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  National Center for Environmental Assessment US Environmental Protection Agency       

 

  INTRODUCTION 

 In animal bioassays, tumors are often observed at multiple sites. Unit risk 
estimates calculated on the basis of tumor incidence at only one of these sites 
may underestimate the carcinogenic potential of a chemical (NRC  1994 ). 
Furthermore the National Research Council (NRC,  1994 ) and Bogen  (1990)  
concluded that an approach based on counts of animals with one or more 
tumors (counts of  “ tumor - bearing animals ” ) would tend to underestimate 
overall risk when tumors occur independently across sites. On independence 
of tumors, NRC  (1994)  stated:  “  …  a general assumption of statistical indepen-
dence of tumor - type occurrences within animals is not likely to introduce 
substantial error in assessing carcinogenic potency. ”  Also application of a 
single dose – response model to pooled tumor incidences (i.e., counts of tumor -
 bearing animals) does not refl ect possible differences in dose – response rela-
tionships across sites. Therefore the NRC  (1994)  and Bogen  (1990)  concluded 
that an approach that is based on well - established principles of probability 
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and statistics should be used to calculate composite risk for multiple tumors. 
Bogen  (1990)  also recommended a re - sampling approach, as it provides a 
distribution of the combined potency. Both NRC  (1994)  and  Guidelines for 
Carcinogen Risk Assessment  (US EPA  2005 ) recommend that a statistically 
appropriate upper bound on composite risk be estimated in order to gain some 
understanding of the uncertainty in the composite risk across multiple tumor 
sites. 

 This chapter presents a Markov chain Monte Carlo (MCMC) computa-
tional approach to calculating the dose associated with a specifi ed composite 
risk and a lower confi dence bound on this dose, after the tumor sites of 
interest (those believed to   be biologically relevant) have been identifi ed and 
suitable dose – response models (all employing the same dose metric) have 
been selected for each tumor site. These methods can also be used to calculate 
a composite risk for a specifi ed dose and the associated upper bound on this 
risk. For uncertainty characterization, MCMC methods have the advantage of 
providing information about the full distribution of risk and/or benchmark 
dose. This distribution, in addition to its utility in generating a confi dence 
bound, provides expected values of risks that are useful for economic 
analyses. 

 The methods presented here are specifi c to the multistage model with 
nonnegative coeffi cients fi tted to tumor incidence counts (i.e., summary data 
rather than data on individual animals, as in the nectorine example; if data on 
individual animals are available, other approaches are possible), and they 
assume that tumors in an animal occur independently across sites. The necto-
rine example is used to illustrate proposed methodology and compare it with 
the current approach.  

  COMBINING RISKS FOR THE MULTISTAGE MODEL 

 The NRC  (1994)  has described an approach for combining risk estimates 
across tumor sites based on the multistage model:  P ( d ,  θ )   =   1    −    exp[ − ( q  0    +    q  1  d    
+    q  2  d  2    +    …    +    q k d k  )], where   θ     =   ( q  0 ,  q  1 ,  …  ),  q i       ≥    0, where  d     ≥    0 is the 
dose metric and  P ( d ,   θ  ) is the probability of response at dose  d , with param-
eters   θ  . For the multistage model and two tumor types,  A  and  B , assume  m     >     k , 
and

    

     

 Assuming independence of tumors

    

P d d dA A A A kA
k, exp ,β β β β( ) = − − + ∗ + + ∗( )( )1 0 1 …

P d d dB B B B mB
m, exp .β β β β( ) = − − + ∗ + + ∗( )( )1 0 1 …
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we have,

     

 Similarly, for more than two tumor types, the combined tumor model,  P c  , is

    

where  Q i     =    ∑  q ij  , in which  i  indexes the model  “ stages ”  1 to  k  and  j  indexes the 
tumor sites, with   θ     =   ( Q  0 ,  Q  1 ,  … ,  Q k  ). 

 The benchmark dose method (Crump,  1984 ) consists of estimating a lower 
confi dence limit for the dose associated with a specifi ed increase in adverse 
response (i.e., increased risk) above the background level. Extra risk (ER) is 
a common choice:

     

 The benchmark dose (BMD) for extra risk is the solution of the above equa-
tion when the left - hand side is fi xed. Statistical inference for chemical risk 
assessment has mainly emphasized fi nding confi dence limits for the BMD. For 
two tumors, extra risk is given by

     

 After simple algebra,

     

 BMD for combined risk  BMR A   or   B   is (after re - arranging and taking logarithms 
of both sides) the solution to the polynomial

     

 A similar polynomial equation applies when more than two tumors are 
observed in a bioassay.  
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  BAYESIAN APPROACH 

 A Bayesian approach for calculating a confi dence bound on the BMD for 
composite risk can be implemented using WinBUGS (Spiegelhalter et al., 
 2003 ). This is a freely available software package that can be used to apply 
MCMC methods (e.g., Smith and Gelfand,  1992 ; Casella and George,  1992 ; 
Chib and Greenberg,  1995 ; Brooks,  1998 ; Gilks et al.,  1998 ; Gelman et al., 
 2004 ). Gelfand et al.  (1992)  discusses MCMC methods involving constraints, 
as in the case of applying the multistage dose – response model to the nectorine 
data, where maximum likelihood estimates (MLE) for background coeffi cients 
for both tumors are on the boundary. 

