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5

Force and Motion

5-1 Starting and Stopping Motion

All of us have many times had the experience of setting a body in motion.
If we analyze any of these experiences, we readily recall that in each case
some force was required to start the object moving. In throwing a ball,
moving a piece of furniture, or pulling a sled, the force needed to start the
object moving is supplied by one's muscular effort as a push or a pull. In
more complex cases, such as setting a car or an airplane in motion, the
analysis, although more complicated, will also show that a force is required
to start the body moving.

There are many cases in which the force that acts on the body to
produce the motion is not directly discernible. It was Newton who first
showed that the acceleration of a freely falling body is produced by a
force which acts between the earth and the body, called the force of gravita­
tion. We shall encounter other such action-at-a-distance forces in elec­
tricity and magnetism, and in molecular and atomic physics.

Once a body has been set in motion by the action of a force, it will not
necessarily stop moving when the force is removed. A sled in motion along
a level road will continue to move in a straight line along the road, although
with diminishing speed. The reduction in speed is due to the force of
friction between the runners of the sled and the ground. If there is clean
snow on the ground, the force of friction will be very small; if ashes or sand
have been dumped on the snow, the force of friction will be greater, and the
sled will come to rest much sooner.

The above examples illustrate the fact that a force is required to change
the state of motion of a body. It was Sir Isaac Newton (1642-1727) who first
recognized the relationship between force and the state of motion of the
body on which it is acting. He epitomized the entire science of mechanics
in the form of three statements which have become known as Newton's
laws of motion. Although the first and third laws have been previously
stated and discussed, they are sufficiently important to bear repetition.
76
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5-2 Newton's Laws of Motion

NEWTON'S FIRST LAW 77

Newton's three laws of motion can be stated as follows:
First law: A body at rest will remain at rest, and a body in motion will

continue in motion 'Utith comtant speed in a straight line, as long as no net
force acts on it.

Second law: If a net force acts on a body, the body will be accelerated; the
magnitude of the acceleration is proportional to the magnitude of the force,
and the direction of the acceleration is in the direction of the force.

Third law: Whenever one body exert~ a force on another, the I'.econd body
exerts a force equal in magnitude and opposite in direction un the first body.

Fig. 5-1 Sir Isaac Newton (1642­
1727). One of the greatest physicists
of all time, he developed the law of
universal gravitation; epitomized
the subject of mechanics in the three
laws of motion which bear his name;
made important contributions to
optics. The publication of his
Principia, the Mathematical Princi­
ples of Natural Philosophy, in 1687,
was an epoch-making event for
science. (Courtesy of Scripta Mathe­
matica.)

5-3 Newton's First Law

Newton's first law states that a body at rest will remain at rest, and a body in
motion will continue in motion with constant speed in a stmight line, as long
as no net force acts on it.

An examination of this first law shows that a body at rest and a body
moving with constant velo('ity have one characteristic in common: there
is no net external force aetinp; upon either one. This is the case when the
resultant. of all the external forces aeting on the body is zero. As we have
already seen, this is the condition for the equilibrium of a particle; this is
also the condition for the translational equilibrium of a rigid body.

According to I'\C\\·ton's first law, a train moving at a constant veloeity
along a level track is in equilibrium. It is acted upon by several external



78 FORCE AND MOTION §5-3

forces whose resultant is zero. Consider the forces acting on a train of cars
being pulled by a locomotive (see Figure 5-2). The weights WI, W 2 , W 3 ,

of the cars act vertically downward through the respective centers of
gravity. They are opposed by the forces Nt, N2 , N3 , and so on, which the
tracks exert upward on the wheels of the train to support the weight. The
sum of these upward forces must equal the total weight of the train. There
are also frictional forces which oppose the motion of the train. Some of
these frictional forces occur between the wheels and the tracks and in the
wheel bearings; there is also another type of frictional force owing to the

Fig. 5-2 A train moving with constant velocity has no net force acting on it.

~+~+~=~+~+~+~+~+~.p=~

resistance of the air to motion through it. All of these frictional forces are
represented in the figure by the single force F. The effect of these frictional
forces would be to reduce the speed of the train; to prevent this reduction
in speed, the locomotive supplies a force P equal to F in magnitude but in
the forward direction. There is no net force acting on the train when it is
moving with constant velocity.

In this illustration we have taken a very liberal view of the meaning of
body and of net force. We have considered the collection of all the cars of
the train as a body, or as a system which could be surrounded by an imagi­
nary box. Everything within the walls of the box was considered to be the
body, and only the forces acting from outside the box upon objects inside
the box were considered as forces acting on the body. In addition to the
forces illustrated in the figure, each car exerts a force upon the two cars
immediately adjacent to it. Nevertheless, these internal forces can be
disregarded in our analysis of the over-all motion of the system, and our
attention can be focused upon the external forces acting upon the system.
From Newton's third law the sum of these internal forces must be zero.
This procedure is analogous to what we have already done in the study of
the equilibrium of a rigid body when we considered only the external forces
acting on the rigid body and paid no attention to the internal forces which
connected one particle to another particle of the body.
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Implicit in the statement of Newton's first law is a property common
to all objects-the property known as inertia. The inertia of a body is that
property of a body associated with the first law, that a body at rest will
remain at rest llnless acted on by a net force, and that a body in motion will
continue to move with uniform velocity unless acted on by a net force.

