromatography. Protein purification was veri-

fied by SDS-PAGE.30 Total protein was quantitated by

using a dye-binding assay (Bio-Rad) and bovine serum

albumin as standard, and the recombinant ppHb was

quantified on the heme basis using the dipyridine-hemo-

chrome assay.31

Spectroscopic analysis of recombinant ppHb

Purified recombinant ppHb was characterized spectro-

photometrically using a GBC UV/Vis911A spectropho-

tometer interfaced to a computer. Ferrous ppHb was oxi-

dized to ferric ppHb by the addition of potassium ferri-

cyanide (final concentration of 200 lM) in 50 mM

sodium phosphate buffer (pH 6), and then chromato-

graphed on a PD-10 column (Amersham-Pharmacia)

equilibrated with 50 mM phosphate buffer at pH 7. Fer-

rous ppHb was formed by the addition of few crystals of

sodium dithionite (Fluka). Air was bubbled through the

ppHb solution to generate the O2-ligated form of ppHb.

RESULTS AND DISCUSSION

Cloning of a cDNA coding for a caesalpinoid
(C. fasciculata) Hb

With the exception of a partial characterization of a

mimosoid Lb,32 no work has been done on Lbs other

than papilionoid Lbs. Little is known about the proper-

ties of Hbs/Lbs from caesalpinoid and mimosoid species,

which are ancestral legumes. The analysis of caesalpinoid

Hbs/Lbs is of interest because the Caesalpinoideae is the

Figure 2
Sequence alignment of ppHb and selected plant nsHbs and Lbs. Arrows show distal and proximal His at positions 86 and 121, respectively. Conserved amino acids in all

aligned sequences are shown with black background. Amino acids conserved in aligned ppHb and nsHbs and Lbs are shown with light- and dark-gray background,

respectively. Helices are shown with the A to H letters, and were designated (including to prehelix A) according to the position of helices in rice Hb1.33 Sequences were

obtained from the GenBank database using the following accession numbers: Physcomitrella (Physco) Hb: AF218049; Ceratodon Hb: AF309562; soybean Hb: U47143;

rice Hb1: U76029; cowpea LbII: U33207; soybean Lba: V00453; lupin LbI: Y00401.
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oldest subfamily of the Leguminosae family,20,21 thus it

is probable that a functional (O2-transporting) Lb origi-

nated within a caesalpinoid legume. We isolated one

clone (clone 11) from a cDNA library constructed from

the caesalpinoid Chamaecrista fasciculata (Partridge pea)

root nodules. Partial sequencing of 100 cDNA clones

Figure 3
Phenetic relationships between ppHb and selected plant (nonsymbiotic and symbiotic) Hbs. The phenogram was constructed from sequences reported by Garrocho-Villegas

et al.11

S.K. Gopalasubramaniam et al.

256 PROTEINS



showed that clone 11 is highly abundant (it represents

14% of the sequenced clones), and full sequencing and

sequence comparison with sequences deposited in the

GenBank database showed that clone 11 is similar to

plant Hb sequences (Table I). Predicted protein sequence

from clone 11 contains the highly conserved amino acid

residues of plant and nonplant Hbs (below). Thus, clone

11 codes for a plant (caesalpinoid) Hb and was named as

(Partridge pea) ppHb. The ppHb cDNA clone is 798 bp

in length, contains 38 and 407 bp at the 50-(upstream)

and 30-(downstream) noncoding regions, respectively,

and putative polyadenylation signals located at positions

567, 667, and 762, and codes for a predicted polypeptide

149 amino acids in length (see Fig. 1) with a calculated

molecular weight of 16,196 Da. Predicted ppHb contains

the highly conserved distal and proximal His at positions

62 and 97, respectively.

Because of the high abundance of ppHb cDNA (above)

we concluded that ppHb is the major Hb in the C. fasci-

culata root nodules. This was verified by isolating and

de novo sequencing of the major C. fasciculata nodule

Hb by gel electrophoresis followed by mass spectrometry.

