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4

Statics of a Rigid Body

4-1 The Concept of a Rigid Body

In the preceding chapter we observed that a particle would remain in equi-
librium, in a state of rest, or in a state of uniform motion in a straight line
when the resultant of all the forces acting on it was equal to zero. This
condition for equilibrium was extended to larger bodies under either of two
possible conditions: If the forces acting on the body were concurrent, that
is, if they were directed toward a single point, the body could be treated as
if it were a particle; or if the body moved with uniform translational motion
in which every particle of the body moved in the same fixed direction with
uniform speed, the whole body could be treated as though it were a particle.

Many of the problems of the equilibrium of extended bodies do not ful-
fill these conditions. The forces acting on the body do not pass through a
single point, and the motion of the body is not one of uniform translational
motion but may include rotation as well. The motion of a body is often
quite complicated, as in the case of a spiraling football. The ball is gen-
erally thrown so that it spins about its longer axis, but, in addition to its
spinning motion, the axis of rotation itself rotates, and the ball has a gen-
eral translational projectilelike motion superimposed upon the rotational
motions.

We shall restrict ourselves to the study of rotation about a fixed axis
and shall devote our attention first to the case of equilibrium of a body with
respect to rotation about a fixed axis.

While all material bodies deform somewhat under the action of applied
forces, it is convenient to think of them as nondeforming, or as rigid; we
shall define a rigid body as one tn which all dimensions remain the same, re-
gardless of the nature of the applied forces. With this concept the statics of
material bodies can be greatly simplified, for, instead of having to study the
body as though it were a vast collection of particles to which the conditions
of equilibrium must be applied to one particle at a time, the entire body
56
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may be treated as a single object, and its equilibrium may be studied through
the introduction of a new concept called torque.

4-2 Moment of a Force; Torque

The effect of a force in producing rotation is determined by two factors,
(a) the force itself and (b) the distance of the line of action of the force from
some line considered as an axis of rotation. Suppose that a force F acts on
a rigid body, as shown in Figure 4-1; ifs line of action is collinear with the

Fig. 4-1 Torque produced by a
force F whose Iine of action is at a
distance r from the axis through O
perpendicular to the plane of the
paper is G = Fr,

veetor F. Imagine an axis through point O perpendicular to the plane of the
paper such that the distance from O to the line of action of the force F is r.
The effect of the force in producing rotation about the axis through O,
called the moment of the force, or the torque, is defined as the product of the
force and the perpendicular distance from the axis to the line of action of the
force. If @ represents the magnitude of the torque, then

G = Fr. (a-1)

As we view Figure 4-1, the torque will tend to produce a rotation of the
body in a counterclockwise direction about an axis through O; the torque
G is said to be in a counterclockwise direction. Figure 4-2 shows a rigid
body acted upon by two forces F; and F, at distances r; and ry, respectively,
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from an axis through O perpendicular to the plane of the paper. The torque
produced by F; about O is F;r; in a counterclockwise direction; the torque
produced by Fg about O is Fyrs in a clockwise direction. By convention a
torque in a counterclockwise direction s usually called positive, and one in a
clockwise direction vs usually called negative. Thus the total torque pro-
duced by these forces about O as an axis is

G = F1r1 — F27'2.

Whenever the torque produced by a force about a particular axis is to
be determined, it is essential to find the perpendicular distance from the axis
to the line of action of the force. In Figure 4-3 the force F is applied at the
point E on the rim of a disk. To find the torque about an axis perpendicular

F

Fig. 4-3 Force F applied at point E
produces torque —Fr about an axis
through O perpendicular to the plane
of the paper.

to the plane of the paper through O at the center of the disk, it is necessary
to extend the line of action of the force F as shown by the dotted line, and
then to drop a perpendicular from O onto this line to obtain the perpen-
dicular distance r. The torque of F about the axis through O is —Fr, the
minus sign indicating that it acts in a clockwise direction.