The magician who whisks a cloth from under the dinner dishes on a
table, the prankster who places a brick under a hat on the sidewalk, have a
qualitative understanding of the concept of inertia. We shall attempt to
systematize and formalize this concept in the following sections of this
chapter.

5·4 Newton's Second Law

Newton's second law states that if a net force acts on a body, the body will be
accelerated; the magnitude of the acceleration is proportional to the magnitude
of the force, and the direction of the acceleration is in the direction of the force.

Let us examine the meaning of the second law of motion. When a
single force acts upon a body, an acceleration results. The body is accel­
erated in the direction in which the force acts. The magnitude of the
acceleration is proportional to the magnitude of the force and to some
quality of the body which has not yet been specified. Since both force and
acceleration are vector quantities, we may write Newton's second law in
the form of an equation:

F = ka. (5-1)

The quantity k is used to represent a constant of proportionality, a scalar
quantity, having whatever dimensions are necessary to give the equation
formal meaning. The constant k must clearly depend on the properties
of the body, for the other quantities in the equation do not. The value of
k must also depend upon the choice of units for F and a. It is desirable to
break up k into two parts, one of which depends only upon the properties
of the body, and another which depends only upon the choice of units in
which to express the magnitudes of these quantities. Thus we rewrite
Equation (5-1) af'

F = KMa, (5-2)

where both K and M must be scalar quantities. We use the constant K
to represent that part of k which is associated with a choice of units, and let
the symbol M represent the part of k which is associated with the body
being accelerated. We have already referred to the resistance of a body
to a change in its state of motion through the qualitative concept of inertia.
The quantitative measure of the inertia of a body is its mass, represented
in Equation (5-2) by the symbol M.
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Given a choice of the constant K, to be associated with the choice of
units used to represent F and a, Equation (5-2) represents both a definition
of mass and a recipe for its experimental determination. If,ve had chosen
to define a unit of force in terms of the deflection of a spri~g, we could de­
termine the mass of a body by using the spring to exert a force on the body
resting on a frictionless table. The resulting acceleration might be deter­
mined through the measurement of the distance traversed in a known time.
Such a determination of mass would be called a dynamic determination.
We have already seen in Chapter 1 that the customary method for the
determination of mass is based upon comparing the earth's gravitational
force upon the unknown mass and a standard mass in a beam balance.

It is considerably simpler to embody a standard of mass as a preserv­
able physical entity, say in the form of a piece of metal, than it is to embody
a standard of force. While the standard of mass may be protected from
alteration by wear and corrosion, the properties of a spring which determine
the force it exerts vary with the age and condition of the spring. Conse­
quently, mass is often taken to be a fundamental mechanical quantity,
along with distance and time, and the force is considered to be a derived
quantity, whose definition is based upon Kewton's second law of motion.

5-5 Absolute Systems of Units

When numerical values are used with an equation involving physical
quantities, such as Equation (5-2), these numerical values must be accom­
panied by appropriate units. There are many different sets of units in
actual use today, each set consistent within itself, each chosen for some
special merit which it is supposed to have for the particular group of experi­
ments or investigations under consideration. An absolute system of units
is one in which the unit of force is defined without reference to gravity, as in
the two metric systems of units discussed in this section. A gravitational
system of units is one in which gravity, or weight, is used as the basis of the
definition of a unit of force, as in Section 5-6. Quantities expressed in one
set of units can be converted more or less readily into any other set of
units. Most physicists prefer to base the systems of units upon length,
mass, and time as the fundamental concepts. Of these systems one of the
most widely used is the cgs system in which the centimeter, gram, and sec­
ond are the units for the respective fundamental quantities.

For convenience, the constant K of Equation (5-2) is set equal to 1,
a pure number without physical dimensions. When K = 1 Equation
(5-2) becomes

I F = ilIa. ] (5-3)
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Equation (5-3) is the form most commonly used to represent i';"ewton's
second law of motion. It must be emphasized that the quantity F is the
net force, or unbalanced force, or the resultant force acting on the body.
If the force is entirely in the x direction, the acceleration must also be in the
x direction. Resolving both the force and the acceleration into components
parallel to each of the three coordinate axes, we obtain the component
form of Equation (5-3).

Fx = 2lJax ,

F y = Jl1a y ,

Fz = Ma z,

(5-4a)

(5-4b)

(5-40)

where the symbols Fx , Fy, and Fz represent the x, y, and z components of
the net or resultant force acting upon the body, and ax, ay, and az represent
the x, y, and z components of the acceleration.

In the cgs absolute system of units, the mass of a body is expressed in
grams, and the acceleration is expressed in centimeters per second per second.
A unit of force must be introduced that will be consistent with Equation
(5-3). This unit of force is called a dyne and is defined as that force, which,
acting on a one-gram mass, produces an acceleration of one centimeter per
second per second. Thus Equation (5-3), together with legally defined units
of mass, length, and time, has been used to generate a unit of force.

Suppose that a force F acts on a body whose mass is 1 gm and that it
produces an acceleration of 1 cm/sec2

• Then Equation (5-3) would read

em gm em
F = 1 gm X 1 - = 1-- = 1 dyne.

sec2 sec2

Illustrative Example. A loaded car has a mass of 2,800 gm. (a) What hori­
zontal force is required to give this car an acceleration of 80 cm/sec 2? (b) What
velocity will this car acquire if it starts from rest and the force acts on it for 8 sec?