The sequences obtained for several peptides were identi-

cal to that of the predicted ppHb protein (highlighted on

the amino acid sequence shown in Fig. 1).

Phenetic relationship of ppHb with Plant Hbs

Sequence comparison of the ppHb protein with

sequences deposited in databases showed that the ppHb

similarity and identity values are higher to plant nsHbs

than to Lbs (Table I). This observation showed that

ppHb is a nonsymbiotic or nonsymbiotic-like Hb rather

than a Lb. Thus, because transcripts coding for ppHb

were abundant in the screened library and ppHb is the

major nodule Hb (above), it is likely that nonsymbiotic

(-like) ppHb, but not Lb, is the functional Hb in the

C. fasciculata root nodules. Sequence alignment of ppHb

with selected plant nsHbs and Lbs showed that highly

conserved amino acid residues in nsHbs and Lbs are also

conserved in ppHb, and that amino acids conserved in

either nsHbs or Lbs are also conserved in ppHb (see

Fig. 2). Phenetic analysis showed that ppHb clusters in-

termediate between nsHbs-1 and nsHbs-2 and Lbs (see

Fig. 3). These observations show that ppHb is intermedi-

ate between nsHbs and Lbs, and suggest that it is an evo-

lutionary transition from nsHbs to Lbs. Thus, to learn

about the properties of ppHb, we performed structural

analyses by predicting the structure of ppHb and obtain-

ing the UV/visible spectra of a recombinant ppHb.

Characteristics of the predicted
ppHb structure

The tertiary structure of proteins can be predicted

with high reliability using in silico methods and template

structures (i.e., those experimentally elucidated by X-ray

crystallography and/or NMR techniques) when the

homology between two proteins is �30%.28,34–36 We

predicted the tertiary structure of ppHb using rice (non-

symbiotic) Hb1 as a template since ppHb is more similar

to nsHbs-1 (�60%–80%) than to Lbs (�60%) (Table I).

However, to identify variations due to template homologs

the structure of ppHb was also predicted using soybean

Figure 4
Overlay of the predicted structure of ppHb (gray) to the native structure of rice

Hb1 (A) and soybean Lba (B) (black). Helices are indicated with letters A–H.

Coordinates for the rice Hb1 and soybean Lba structures were obtained from the

PDB database with the ID numbers 1D8U and 1BIN, respectively. For

experimental details see the Materials and Methods section. The predicted

structure of ppHb is deposited in the Protein Model Database (http://

mi.caspur.it/PMDB/) under the ID number PM0075011.
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Lba (PDB ID 1BIN) as template. The resulting model of

predicted ppHb was identical to that predicted from tem-

plate rice Hb1 (not shown), thus no variations were

identified for the ppHb structure predicted from either

rice Hb1 or soybean Lba. Figure 4 shows that predicted

ppHb folds into the globin fold and that its structure is

more similar to the structure of rice Hb1 than to that of

soybean Lba. With the exception of the N- and C-ter-

mini, the structure of predicted ppHb is quite similar to

the structure of rice Hb1, including the positions of heli-

ces E and F, where the distal and proximal His are

located, respectively [Fig. 4(A)]. However, a number of

differences were identified when the structures of

predicted ppHb and soybean Lba were compared

[Fig. 4(B)]. Specifically, major differences between ppHb

and soybean Lba exist at the CD-loop/helices B and C,

GH-loop and position of the heme prosthetic group. A

close examination of the amino acids that are essential

for binding of ligands to the heme-Fe showed that in

ppHb the position of distal His and Phe B10 and CD1 is

intermediate between rice Hb1 and soybean Lba (see Fig.

5). An interesting observation is that the distance of

proximal His in predicted ppHb is �3.6 Å farther from

the heme-Fe than in rice Hb1 and soybean Lba.