The units used for expressing a torque must be those appropriate for
the product of a force and a distance. Thus pound feet (b ft), newton
meters (nt m), and dyne centimeters (dyne cm) are the appropriate units
of torque in the British gravitational, the mks, and the cgs systems of units,
respectively.

4-3 Vector Representation of Torque

Only coplanar forces were considered in the above discussion; the axis
about which the moments of the forces were taken was always at right
angles to the plane containing the forces. In this simple case the direction
of rotation, and hence the direction of the torque, was specified either as
clockwise or counterclockwise. In the more general case where the forces
are not coplanar and the axis of rotation may have any arbitrary direction,
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it is necessary to have a more general method of representing torque as a
vector.

As we have already seen, conventional rectangular coordinate systems
are right-handed; that is, if the fingers of the right hand are pointed in the
direction of the z axis and the fingers are bent so that they point toward
the direction of the y axis, the outstretched thumb will point in the direction
of the 2z axis. The disposition of the fingers and thumb of the right hand
are commonly used to represent vector quantities involving rotation. If
the fingers of the right hand were used to grasp the disk illustrated in Figure
4-4, with the fingers pointing in the direction of the rotation which the force
at A might produce, the extended thumb would point in the direction of the
axis of rotation. To represent the torque produced by the force F at 4 by

Fig. 4-4 The right hand rule: if the fingers of the right hand follow the direction of
rotation, the thumb will point in the direction in which the arrow shoeld be drawn
along the axis of rotation.

a vector, we would draw a vector of magnitude given by G = R X F point-
ing along the line of the axis of rotation to the left. Conversely, if the torque
vector were given as to the left, then, pointing the right thumb in the di-
rection of the vector, the curled fingers of the right hand would point in the
direction of rotation the torque would tend to produce.

4-4 Equilibrium of a Rigid Body

When a rigid body remains at rest under the action of a system of forces,
the body is said to be in equilibrium. In addition, under certain special
conditions a body may be in equilibrium even when it is in motion. For ex-
ample, a rigid body is in equilibrium if it moves in such a way that every
particle in the body moves with uniform speed in a straight line. Another
type of equilibrium is that of a wheel rotating about its axis with uniform
angular speed. For a rigid body to remain in equilibrium when acted
upon by a set of forces, two conditions must be satisfied:
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(a) The vector sum of all the forces acting on the body must be zero. This
condition assures that there will be no change in the state of the transla-
tional motion. Writing the condition in the form of an equation, we have

Fi+F + - +F,

I
™
=
I
<

(4-2)

We note that this is the same as the condition for the equilibrium of a
particle.

(b) The vector sum of all the torques acting on the body about any axvs
must be zero. In dealing with two-dimensional problems, this is equivalent
to saying that the sum of the clockwise torques about any axis must equal
the sum of the counterclockwise torques about the same axis. Writing this
condition in the form of an equation, we have

G, +G+ - +G,=2G; =0 (4-3)

This condition on the torques, that the sum of the torques must equal
zero, is a new condition for equilibrium applicable to a rigid body which
was not pertinent to the equilibrium of a particle, for all the forces acting
on a particle had to intersect in that particle. The forces acting on a rigid
body do not generally act on a single point in the body and consequently
will give rise to rotational motion unless Equation (4-3) is fulfilled.

A
P
Fig. 4-5 Lever in equilib-
rium.
N
B
0
w F
\/

Tllustrative Example. Let us analyze the forces associated with the operation
of alever. Essentially, a lever consists of a rigid bar A B, as in Figure 4-5, capable
of rotating about a point of support 0, called the fulcrum, which defines the axis
of rotation. Suppose a weight W is placed at the end A and that some vertical
force F is applied downward at the end B to keep the lever in equilibrium in a
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horizontal position. Applying Equation (4-2) to the equilibrium of the bar AB,
since the forces W and F are both in the y direction, the only other possible force,
the force exerted by the fulerum at O, must also be in the y direction. Calling
this force P, the vector equation for the forces must be

W+F+P=0,

and rewriting the equation with the symbols W, P, and F representing the
magnitudes of the three forces, their directions being taken from the directions of
the arrows on the figure, we have

—-W4+P~-F=0;
hence
P=W+F.