(a) Using Equation (5-3), and noting that F and a have the same direction,
we may write

F = Ma,

and substituting values for M and a, we get

cm
F = 2,800 gm X 80 - ,

sec 2

or F = 224,000 dynes.

(b) The velocity of the car can be determined with the aid of the equation
v = u + at with u = 0, a = 80 cm/sec 2, and t = 8 sec, yielding

cm
v = 80-- X 8 sec,

sec 2

so that v = 640 cm.
sec
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Another absolute system which is widely used is the mks system of
units based upon the meter, kilogram, and second as the respective units of
length, mass, and time. The unit of force in the mks system is the newton,
which is defined as that force which, acting on a one-kilogram mass, produces
an acceleration of one meter per second per second.

If a force F acts on a body whose mass is 1 kg and produces an accelera­
tion of 1 m/sec2

, then, from Equation (5-3), we have

m kgm
F = 1 kg X 1 -2 = 1 --2 = 1 nt.

sec sec

We can obtain the relationship between a newton and a dyne from the above
equation thus:

m
1 nt = 1 kg X 1-2sec

cm gmcm
= 1,000 gm X 100 -2 = 100,000 --2- ,

sec sec

so that 1 nt = 100,000 dynes = 105 dynes.

Illustrative Example. A force of 800 nt is applied to a mass ef 160 kg.
(a) Determine the acceleration produced. (b) If the body starts from rest, de­
termine the distance the body travels if the force acts on it for 12 sec.

(a) Solving Equation (5-3) for the acceleration, we get

F
a =-,

m

and, substituting numerical values for F and M, we obtain

a = 800 nt = 5~ .
160 kg sec2

(b) Since the initial velocity u = 0, we can use the equation

for determining the distance s traveled at the constant acceleration of 5 m/sec 2

for 12 sec, obtaining

m
s = t X 5- X 144sec2

,
sec2

from which s = 360 m.

The above two systems of absolute units are based on the metric system
and will be used throughout this book.



§5-6 BRITISH GRAVITATIONAL SYSTEM OF UNITS 83

5·6 British Gravitational System of Units

While the legally defined unit of mass is the pound mass, defined
as 1/2.20462 kilogram, it is inconvenient to use the pound mass as the basis
of a system of units, for in everyday terminology, and in many engineering
applications, the word "pound" commonly refers to weight rather than to
mass. To conform to this common usage, the British gravitational system
of units has chosen to define the pound of force as the weight of the standard
one-pound body at sea level and at 45° latitude.

Modern engineering practice tends to avoid the use of the pound mass
by introducing a new unit of mass called a slug. The slug is defined as
that unit of mass, which, when acted on by a force of one pound, will acquire
an acceleration of one foot per second per second. In the British gravitational
system of units, the unit of force is the pound, the unit of mass is the slug,
the unit of distance is the foot, and the unit of time is the second.

In everyday language the word "pound" is commonly used as a unit of
mass and as a unit of force. Usually one can infer from the context of a
statement whether the pound is used as a unit of force or as a unit of mass.
For example, in Chapter 3 the pound was consistently used as a unit of
force. In statements where it is possible to interpret the word "pound"
as either force or mass, the terms "pound force" or "pound mass" should
be used to avoid ambiguity.

Let us examine the relationship between the pound mass and the slug.
From Table 2-1 we see that at latitude 45° the acceleration of gravity is
32.17 ft/sec2

• This is the acceleration acquired by any freely falling body
at sea level, and in particular it is the acceleration which would be acquired
by a pound mass falling freely at sea level. The weight of a pound mass at
this latitude and elevation has been defined as the pound of force. But the
weight of a body is the force of the earth's gravitational attraction. Writing
M as the mass in appropriate units, and sUbstituting in Equation (5-3),
with F = lIb and a = 32.17 ft/sec 2

, we find

lIb = M X 32.17 ft/sec2
;

1
hence M = -- slug.

32.17

A pound mass has a mass in slugs given by 1/32.17 slug; thus the mass of
one slug is 32.17 lb mass.

In general, if the weight of a body W is the only force which acts upon
it, it is a freely falling body and has an acceleration g. We can apply
Newton's second law to a freely falling body by setting F = Wand a = g
in the equation F = M a, to obtain

W=Mg. (5-5)
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44 ft

The appropriate units for mass, length, time, and force for use in
Equation (5-3) are shown in Table 5-1. Only when units appropriate to a

TABLE 5-1 SYSTEMS OF UNITS

System Mass I Length Time Force
i

Metric absolute-cgs Gram Centimeter Second Dyne
Metric absolute-mks Kilogram Meter Second Newton
British gravitational i Slug Foot Second Pound

particular system are used is the constant K of Equation (5-2) equal to 1,
and, in fact, it is this consideration which converts a collection of appar­
ently unrelated quantities into a system of units.

Illustrative Example. An automobile weighing 3,200 lb starts from rest and
acquires a speed of 30 mi/hr in 5 sec. Determine the resultant force on the auto­
mobile.

The acceleration of the automobile is

30 mi/hr
a= =--~.