Spectroscopic properties of
recombinant ppHb

Spectral analysis showed that the absorption maxima

of ferrous and ferric recombinant ppHb are located at

431 and 557 nm and 404, 542, and 633 nm, respectively,

similarly to those of soybean Lba. Also, the absorption

maxima of ferrous oxygenated recombinant ppHb were

located at 413, 540, and 575 nm, similarly to those of

oxygenated soybean Lba and rice Hb1 (Table II). This

evidence indicates that recombinant ppHb is pentacoor-

dinate and that it binds O2. Modeling analysis predicted

that the position of distal His in ppHb is intermediate

between rice Hb1 and soybean Lba (see Fig. 5); however,

the spectral analysis showed that the recombinant ppHb

is pentacoordinate (Table II). These observations indicate

that ppHb is structuraly intermediate between nsHbs and

Lbs and suggest that it probably binds O2 similarly to

Lbs and thus functions as an O2-carrier into the C. fasci-

culata root nodules.

CONCLUSIONS

A prerequisite to the origin of an efficient N2-fixing

symbiosis between rhizobia and legume hosts was the ex-

istence of a Lb able to carry and deliver O2 to the respir-

ing bacteroids. Nonsymbiotic Hbs are widespread in land

plants and Lbs are restricted to legumes,11 thus Lbs ori-

ginated from nsHbs. It has been postulated that Lbs

evolved from either nsHb-115 or nsHb-2.4,12,19 The ob-

servation that ppHb sequence similarity is higher to

nsHb-1 than to nsHb-2 (77%–83% and 62%–68%,

respectively) (Table I) suggests that ppHb could have ori-

ginated from a nsHb-1 and not from a nsHb-2. This ob-

servation also discards the possibility that ppHb is a

nsHb-2 and not an evolutionary intermediate between

nsHb-1 and Lb.

If ppHb and Lbs evolved from a nsHb-1, it is unlikely

that the ancestral nsHb-1 functioned in N2-fixing nod-

ules by delivering O2 to bacteroids because of its

extremely low O2-dissociation rate constant. To function

as an O2-carrier structural changes needed to have

Table II
Spectral Characteristics of ppHb, Soybean Lba,31 and Rice Hb16

State/ligand

Absorption maxima (nm)

Søret region Q region

ppHb
Ferric 404 542 633
Ferrous deoxygenated 431 557
Ferrous oxygenated 413 540 575

Soybean Lba
Ferric 404 534 627
Ferrous deoxygenated 427 557
Ferrous oxygenated 411 541 575

Rice Hb1
Ferric 410 540
Ferrous deoxygenated 424 529 557
Ferrous oxygenated 412 540 576

Figure 5
Comparison of the position and orientation of selected amino acids in the ppHb

(red), rice Hb1(blue), and soybean Lba (green) heme pocket.

S.K. Gopalasubramaniam et al.
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occurred in the ancestral nsHb-1 to evolve into a func-

tional Lb. The comparative structural analysis of nsHb-1

(rice Hb1) and Lb (soybean Lba) with ppHb permitted

us to identify the major structural changes that probably

occurred during the nsHb to Lb transition. These

changes include the following: (i) a hexacoordinate to

pentacoordinate transition and changes in the position

of residues lining the heme-pocket (see Fig. 5)19; (ii)

the size decrease and organization of the CD-loop

[Fig. 6(A)], which limited the mobility of the helix E and

positioned distal His away from the heme-Fe (i.e., in a

pentacoordinate position) permiting more efficient O2-

transfer; (iii) the N- and C-termini length decrease

resulting in the disappearance of the N/C-pocket

region35 and compaction of the protein into a globular

structure; and (iv) the disappearance of positive charges

outside the heme pocket and appearance of negative

charges in an area located between the N- and C-termini

[Fig. 6(B)]. These structural changes probably had conse-

quences in the Hb function into the plant cell, which

resulted in the origin of the symbiotic function of Lbs.
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Figure 6
Comparison of the rice Hb1, ppHb, and soybean Lba CD-loop regions (A) and surface charge distribution (B). The heme position in (B) is shown as an approximation.