To apply the second condition for equilibrium, let us take moments of the
forces about the point O with respect to an axis pointing normally out of the paper.
If we consider O as the origin of a coordinate system with the positive z axis
pointing toward the right to the point B, the positive y direction as the direction
given by the vector P, then the positive z direction points normally out of the
paper toward the reader, as given by the right-hand convention. The moment of
W about O is +W X A0, since the rotation which would be generated by W
would be counterclockwise, and the torque vector would point in the positive z
direction. The moment of F about O is —F X OB, since this is clockwise; the
moment of P about O is zero. All the torques are in the z direction, and we apply
the conditions for equilibrium in the form of Equation (4-3)

G =WXA4A0 ~F X 0B =0,

from which W X AO = F X OB,
8o that —VK = g
F A0

The distances A0 and OB are called the lever arms of the respective forces W
and F. Thus, in the case of a lever, W and F are in the inverse ratio of their
lever arms. By placing the fulerum closer to W, we shall now need a smaller
force F to lift W. The fulerum may be placed at any point along the bar, and the
positions of W and F may be moved around to get almost any desired result con-
gistent with the approximation that the bar remains a rigid body. Many common
tools are applications of the principle of the lever, as may be seen from an analysis
of the use of the shovel, crowbar, tongs, wrench, tweezers, pliers, scissors, chain
tightener, nail puller, and nutecracker.

Hustrative Example. A strong steel bar 5 ft long is supported at its two
ends A and B, as shown in Figure 4-6. A weight of 160 lb is placed 2 ft from end
A. Neglecting the weight of the bar, determine the forces exerted by the sup-
ports.

The forces acting on the steel bar are shown in Figure 4-6. The forces exerted
by the supports are shown as F4 and Fg. From the first condition of equilibrium,
we get

Fqs+4+ Fp—1601b = 0.
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In applying the second condition for equilibrium, we are at liberty to choose any
axis of rotation. Let us choose an axis through the point A4 directed normally
out of the paper. Following the previous example, we call this the positive z
direction. The sum of the moments of all the forces about A is zero, yielding

FaX0—1601b X 21t 4+ Fp X 5ft = 0,

from which Fg = 641b.
Substituting this back into the first equation gives us
Fyu=961b.
Fy 4\
AFs
Al 1 B
Fig. 4-6
2ft 3ft h
W=160Ib
Y

This example really represents the solution of a great many problems in
statics. If the line AB represents a simple bridge, then F4 and Fg represent
the forces exerted by the bridge piers, and we have solved the problem of the loads
borne by piers under one particular load distribution. If the line AB represents
the bed of a truck, as it well might with the substitution of somewhat different
numbers for the distance and weight, then W might represent the weight of the

engine, and the two forces might represent the load borne by the front and rear
tires.

Tllustrative Example. A rod 8 ft long, and considered to be weightless, is
pinned to a wall at one end, as shown in Figure 4-7(a). To support the rod hori-
zontally a cord 10 {t long is fastened to the outer end of the rod and to the wall a
distance of 6 ft above the pin. A 64-1b weight W is hung from the rod a distance
of 3 ft from the pinned end. Find the tension in the cord and the force exerted
by the pin on the rod.

We observe that we are here concerned with the equilibrium of a rigid body,
namely the rod. From the dimensions given, the space figure is a 3-4-5 right
triangle, and the angle ACD is 37°. Let us isolate the rod AC and label all the
forces acting on it as shown in Figure 4-7(b). Since we know neither the magni-
tude nor the direction of the force exerted by the pin at A, we label the com-
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ponents of this force A, and A,, and draw them in the directions we expect these
forces to act. Although we know the direction of the tension in the cord, it is
more convenient to work in terms of the components of the tension T, and T,.
The forces on the rod are then 4., 4,, W, T,, and T,, where these symbols in
italics once again represent the magnitudes of the forces, the directions being

\ D
6ft s
A T,
° 3 Y ﬂ\ Yy
A g ¥ C /
N ¥ ~ .
5f A, I
YW
N
(b)
Fig. 4-7

given in the diagram. Following such a procedure, if one of the forces proves to
have a negative value on solution of the problem, the direction of the particular
force will be opposite to that shown in the figure.