5 sec .5 sec 2

The mass of the automobile is found by substitution in Equation (5-5):

3,2001b = M X 32~,
sec 2

yielding M = 100 slugs.

To find the force we substitute the now known values of M and a in appropriate
units in Equation (5-3):

44 ft
F = 100 slugs X - - = 880 lb.

5 sec 2

A general class of problems of great value in developing understandin:~

of K ewton's second law deals with two or more bodies connected by a rope
which is passed over a pulley. The bodies may be hanging freely or may be
supported on inclined planes, and to add additional complications the planes
may be made rough. In such problems we analyze the forces acting on each
body separately, and then tie the system together through an algebraic
statement about the way the various parts are connected. We call these
connections the constraints under which the system is required to move.
Thus a body sliding on a horizontal table is constrained to move in the
horizontal plane of the table. A bead sliding along a wire is constrained to
move along that wire. Two bodies connected by an inextensible rope must
always be a fixed distance apart.
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Illustrative Example. A useful experimental device, called Atwood's machine,
<lonsists of two bodies suspended by a rope which is passed over a frictionless
fixed pulley, as illustrated in Figure 5-3. Let us call the masses of the suspended
objects M 1 and M 2, the tension in the ropes 8 1 and 8 2, as illustrated in the
figure, and their respective accelerations al and a2. Suppose that M 1 and M 2

are known and we wish to find the accelerations of the two bodies and the tension
in the rope.

The force of gravity acting upon these bodies is equal to the weights of the
bodies MIg and M 2g, respectively. Each body experiences an upward force

(a) (b)

Fig. 5-3 Atwood's machine.

$2

(c)

r

produced by the pull of the rope on it. Let us call the tension in the rope acting
on the first body 81, and the tension in the rope acting on the second body 8 2 •

Following our customary sign conventions, we call the direction vertically up­
ward positive.

First we imagine the bodies M 1 and M 2 to be completely isolated in space,
as shown in Figures 5-3(b) and 5-3(c), and apply Equation (5-3) to determine
their motion. Applying Newton's second law, we get

for M 1: Ca)

Cb)

Now we examine the connection between the two bodies. First, because
the rope wkich connects them passes over a frictionless pulley, the tension in the
rope is everywhere the same. By the very nature of a tensile force, when the
rope pulls M 1 upward, it must also pull M 2 upward. Thus the rope acts simul­
taneously on M 1 and M 2 in the directions indicated in Figures 5-3(b) and 5-3(c),
and we may write

Cc)



86 FORCE AND MOTION §5-6

~ow we consider a second aspect of the connection between the two bodies.
The distance between them, measured along the rope, is always the length of the
rope. Thus if the body M 1 moves 1 ft upward, the body M 2 must move 1 ft
downward. A positive displacement of M 1 generates an equal negative displace­
ment of M 2. If the body M 1 is given a positive acceleration, the body M 2 must
be given an equal negative acceleration. \Ve may write

from which

al = -a2 = a.

Substituting equations (c) and (d) into (a) and (b), we have

S - MIg = MIa,

S - M 2g = -M 2a.

Subtracting the second equation from the first, we obtain

M 2g - MIg = M 2a + MIa,

M 2 - M 1a = g.
M 2 + M 1

(d)

Thus, if M 2 is greater than M 1, the body M 2 receives a positive acceleration of
magnitude a, while the body M 2 experiences a negative acceleration of equal
magnitude. If we multiply the first equation by M 2, the second by M 1, and add,
we find

120lb

from which

(M 1 + M 2)S = M 1M 2g,

S = M 1M 2 g.
M 1 + M 2

(a)
-

-

Fig. 5-4

(b) ( c )

Illustrative Example. A box weighing 120 lb is placed on a smooth table.
A cord tied to this box passes over a smooth pulley fixed to the edge of the table.
Another box weighing 40 lb is fastened to the other end of the cord, as shown in
Figure 5-4(a). Determine the acceleration of the two bodies and the tension in
the cord.

First we imagine the two bodies to be isolated in space and examine the forces



§5-6 BRITISH GRAVITATIONAL SYSTEM OF UNITS 87

acting on them, as in Figures 5-4(b) and 5-4(c). The only forces acting on the
40-lb body are its weight and the tension in the rope supporting it, which we shall
call 8 1. Three forces act on the 120-lb body. These are the weight of the body of
120 Ib, acting vertically downward, the force of the smooth table on the body
acting vertically upward, which we call N, and the tension in the rope acting on it,
which we call 8 2• Since the 120-lb body is constrained to move in a horizontal
plane, it can have no vertical acceleration, and

N = 120 lb.

The resultant of the forces acting on the 120-lb body is 8 2 acting to the right.
Writing al for the acceleration of the 40-lb body and a2 for the acceleration of the
120-lb body, we have, from Equations (5-4a) and (5-4b),

and

8 1 - 40lb = g slug X aI,

8 2 = Jl2°- slug X a2.

(a)

(b)

Examining the nature of the constraint imposed by the rope, we note first that
the magnitude of the tension in the rope must be the same at both ends of the
rope, and that the directions chosen for 8 1 and 8 2 are appropriate, for a positive
value of 8 1 implies a positive value of 8 2. We write

(c)

Next we find that a displacement of the 120-lb weight to the right implies an equal
displacement of the 40-lb weight downward. Thus a positive displacement of
the 120-lb weight implies an equal negative displacement of the 40-lb weight, and
a positive acceleration of the 40-lb weight implies an equal negative acceleration
of the 120-lb weight, and we write

Substituting equations (c) and (d) into (a) and (b), we have

8 - 40lb = ~~ slug X (-a),

and 8 = _\22°_ slug X a.