Blue and red colors in (B) represent positively and negatively charged amino acids, respectively. The arrows above the figures illustrate the postulated nsHb to Lb

evolutionary transition.

The Structural Origin of Leghemoglobin

PROTEINS 259



REFERENCES

1. Appleby CA. Leghemoglobin and Rhizobium respiration. Annu Rev

Plant Physiol 1984;35:443–478.

2. Appleby CA. The origin and functions of haemoglobin in plants.

Sci Progress 1992;76:365–398.

3. Ross EJH, Lira-Ruan V, Arredondo-Peter R, Klucas RV, Sarath G.

Recent insights into plant hemoglobins. Rev Plant Biochem Bio-

technol 2002;1:173–189.

4. Trevaskis B, Watts RA, Andersson SR, Llewellyn DJ, Hargrove MS,

Olson JS, Dennis ES, Peacock WJ. Two hemoglobin genes in Arabi-

dopsis thaliana: the evolutionary origins of leghemoglobins. Proc

Natl Acad Sci USA 1997;94:12230–12234.

5. Duff SMG, Wittenberg JB, Hill RD. Expression, purification and

properties of recombinant barley (Hordeum sp.) hemoglobin: opti-

cal spectra and reactions with gaseous ligands. J Biol Chem 1997;

272:16746–16752.

6. Arredondo-Peter R, Hargrove MS, Sarath G, Moran JF, Lohrman J,

Olson JS, Klucas RV. Rice hemoglobins: gene cloning, analysis and

oxygen-binding kinetics of a recombinant protein synthesized in

Escherichia coli. Plant Physiol 1997;115:1259–1266.

7. Arredondo-Peter R, Hargrove MS, Moran JF, Sarath G, Klucas RV.

Plant hemoglobins. Plant Physiol 1998;118:1121–1126.

8. Sowa AW, Duff SMG, Guy PA, Hill RD. Altering hemoglobin levels

changes energy status in maize cells under hypoxia. Proc Natl Acad

Sci USA 1998;95:10317–10321.

9. Dordas C, Hasinoff BB, Igamberdiev AU, Manasc’h N, Rivoal J, Hill

RD. Expression of a stress-induced hemoglobin affects NO levels

produced by alfalfa root cultures under hypoxic stress. Plant J

2003;35:763–770.

10. Hebelstrup KH, Igamberdiev AU, Hill RD. Metabolic effects of

hemoglobin gene expression in plants. Gene Funct Genom 2007;

398:86–93.

11. Garrocho-Villegas V, Gopalasubramaniam SK, Arredondo-Peter R.

Plant hemoglobins: what we know six decades after their discovery.

Gene Funct Genom 2007;398:78–85.

12. Hunt PW, Watts RA, Trevaskis B, Llewelyn DJ, Burnell J, Dennis

ES, Peacock WJ. Expression and evolution of functionally distinct

haemoglobin genes in plants. Plant Mol Biol 2001;47:677–692.

13. Appleby CA, Tjepkema JD, Trinick MJ. Hemoglobin in a nonlegu-

minous plant Parasponia: possible genetic origin and function in

nitrogen fixation. Science 1983;220:951–953.

14. Jacobsen-Lyon K, Jensen EO, Jorgensen J, Marcker KA, Peacock WJ,

Dennis ES. Symbiotic and nonsymbiotic hemoglobin genes of Casu-

arina glauca. Plant Cell 1995;7:213–223.

15. Andersson CR, Jensen EO, Llewellyn DJ, Dennis ES, Peacock WJ. A

new hemoglobin gene from soybean: a role for hemoglobin in all

plants. Proc Natl Acad Sci USA 1996;93:5682–5687.