We apply the component form of Equation (4-2) for the translational
equilibrium of a rigid body:

ZFI=AZ - Tzzoy (")
SF,=A,—W+T,=0. (b)

Since T, and T, are components of a force T, we may write
y y Y

& = tan 37° = 4. (c)
At this stage we have three equations in four unknowns, 4., 4,, T, and T, and
we need an additional relationship among these quantities to obtain a solution
to the problem.

The second condition for equilibrium, Equation (4-3), provides the necessary
relationship. Once again the positive z direction is taken as pointing out of the
paper. The axis of rotation will be taken in the 2 direction, and the location of
the axis of rotation will be chosen through the pin at A. The line of action of the
forces A, Ay, and T,, all pass through the point A; hence these forces produce
gero torque about an axis through A. It was for this reason that the point 4 was
chosen as the location of the axis of rotation, and not because the pin was located
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at A. The point ¢ would have been an equally good choice for the location of the
axis of rotation.

Substituting in Equation (4-2) for the torques about an axis through A, we
obtain
SGi=0=A4,X0ft + A, X0ft —641b X 3ft + T, X 0ft + T, X 8 ft,

from which
64 X 31bft =8 X T, ft;

hence T, =241b. (d)

With this result the entire problem is reduced to algebra. From Equation (c)
we get

T, = Ty = 21 = 321b. (e)
tan 37°  0.75

From Equations (b) and (d) we find
A, —641b 4+ 241b = 0,
80 that A, =401b.

From Equations (a) and (e) we find that
A, =T, =321b.
Hence the tension in the rope T is of magnitude
T = (T2 4 T))* = ((32)% + (24)9” = 40 Ib.

The direction of T is known from the statement of the problem. The magnitude
of the force on the pin 4 is given as

A = (A2 4+ A2)7 = [(32)2 + (40)%*% = 51.21b;

the direction of the force A can be expressed in terms of the angle § that it makes
with the rod considered as the z axis; thus

4
8 = arc ta,nﬁ = arc tan3—(2) = 51.4°,

4-5 Center of Gravity

In all our previous discussions in which it was necessary to consider the
weight of a body, we represented it by a single force W downward. Ac-
tually, the earth exerts a force of attraction on each particle of the body;
the weight of the body is the resultant of all the forces which act on all the
particles of the body. We ask whether it is possible to think of an extended
distribution of matter as though all its weight were concentrated at a single
point in space. A plumb bob, a weight hung on the end of a string, repre-
sents an approximation of a particle. When a plumb bob is suspended,
the weight hangs directly beneath the point of support. From an experi-
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mental viewpoint, if there is a single point associated with an extended
object where all the weight appears to be concentrated, this point should
always come to rest beneath the point of support, no matter how the object
is suspended. If an extended object is suspended from first one, then an-
other, of several different points of support, the vertical lines through these
points always intersect in a single point called the center of gravity. A single
upward force of magnitude equal to the weight of the body will be sufficient
to produce equilibrium if this force is applied at the center of gravity, re-
gardless of the orientation of the body.

F
IF A : :
A D c
A_C w
N\ W
W
(b) (c) (

(a) d)

Fig. 4-8 Method of determining the position of the center of gravity of a body.