(d)

(e)

(f)

Subtracting the second from the first of these equations, we have

-401b = __\62°- slug X a, (g)

from which
ft

a=8-'
sec 2 '

(h)

substituting this value of a in equation (f) yields

8 = 30 lb.

We note that the 120-lb weight receives a positive acceleration of 8 ft/sec 2
,

while the 40-lb weight receives an equal negative, or downward, acceleration.

It is particularly important to emphasize the procedure used in solving
these pulley problems. In each case we have systematically isolated the
bodies involved in the problem and have examined the forces acting on each
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of them. To each body we then applied Newton's second law. The con­
straints which related the several motions to give a sufficient number of
relationships to solve the problem were then introduced. In more advanced
courses in mechanics, more sophisticated methods are developed for the
solutions of such problems, but in all cases the methods depend on Newton's
equation, and if a problem is soluble by any method it is soluble by the
persistent and systematic application of Newton's second law of motion.

5-7 Weight and Mass

Although considerable space has already been devoted to a discussion of the
distinction between weight and mass, the subject is of sufficient importance
to warrant further emphasis. If we consider two freely falling bodies at the
same place on the earth's surface, one of which has a mass ],1 and weight
W, while the other has a mass m and weight w, we find, by application
of Equation (5-5) to each of the bodies, that

W = ilIg,

and

from which

w = mg,

W M
w m

(5-6)

Thus the magnitudes of the weights of two bodies at the same place are in
the same ratio as their masses. This is the reason the beam balance can be
used to determine the mass of an unknown object in terms of a standard
mass.

As we go from place to place, the value of 9 changes with latitude and
with altitude. The mass of a body, however, remains constant unless the
body is traveling with a speed comparable to the speed of light, which is
about 186,000 mi/sec, in which case the mass of the body increases over its
mass at rest. We shall restrict this discussion to bodies moving with speeds
which are small in comparison with the speed of light. The weight W of a
body of constant mass M depends upon the particular place where the
weight is measured. In the systems of units used in this book, the weight
of a body is properly referred to in units of force. Thus the weight of a
body is properly expressed in dynes, in newtons, or in pounds. In these
terms the operations customarily undertaken in a chemical laboratory,
called' "weighings," are more properly "massings," for the analytical
chemist is not interested in the force of the earth's attraction but in the
quantity of matter present in a sample.

The weight of an object is measured by the deflection of a calibrated
spring. The reading of such a spring scale varies with the state of motion
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of the scale. When the scale is at rest, or moving with uniform motion in a
straight line, the reading of the scale is the same, but when the motion is
accelerated, the reading of the scale depends on both the mass of the object
and the amount of acceleration. This is the source of the sensation of
heaviness which is experienced when standing in an elevator being accel­
erated upward, or of lightness in the same elevator when its acceleration
is downward.

Fig. 5-5

Illustrative Example. A weight lV rests on a spring scale which is placed
on the floor of an elevator. The scale reads 50 lb when the elevator is at rest.
The elevator is started, accelerating upward at a rate of 16 ft/sec z for 1 sec, then
continues at constant speed for 5 sec, and finally is decelerated at the rate of
16 ft/sec z for 1 sec. What is the reading of the scale during the first second?
During the next 5 sec? During the last second?

The forces acting on the body are its weight lV, acting downward, and the
force of the scale F, acting upward, as shown in Figure 5-5.

During the first second the acceleration is 16 ft/sec z in the upward direction.
Substituting in Newton's equation, we find that

ft
F - 50lb = ~g slug X 16-,

sec z

so that F=75Ib.

During the next 5 sec the acceleration is zero. Hence the scale reads 50 lb.
For the last second the acceleration is 16 ft/sec z in the downward direction.

Thus a = -16 ft/sec z, and we find that

50 ( ft )F - 50 lb = h slug X -16 -z '
sec

or F = 25 lb.
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5-8 Motion on an Inclined Plane

When a block of mass M is placed on an inclined plane, the forces
acting on the block are due to the force of gravity and to the forces exerted
on the block by the plane itself.

When there is no friction, the force exerted by the plane must be per­
pendicular to the surface of the plane, as illustrated in Figure 5-6(a). The

Mg

( a J ( b J
Fig. 5-6 Forces acting on a block placed on a frictionless inclined plane.

resultant of the force of gravity Mg and the normal force N of the plane
must be a force F parallel to the plane, as shown in Figure 5-6(b) whose
magnitude is given by

F = Mg sin (J,

where the angle (J is the angle the plane makes with the horizontal direction,
and the direction of F is down the plane, as shown in the figure. Choosing
the direction of the x axis as parallel to the plane, positive downward, we
may find the acceleration of the block, from Equation (5-4a), as

Mg sin (J = Ma,

yielding a = g sin (J. (5-7)

The acceleration of a body on a frictionless inclined plane is down the plane
and depends on the angle of inclination but is independent of the mass of
the body. Looking at the same problem another way, we see that the
acceleration g due to gravity is a vector quantity, directed vertically down­
ward. The constraint of the plane prohibits such motion and only permits
the body to move along the plane itself. The component of the acceleration
of gravity along the plane is of magnitude a = g sin (J directed down the
plane.