16. Heckmann AB, Hebelstrup KH, Larsen K, Micaelo NM, Jensen EO.

A single hemoglobin gene in Myrica gale retains both sym-

biotic and non-symbiotic specificity. Plant Mol Biol 2006;61:769–

779.

17. Sasakura F, Uchiumi T, Shimoda Y, Suzuki A, Takenouchi K, Higa-

shi S, Abe M. A class 1 hemoglobin gene from Alnus firma func-

tions in symbiotic and nonsymbiotic tissues to detoxify nitric oxide.

Mol Plant Microbe Interact 2006;19:441–450.

18. Ott T, van Dongen JT, Günther C, Krusell L, Desbrosses G, Vigeolas

H, Bock V, Czechowski T, Geigenberger P, Udvarvi MK. Symbiotic

leghemoglobins are crucial for nitrogen fixation in legume root

nodules but not for general plant growth and development. Curr

Biol 2005;15:531–535.

19. Hoy JA, Robinson H, Trent JT, III, Kakar S, Smagghe BJ, Hargrove

MS. Plant hemoglobins: a molecular fossil record for the evolution

of oxygen transport. J Mol Biol 2007;371:168–179.

20. Polhill RM, Raven PH. Advances in legume systematics. London:

Royal Botanic Gargens, Kew; 1981. 1049 pp.

21. Bruneau A, Forest F, Herendeen PS, Klitgaard BB, Lewis GP. Phylo-

genetic relationships in the Caesalpinoideae (Leguminosae) as

inferred from chloroplast trnL intron sequences. Syst Bot 2001;26:

487–514.

22. Corby HDL. The systematic value of leguminous root nodules. In:

Polhill RM, Raven PH, editors.Advances in legume systematics, Vol. 2.

London; Kew: Royal Botanic Gardens; 1981. pp 657–670.

23. Corby HDL. Types of rhizobial nodules and their distribution

among the leguminosae. Kirkia 1988;13:53–123.

24. Sarath G, Pfieffer NE, Sodhi CS, Wagner FW. Bacteroids are stable

during dark-induced senescence of soybean root nodules. Plant

Physiol 1986;82:346–350.

25. Tobias CM, Twigg P, Hayden DM, Vogel KP, Mitchel RM, Lazo GR,

Chow EK, Sarath G. Gene discovery and the identification of asso-

ciated short tandem repeats in switchgrass a C4 perennial grass.

Theor Appl Genet 2005;111:956–964.

26. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG.

The clustal X windows interface: flexible strategies for multiple

sequence alignment aided by quality analysis tools. Nucleic Acids

Res 1997;24:4876–4882.

27. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local

alignment search tool. J Mol Biol 1990;215:403–410.

28. Gopalasubramaniam SK, Garrocho-Villegas V, Bustos G, Pastor N,

Arredondo-Peter R. Use of in silico (computer) methods to predict

and analyze the tertiary structure of plant hemoglobins. Methods

Enzymol 2008;436:389–406.

29. Humphrey W, Dalke A, Schulten K. VMD-Visual molecular dynam-

ics. J Mol Graph 1996;14:33–38.

30. Laemmli UK. Cleavage of structural proteins during the assemble

of the head of bacteriophage T4. Nature 1970;227:680–685.

31. Appleby CA, Bergersen FJ. Preparation and experimental use of

leghemoglobin. In: Bergersen FJ, editor. Methods for evaluating bio-

logical nitrogen fixation. Chichester: Wiley; 1980. pp 315–335.

32. Lira-Ruan K, Sarath G, Klucas RV, Arredondo-Peter R. Characteri-

zation of leghemoglobin from a mimosoid legume. Leucaena escu-

lenta, root nodules. Braz J Plant Physiol 2000;12:37–44.

33. Hargrove M, Brucker EA, Stec B, Sarath G, Arredondo-Peter R,

Klucas RV, Olson JS, Philips GN, Jr. Crystal structure of a non-

symbiotic hemoglobin. Structure 2000;8:1005–1014.
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