Suppose the body shown in Figure 4-8(a) is supported by a vertical
force F at A, equal in magnitude to the weight of the body W, shown act-
ing through the center of gravity. Considering an axis of rotation through
A, the force W generates a torque which tends to rotate the body in the
counterclockwise direction. The sum of the torques is not zero, and the
body is not in equilibrium. Only when the center of gravity lies directly
beneath the point of support, as in Figure 4-8(b), are the two conditions
for equilibrium fulfilled. If the body is now supported at some other point
B, the body will once again come to equilibrium, with its center of gravity
beneath the point of support. The vertical line drawn through A when the
body was in the position given in Figure 4-8(b) and the vertical line drawn
through the second point of support B shown in Figure 4-8(c) intersect in
the center of gravity C. Finally, when the body is supported at its center
of gravity, the resultant of the forece of support F and the force of gravity
W is zero and therefore generates no torque about any point of support or
about any other possible axes of rotation. Hence the body is in equilibrium
in any orientation when it is supported at the center of gravity. The cen-
ter of gravity is the balance point of the body.

If a body is homogeneous, that is, made of the same material through-
out, and of simple geometric shape, such as a rectangular stick or a disk,
a square plate or a sphere, the center of gravity lies at the geometrical cen-
ter of the body. The center of gravity need not always lie at a place where
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any of the matter of the body is located. For example, the center of gravity
of a hollow ball lies at the center of the ball, and the center of gravity of a
bottle lies somewhere within the bottle. Nevertheless, the location of the
center of gravity is rigidly fixed to the body and cannot be moved without
altering the body to which it is “attached.”

ty
L (Xz,}’z: 22)
W2 ﬁ (X3;Y3,Z3)

. W.
(X1;.y1tz1) .3.-..
Wy

(Xn:.Vn:Zn)

Wa

+X

|t X g ]

+z

Fig. 4-9 The single force F acting through the center of gravity of the system of particles
will support the system in equilibrium,

The location of the center of gravity of a distribution of particles may
easily be calculated from the conditions of equilibrium for a rigid body.
Consider a collection of n particles, each of which has weight W, where
1 =1,2,3,...n,andislocated at coordinates (x;, y,, 2z;), as shown in Figure
4-9. To find the coordinates of the center of gravity, we imagine that
these weights are attached to a rigid weightless framework, and we seek
the location of a single force F which will support the system in equilibrium.
The equilibrium for translational motion will be assured if F satisfies the
first condition for equilibrium. Thus, summing the forces as shown in the
figure,

ZFy=+I’1—W1—W72—W3—"' —‘Wn=0,
from which
F=W1+W2+W3+"' +Wn=ZWz'-

To satisfy the second condition for equilibrium, the sum of the torques act-
ing on the system about any axis must be zero. We choose an axis of rota-
tion directed along the z axis, passing through the origin. KEach of the
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forces W, is acting in the —y direction, while the force F is acting in the
+y direction through an unknown point whose coordinates may be taken
as (o, Yo, 20). The moment arm of the force F about the chosen axis is
given by xg, while the moment arm of a force W; is given by its x coordinate
z;,. Applying Equation (4-3) for determining the z components of the
torque, we find

ZGZ = +F$0 - Wlxl - VVsz - ngxg _ = ann = 0,
Wixy + Waxe + Wazs + -+ + Wy,
thus Ty = ,
F
V .
so that To = Wi (4-4a)
W

By reorienting the system so that the x axis is vertically upward, we can
find the y coordinate of the center of gravity

2 Wiy
W

Yo = , (4-4b)

and in one additional reorientation we obtain

_ X We
W

20 (4-4¢)

A distribution of matter not made up of point particles can be imagined
to be divided into pieces of simple geometric shapes. Each of these may
be replaced by a point particle of the same weight located at its center of
gravity, and the location of the center of gravity of the body may then be
calculated from Equations (4-4).

Ilustrative Example. Find the location of the center of gravity of a car-
penter’s square made of sheet steel. The body dimensions of the rule are 24 in.
X 2 in., and the dimensions of the tongue are 16 in. X 1} in. The square, laid
onto a coordinate system, is illustrated in Figure 4-10. Suppose the square is
made of material weighing ¢ (sigma) 1b/in.2. We divide the square up into two
simple rectangles-—a body section of dimensions 24 in. X 2 in.? and a tongue
section of dimensions 14 in. X 13 in.%, as shown in the figure. The center of
gravity of each of these sections is located at the center of that section. Thus we
may imagine the body section whose cross-sectional area is 48 in.? to be replaced
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by a particle weighing 48¢ 1b located at the point whose (z, y, 2) coordinates are
given by (12, 1, 0). Similarly, the tongue section may be replaced by a particle

y

—> <——17/2

N (%.,9,0)