When Galileo was studying the laws of motion, clocks of sufficient
accuracy to time the motion of freely falling bodies were not yet available.
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To slow down the motion so that it could be studied with available timing
devices, he made use of the properties of a smooth inclined plane.

If a body is in motion on a rough inclined plane, the force of friction
between the body and the plane affects the motion. The frictional force
Fr acts so as to oppose the motion of the body along the plane. To deter­
mine the magnitude of the frictional force, we resolve the force of gravity W
into components parallel and perpendicular to the plane, as shown in Figure
5-7, and find the parallel component to be of magnitude W sin 0 and the
perpendicular component to be W cos O.

Fig. 5-7 Analysis of forces which act on a body that is sliding down a rough inclined
plane.

The relationship between the frictional force and the normal force
has been given as

so that

F r = fN,

F r =fAlgcosO,

(5-8)

where f is the coefficient of sliding friction between the body and the plane.
If no other forces act on the body, its motion will be down the plane, and
the frictional force will be directed up the plane, as shown in the figure.
If we consider the x direction as parallel to the plane, positive downward,
we find, on substituting in Newton's equation,

Mg sin 0 -fMgcosO = Ma,

a = g sin 0 - fg cos O.

Equation (5-8) becomes equivalent to Equation (5-7) when there IS no
friction.

If the angle of the plane is reduced to some critical value Oc, the object
will just slide down the plane with no acceleration. Equation (5-8) then gives

o = g sin Oc - fg cos Oc,

from which f = tan Oc, (5-9)

which is identical with a result obtained in Section 3-6.
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Illustrative Example. A heavy wooden crate weighing 200 lb is pulled up a
wooden plane, inclined at an angle of 20°, by a force of 150 lb. The c@efficient of
kinetic friction between the two surfaces is 0.30. (a) Determine the acceleration
of the crate. (b) If the rope hauling it breaks, discuss the subsequent motion of
the crate.

Fig. 5-8

so that

so that

(a) Figure 5-8 shows the forces which act on the crate as it moves up the
plane. The force N which the plane exerts on the crate is perpendicular to its
surface and is equal to the normal component of the weight, since there is no
acceleration normal to the plane. Hence

N = W cos (j = 200 lb X 0.9397 = 187.9 lb.

The force of friction is

F r = fN = 0.3 X 187.91b = 56.4 lb.

The component of the weight parallel to the plane is

F = W sin (j = 200 lb X 0.3420 = 68.4 lb.

Choosing the direction of the x axis as parallel to the plane, positive downward,
we find, from Equation (5-4a),

-150 lb + 56.4 lb + 68.4 lb = ~-;,l- slug X a,

ft
a = -4.03-·

sec2

(b) When the rope breaks, the forces parallel to the plane which act on the
crate are the component of the weight parallel to the plane and the frictional
force. The direction of the frictional force is now reversed, since it always acts
in a direction to oppose the motion. We find, substituting in Equation (5-4a),

- 56.4 lb + 68.4 lb = 23°2° slug X a,

a = +1.92~'
sec 2
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5-9 Motion through the Air

. Objects falling through the air are acted upon by the resistance of the air
as well as by the force of gravity. Some of this resistance 'may be due to
the viscosity of the air and the rest to turbulence. This resistive force is
often called drag, in connection with the flight of aircraft, and is the only
reason an airplane does not cut off its engines after once assuming flying
speed at a desired altitude. The effects of drag are also evident in the dust
raised by the wind and in the transport of gravel and sand by flowing water.
Drag is often put to use in engineering in the pneumatic conveying of grain
and similar materials.

Experience shows that the resistance of air to motion through it
increases as the velocity of the body increases. A body falling through the
air for a sufficient time will ultimately reach a terminal velocity, at which
time the force due to the resistance of the air is equal to the weight of the
body. The body then continues to move downward with this limiting
velocity.

For simplicity, let us assume that, for the case of a spherical body
moving slowly through the air the resistance varies directly with the
velocity. We may write

R = Kv, (5-10)

where K is a constant of proportionality depending on the cross-sectional
area of the body and the viscosity of the air. As the velocity of fall in­
creases, the magnitude of the force R increases until it becomes equal to the
weight of the body. Thus

R = Kvz = W,

from which
W

Vz =-,
K

(5-11 )

where Vz is the limiting or the terminal velocity of the body.
Thus the terminal velocity of fall Vz of raindrops depends upon their

weight. When raindrops reach the surface of the earth, the larger and
heavier drops are moving faster than the light ones. The effective cross­
sectional area of a man wearing an opened parachute is considerably
greater than that of a man wearing a closed parachute, and the associated
increase in K makes a very important difference to the man who is forced
to leave an airplane in flight. The variation in K with cross-sectional area
has been applied for centuries in the winnowing of grain to remove chaff
and is today widely used in the cleaning of seed.

While the path of a freely falling projectile is parabolic, the path of a
projectile in air is not. The speed of the projectile is steadily diminished I

by the resistance of the air. A baseball caught in the outfield is much
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easier to catch than the same ball would have been if it could have been
caught in the infield.