Fig. 4-10
(8.56,3.44,0) Jf
N 2
(12,1,0) X
24 >

z

weighing 21o lb located at a point whose coordinates are (£, 9, 0). For the case
of two point particles, Equations (4-4) reduce to

Wiz + Wars
Wi+ W
485 1b X 12in. + 216 1b X % in.
480 1b + 210 1b
8.56 in.,
_ Wiy: + Ways
Wi+ W,
48¢ 1b X 1in. 4+ 21o1b X 9in.
- 485 1b + 21o Ib
= 3.44 in.,

Xy =

I

and, since the figure may be thought to be in the 2-y plane,
Ry = 0.

Thus the coordinates of the center of gravity have been obtained. Asshown
in the figure, the center of gravity of the system lies along the line joining the
centers of gravity of the base and the tongue of the square.

We may represent the procedure for finding the center of gravity of
an extended body in the form of an integral by replacing the summation
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signs in Equations (4-4) by integral signs. Thus we have

fxdw fxdw

X = ’ (4-5a)
w
f dw
f y dw
Yo = W 1 (4-5b)
f 2 dw
2o = W ’ (4-5¢)

where dw 1s the weight of a small volume element of the body located at co-
ordinates x, , 2z, and the total weight of the body is represented by W.

4-6 Discussion and Further Examples

The problems of statics vary greatly in difficulty, but if they are soluble
at all they are soluble by the methods and principles developed in this
chapter. The two fundamental principles which govern the equilibrium
of a rigid body, and which govern the equilibrium of a particle in the limit-
ing case that the rigid body is composed of a single particle, are: The vector
sum of all the forces acting on the body must be zero. The vector sum of all the
torques about any axis acting on the body must be zero. Written in equation
form, these two statements are

> F =0; (4-6a)
3G =0. (4-6b)

These two equations, in extremely concise form, represent our entire knowl-
edge of the forces exerted by and on structural elements and form the ana-
lytical foundation upon which all structures are built. While, in general,
equilibrium is interpreted to mean a state of rest with respect to the earth,
it must be recognized that rest and uniform motion in a straight line are
equivalent conditions, according to Newton’s first law of motion. Thus
it is that the very same equations apply to the equilibrium of a structure
moving with uniform speed, and the analytic procedures which apply to the
construction of a crane or a bridge may also be used in the design of an
airplane,
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Ilustrative Example. A wagon wheel 26 in. in diameter and weighing 10 Ib
rests against a square curb 8 in. high, as shown in Figure 4-11. What horizontal
force applied to the axle is necessary to push the wheel over the curb?

The wagon wheel will start to rise when the supporting force exerted by the
roadway on the wheel is zero. At that time the forces acting on the wheel, as
shown in Figure 4-11(b), are the unknown horizontal force H, the force of gravity
W acting at the center of gravity of the wheel, and the force of the curb P against

l

{

|

|
AN n

Fig. 4-11

the wheel. Let us choose an axis of rotation normal to the plane of the paper at
the curb C. The moment arm of the force W is the distance DC, 12 in. The
moment arm of the force H is EC = OD = 5 in. Applying the torque condition
for equilibrium, we know that the sum of the torques G¢ about an axis normal to
the plane of the paper through C is equal to zero; or

>Ge=0=W X DC — H X EC,
or 10lb X 12in. — H X 5in. = 0,
80 that H = 24 1b.

i

" TIllustrative Example. A ladder 26 ft long and weighing 30 1b leans against a
smooth wall 24 ft from the ground and rests on a rough floor 10 ft from the wall.
A man weighing 200 1b climbs 20 ft up the ladder before the ladder starts to slip
[see Figure 4-12(a)]. (a) Find the forces exerted on the ladder by the floor and
the wall. (b) What is the coefficient of static friction between the ladder and the
floor?

We begin by isolating the ladder and labeling the forces acting on it, as shown
in Figure 4-12(b). The unknown force exerted by the floor at the point a is
called A, with components A, and A,. The entire weight of the ladder W of 30 1b
acts vertically downward through its center of gravity located at the middle
of the ladder. The weight of the man M of 200 lb acts vertically downward
through a point 20 ft up the ladder. The smooth wall exerts a force B which must
be perpendicular to the wall. Once again, italic symbols represent the magnitudes
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M=2001b
A, W=301b

Ay

Fig. 4-12

(b)

of the forces, with directions given by the directions of the arrows. From the

condition for equilibrium for the x components of the forces acting on the ladder,
we have

2F. =4, -B =0,
while for the y components we have
YF,=4,—301b ~2001b =0,
so that A, = 230 1Db.

Applying the conditions that the sum of the torques on the ladder must be zero,
we choose an axis perpendicular to the plane of the paper through any con-
venient point such as ¢ and get

G =0=A4, X0+ A4, X0—W Xa— M Xad + B X ¢a.
Substituting numerical values, we obtain
—301b X 51t —2001b X 1% ft + B X 24 ft = 0,
150 1b £t + 1,540 Ib ft

from which B = = 70.4 1b;
24 ft

and since A, = B, from a preceding equation,

‘ A, = 70.41b.

The coeflicient of static friction has been defined from the equation
F,=fN.
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In this example the force A, is the frictional force, and A, is the normal force,
so that the coefficient of friction is equal to

A, 7041
1=5t= -

= = 0.31.
A4, 2301b

Note that the coefficient of static friction was obtained from an analysis of the
forces on the ladder when the ladder was on the point of slipping, when the force
of static friction was at its maximum value.

Problems

4-1. Determine the torque produced by a force of 6 1b acting horizontally
on the top of a bicycle wheel 24 in. in diameter with respect to an axis through
its axle.

4-2. A torque of 5 ft b is required to swing open a door which is 30 in. wide.
What is the least force that must be exerted to open the door if it is applied (a) at
a distance of 30 in. from the line of hinges and (b) at a distance of 24 in. from
this line?

Y
C
6ft i
Fig. 4-13
6Tt
yAA 1D N8
4ft **2#".
1201b Y

4-3. A uniform horizontal bar AB, 8 ft long and weighing 120 Ib, is pinned
to the wall at A, while a steel cable 10 ft long extends out from a point C on the
wall and is fastened to the bar at the point B, as shown in Figure 4-13. This bar
supports a weight of 900 1b at a point D, 6 ft from the wall. Determine (a) the
tension in the cable, (b) the vertical component and (¢) the horizontal component
of the force at A.

4-4. A man carries a bar 6 ft long which has two loads, one of 40 Ib and the
other of 60 1b, hung from its ends. At which point should the man hold the bar
to keep it horizontal? Neglect the weight of the bar.
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4-5. If the bar in Problem 4-4 is uniform and weighs 20 1b, determine the
point at which the man should hold the bar to keep it horizontal.

4-6. A load of 180 Ib is hung from a bar 10 ft long at a point 6 ft from one
end. Two men carry this bar in a horizontal position. How big a force does
each man exert, assuming that the bar is supported at its ends?

Y

Az X 0 7 0
< 120 in.———>
<———— 75 in.———>
WY
Fig. 4-14

4-7. A car weighing 3,200 1b has a wheel base of 120 in., and its center of
gravity is 75 in. from the front wheels (see Figure 4-14). Determine the force
(a) that the two front wheels exert on the ground and (b) that the two rear wheels
exert on the ground.

4-8. A car weighing 3,600 1b has a wheel base of 125 in., and its center of
gravity is 80 in. from the front wheels. Two passengers sit in the front seat.
If their combined weight is 400 Ib and if their center of gravity is at a point
60 in. from the front wheels, determine the shift in the center of gravity produced
by the passengers.