5-10 Pairs of Forces. Newton's Third Law

In our discussion of Newton's first and second laws, our attention was
focused on one body on which a set of external forces acted. If we now
analyze the origin of each of these forces, we find that each force is produced
by the action of some other body on the one under discussion. If we push a
trunk along the floor, the trunk exerts a force against our hands. If a ball
is hit with a bat, not only is there a force exerted by the bat on the ball, but
the ball also exerts a force on the bat. An automobile which is standing still
pushes down on the ground at each of the surfaces of contact between its
tires and the ground. At each region of contact, the ground exerts a force
upward equal to that exerted by the car. Newton's third law states that
whenever one body exerts a force on another, the second body exerts a force
equal in magnitude and opposite in direction on the first body. This law is
sometimes called the law of action and reaction.

Fig. 5-9 Force F' exerted by the
ground on the wheel is equal in
magnitude but opposite in direction
to the force F exerted by the wheel
on the ground.

As an illustration of Newton's third law, consider the manner in which
a car is set in motion. To start the car moving forward, there must be a
net or unbalanced horizontal force acting on the car. To produce this
horizontal force, the engine is started and then connected by means of
gears and shafts to the rear wheels, causing them to turn in a clockwise
direction, as shown in Figure 5-9. Because of the friction between the
tires and the ground, the wheels exert a force F to the left (backward) on
the ground; the ground exerts an equal and opposite force F' forward on
the rear wheels. It is this horizontal force F' which makes the car go for­
ward. To understand that it is the push of the ground on the driving
wheels which makes the car go forward, just think of driving experiences
on a winter day with ice on the ground, when the friction between the tires
and the ground is very small. What usually happens is that the wheels
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spin in a clockwise direction, but since there is little frictional force avail­
able, the wheels merely spin around, and the car does not move.

Problems

5-1. How big a force is required to give a 40-gm mass an acceleration of
150 cm/sec 2?

5-2. What constant force is required to give a body weighing 120 Ib an
acceleration of 4 ft/sec 2?

5-3. An automobile weighing 2,800 Ib starting from rest acquires a speed of
40 mi/hr in 12 sec. Assuming that the acceleration is uniform, determine the
unbalanced force which is acting on the automobile during this time.

5-4. A box whose mass is 350 gm rests on a table. A steady horizontal force
is applied to this box. After 5 sec the box has acquired a speed of 40 em/sec.
Determine the force acting on the box.

5-5. A box of 800 gm mass is projected across a horizontal table with an
initial speed of 150 em/sec. It comes to rest on the table after having traversed
a distance of 180 em. Determine the frictional force opposing the motion.

5-6. A box whose mass is 12 kg is given an acceleration of 25 m/sec 2 on a
horizontal surface. (a) Determine the resultant force acting on the box. (b)
If the box starts from rest, determine the speed it will acquire in 8 sec.

5-7. A train weighing 450 tons has its speed increased from 20 mi/hr to 50
mi/hr in 15 sec. What force is supplied by the locomotive to produce this
acceleration?

5-8. A steel cable supports an elevator weighing 2,500 lb. What is the ten­
sion in the cable when the elevator is moving (a) upward with a uniform velocity
of 600 ft/min and (b) downward with a uniform velocity of 500 ft/min?

5-9. A steel cable supports an elevator weighing 1,800 lb. Starting from
rest, the elevator acquires a velocity upward of 600 ft/min in 2 sec. (a) What is
the resultant force acting on the elevator? (b) What is the tension in the cable?

5-10. The elevator of Problem 5-9, when going down, acquires a velocity
of 500 ft/min in 2 sec. (a) What is the resultant force acting on the elevator?
(b) What is the tension in the cable?

5-11. A steel ball whose mass is 250 gm is attached to the end of a cord.
The ball is pulled upward with an acceleration of 120 cm/sec 2• Determine (a) the
unbalanced force acting on the ball and (b) the tension in the cord.

5-12. A cube whose mass is 1,600 gm rests on a smooth table. A cord which
is attached to the center of one face of the cube passes over a frictionless pulley
at the edge of the table. A steel ball whose mass is 800 gm is fastened to the free
end of the cord. Determine (a) the acceleration of each body and (b) the tension
in the cord.

5-13. A box weighing 72 Ib is placed on a smooth horizontal table. A cord
which is connected to the center of one face of the box passes over a smooth
pulley at the edge of the table. A steel ball weighing 24 Ib is then fastened to the
other end of the cord. Determine (a) the acceleration of each body and (b) the
tension in the cord.
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5-14. Two boxes, one weighing 16lb and the other weighing 41b, are attached
to the ends of a cord. The cord is placed over a frictionless pulley which is free
to rotate about a horizontal axis. Determine the acceleration of each box.

5-15. A cord passes over a fixed frictionless pulley. A cylinder whose mass
is 3 kg is suspended from one end of the cord, and another cylinder whose mass is
2 kg is suspended from the other end. Determine (a) the acceleration of the
system and (b) the tension in the cord.

5-16. A series of frictionless inclined planes all have the same heights but
have different lengths. Show that the time required for an object to slide down
any of these planes is directly proportional to the length of the plane.

5-17. A car weighing 3,000 lb and moving with a speed of 20 mijhr reaches a
hill having a 5 per cent grade and starts coasting downhill. Determine (a) the
component of the weight acting downhill and (b) the speed the car will acquire
if it coasts for 400 ft, assuming friction is negligible. [NOTE: A hill having a 5
per cent grade is one which rises 5 ft for every 100 ft of length.)