4-9. A boom in the form of a uniform pole weighing 400 Ib is hinged at the
lower end. The boom is held at an angle of 60° with the ground by means of a
horizontal cable attached to its upper end. (a) Determine the tension in the cable
when there is no load on the boom. (b) Determine the tension in the cable when
a load of 1,000 1b is attached to the upper end of the boom.

4-10. A door 8 ft high and 3 ft wide weighs 80 1b, and its center of gravity is
at its geometrical center. The door is supported by hinges 1 ft from top and bot-
tom, each hinge carrying half the weight. Determine the horizontal component
of the force exerted by each hinge on the door.

4-11. A uniform ladder 25 ft long rests against a smooth vertical wall. The
ladder weighs 30 Ib. The lower end of the ladder is 15 ft from the wall. A man
weighing 150 1b climbs up the ladder until he is 20 ft from the base of the ladder,
at which point the ladder starts to slip. What is the coefficient of friction between
the ladder and the floor?

4-12. Two rods, each of length 10 ft and weight 5 b, are joined to make a
30°V. Find the center of gravity of the V.

4-13. Find the center of gravity of a collection of weights located at the
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corners of an equilateral triangle, each side of length a. The three weights are
1, 2, and 3 b, respectively. Place the z-axis along the line joining the 1 and 3 1b
weights with the origin at the 1 b weight.

4-14. A card table is made of 4 straight legs of dimensions 1in. X1 in.X24 in.,
each weighing 1 1b, which are fastened to the corners of a square table top 30 in.
on an edge by 1in. thick. The table top weighs 5 1b. Find the center of gravity
of the table.

Fig. 4-15

4-15. A uniform beam 15 ft long weighing 75 Ib is supported 3 ft from its
upper end 4 by a smooth cylindrical rail which is 5 ft from the ground, as shown
in Figure 4-15. What force must be exerted at the lower end B of the beam,
located 3 ft from the ground, in order to support the beam?

4-16. A chain 5 ft long is placed on a horizontal table so that part of it hangs
over the edge. If it starts to slip when 2 ft of chain hang over the side, find the
coefficient of starting friction between the chain and the table.

4-17. Find the location of the center of gravity of a square sheet of metal
of edge 4 in. which has had a smaller square of edge 1 in. cut out of one corner.

4-18. A uniform ladder 20 {t long and weighing 35 1b rests against a smooth
wall at an angle of 30° to the wall. A 200-1b man stands 15 ft up the ladder.
If the coefficient of friction between the floor and the ladder is 0.1, what additional
horizontal force must be exerted at the base of the ladder to keep it from slipping?

4-19. Show that the center of gravity of a thin uniform board cut in the
form of an isosceles triangle of altitude % is at a point 2A from the vertex on the
perpendicular bisector of the base. [HINT: Choose a set of z-y coordinate axes
with the origin at the vertex and the z axis along the perpendicular bisector, as
shown in Figure 4-16. Take an element of the board formed by two lines a dis-
tance dx apart parallel to the base. The area of this element is 2y dz, and its
weight is dw = -2y dx, where ¢ is the weight per unit area. Then apply Equa-
tion (4-5a). Note that

where 2b is the width of the base.]
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_(ap)

]

Fig. 4-16

V=

N

~

N (a,-b)

4-20. Find the center of gravity of a thin board cut in the form of a 3-4-5
right triangle. [HINT: Apply the result of Problem 4-19.]

4-21. An irregular slab of material is pivoted at one corner by a horizontal
pin, and is supported by a vertical force of 80 1b located 10 ft to the right of the
pin. The slab weighs 200 1b. (a) How far to the right of the pivot is the center
of gravity located? (b) What is the force on the object due to the pivot?

4-22. Show that if the resultant of a set of concurrent forces is zero, the sum
of the moments of these forces about any axis is zero.

4-23. Using the second condition for the equilibrium of a body, show that
when a body is in equilibrium under the action of three nonparallel forces, these
forces must pass through a single point; that is, the forces are concurrent.
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