5-18. A body whose mass is 3 kg is projected up an inclined plane with an
initial velocity of 5 m/sec. The plane is inclined at an angle of 30° to the hori­
zontal, and the coefficient of kinetic friction between the plane and the body is
0.2. Determine (a) how far up the plane the body will go before coming to rest,
(b) its acceleration down the plane, and (c) the speed it will have when it reaches
its starting point.

5-19. A box slides down a 30° inclined plane with an acceleration of 4 ft/sec 2
•

Determine the coefficient of friction between the box and the plane.
5-20. A box whose mass is 18 kg rests on a table. A cord tied to this box

passes over a frictionless pulley at the edge of the table. A cylinder whose mass is
6 kg is hung from the free end of the cord. The coefficient of friction between the
box and the table is 0.25. Determine (a) the acceleration of the box, (b) the ten­
sion in the cord, and (c) the distance the cylinder will move in 3 sec.

5-21. A boy takes a running start with a sled and acquires a speed of 8 ft/sec.
If the coefficient of friction between sled and snow is 0.10, how far will the sled
move on a level road before coming to rest?

5-22. A boy coasts down a hill on a sled, reaching level ground with a speed of
30 ft/sec. If the coefficient of friction between the steel runners and the snow is
0.05 and the boy and sled weigh 150 lb, find how far the sled will travel before
coming to rest.

5-23. Show that if the force due to the resistance of the air varies with the
square of the velocity of a falling body, the limiting velocity of fall is propor­
tional to the square root of the weight of the body.

5-24. Two men, one weighing 180 lb and the other weighing 120 lb, are on
ice skates. Each holds one end of a taut rope. The heavier man exerts a force of
20 lb on the rope. (a) How big a force does the lighter man exert? (b) What is
the acceleration of each man? Neglect friction.

5-25. A 5-gm bullet is fired from a gun whose barrel is 60 em long. The bul­
let leaves the gun with a muzzle velocity of 2,500 em/sec. What was the average
force acting on the bullet?

5-26. A man weighing 150 lb stands on a platform weighing 42 lb. The plat­
form is suspended by a rope which passes over a frictionless pulley. The man
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pulls down on the free end of the rope to lift himself and the platform. (a) With
what force must he pull on the rope if the system consisting of the man and the
platform is to receive an upward acceleration of 3 ft/sec 2? (b) What is the maxi­
mum acceleration with which the man can raise the platform and still stay on the
platform?

5-27. A rope inclined at an angle of 37° with the horizontal is used to drag a
50-kg block along a level floor with an acceleration of 1 m/sec 2

• The coefficient
of friction between the block and the floor is 0.2. What is the tension in the rope?

5-28. A projectile of mass 5 gm is fired from a gun with a muzzle velocity of
2,500 cm/sec directed due east at an angle of 45° with the horizontal. A wind is
blowing from the north, exerting a steady force of 1,000 dynes against the pro­
jectile. Find the position of the projectile when it strikes the ground.

5-29. A body of mass 100 kg is hung from a rope which is passed over a
frictionless pulley to a man on the ground who is interested in raising the body a
distance of 25 m in the shortest possible time. The pulley is hung from the ceiling
by a chain whose breaking strength is 2,000 nt. What is the shortest time in
which the body can be raised?

5-30. Two bodies, each weighing 10 lb, are connected by a cord which paS'Ses
over a light frictionless pulley. What vertical force must be applied to the pulley
to raise the system with an acceleration of 5 ft/sec 2?

5-31. Two bodies, weighing 10 lb and 20 lb, rest upon a table. The two
bodies are connected by a cord which passes over a light frictionless pulley. What
is the least vertical force which can be applied to the pulley (a) to raise the 10-lb
weight? (b) To raise the 20-lb weight?

5-32. If in Problem 5-31 a force of 50 lb is applied to raise the pulley, what
will be the acceleration of (a) the 1O-lb weight and (b) the 20-lb weight?

5-33. A block weighing 5 lb rests on a horizontal surface. The coefficient
of friction between the block and the surface is 0.2. A horizontal force of 2 lb
is applied to the block. (a) What is the acceleration of the block? (b) The
system consisting of block, table, and applied force is placed on an elevator which
rises at a constant speed of 5 ft/sec. What is now the acceleration of the block?
(c) The elevator is then brought to a stop with a uniform acceleration of 4 ft/sec 2

•

During this period of vertical acceleration what is the horizontal acceleration
of the block?

5-34. A pendulum bob weighing 1 lb is hung from the roof of a railroad car.
The train is started with a constant acceleration of 3.2 ft/sec 2• (a) At what angle
with the vertical does the pendulum bob hang? (b) What is the tension in the
string?

5-35. In a train moving with constant acceleration it is observed that the
chandeliers hang at an angle of 0.57° with the vertical. The train starts from
rest. With what velocity is the train moving at the end of 2 minutes?

5-36. A mass of 10 kg and a second mass of 5 kg are connected by a string
and rest on a horizontal frictionless table. A constant pull of 60 nt is applied
to the 5 kg mass. Find (a) the acceleration of the system and (b) the tension in
the string.
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