 The use of MCMC methods (via WinBUGS) to derive a posterior distribu-
tion of BMDs for a single multistage model has been recently described 
by Kopylev et al.  (2007) . This methodology can be straightforwardly general-
ized to derive a posterior distribution of BMDs for combined tumor risk 
across sites, using the approach for composite risk described in the previous 
section. 

 The mode and 5th percentile of the resulting posterior distribution of the 
dose for a fi xed extra risk provide estimates of the BMD and the BMDL 
( “ lower bound ” ) for composite tumor risk. Similarly, the mean and 95th per-
centile of the posterior distribution of the composite extra risk provide esti-
mates of the expected extra risk and the upper bound on the extra risk.  

  EXAMPLE 

 The data for the nectorine bioassay are given in Table  5.1 . Two tumor types 
were observed and no information beyond summary data is available.   

 A linear multistage model fi ts better — based on lowest values of the devi-
ance information criterion (DIC) reported by WinBUGS — than a quadratic 
or cubic model for both adenoma and neuroblastoma tumors. Similarly a 
linear model is preferable for both tumors, based on minimizing AIC — based 
on BMDS (US EPA  2006 ) computations. The WinBugs results are obtained 
based on convergence of 3 chains with different initial values, and 50,000 burn -
 in (i.e., the fi rst 50,000 samples discarded) from 50,000 simulations each, using 
WinBUGS 1.4.1. The posterior distribution is obtained from the combined 

 TABLE 5.1     Nectorine bioassay data 

   Tumor Type  

   Concentration (ppm)  

   0     10     30     60  

  Respiratory epithelial adenoma    0/49    6/49    8/48    15/48  
   Olfactory epithelial neoblastoma     0/49     0/49     4/48     3/48  
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150,000 samples from the three chains and thinned by retaining every 10th 
sample to reduce autocorrelation, resulting in 15,000 samples. A prior that is 
a mixture of a diffuse continuous distribution on a positive real line and a 
point mass at 0 was used for multistage parameters. In WinBUGS the prior 
was constructed by truncating a high - variance Gaussian prior distribution at 
 − 1 and using the  “ step ”  function to collect mass from the interval on the nega-
tive real line at 0 as a point mass. In a limited Monte Carlo simulation of the 
frequentist properties of the posterior, this was a reasonable choice for a range 
of scenarios we investigated. 

 The posterior distribution of the extra risk at dose 11   ppm and BMD 10  is 
shown on Figures  5.1  and  5.2  (11   ppm is chosen because it is close to the com-
bined BMD 10 ). The posterior distribution of the linear coeffi cient for the 
neoblastoma tumor is strongly bimodal with 40% of its mass at 0 and the rest 
of the mass continuously distributed. In a linear model, lack of the linear 
term implies no extra risk; that is, risk is the same at every dose. Since the 
extra risk for a linear model is a 1   :   1 function of the linear parameter, there is 
also bimodality of extra risk for neoblastoma in Figure  5.1 . As the BMD in a 
linear model is inversely proportional to the linear term, for that 40% of 
neuroblastoma simulations in which the estimated linear term was zero, the 
BMD (Figure  5.2 ) could not be determined (mathematically it is infi nite). In 
contrast, the linear parameter for the adenoma model has a unimodal poste-
rior bounded away from zero (and so the extra risk distribution for adenoma 
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     Figure 5.1     Distribution of the extra risk at dose 11   ppm for individual and combined 
tumors for the nectorine example. Note that 40% of the distribution for neuroblastoma 
extra risk is at 0, since the posterior of the linear parameter for this model has 40% of 
its mass at 0.  
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(Figure  5.1 ) is also bounded away from 0); consequently the distribution of 
BMD and extra risk for combined tumors is well defi ned.   

 Tables  5.2  and  5.3  show individual and combined BMDs and extra risks 
calculated by two approaches: WinBUGS and BMDS (US EPA  2006 ). Lower 
confi dence bound on combined BMD (Table  5.2 ) is obtained by an experimen-
tal module of BMDS, which is still undergoing testing. That module uses a 
profi le likelihood approach similar to the current approach for an individual 
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     Figure 5.2     Distribution of the logarithm of BMD 10  for individual and combined 
tumors in the nectorine example. Letters  “ B ”  on the  x  - axis indicate BMD 10 s for 
adenoma and combined tumors. For 40% of neuroblastoma simulations (see Figure  5.1  
caption), BMD cannot be determined (is infi nite); thus the integral under the distribu-
tion for neuroblastoma is 0.6.  

 TABLE 5.2     Statistics for individual and combined  BMD  10  for the nectorine example 

   Approach  

   WinBUGS     BMDS  

   5th 
Percentile 
(BMD L )  

   Posterior 
Mode 

(BMD)  

   95th 
Percentile 

BMD U   

   5th 
Percentile 
(BMD L )  

   MLE 
(BMD)  

   95th 
Percentile 

BMD U   

  Adenoma    11.06    14.20    20.63    11.32    15.17    22.79  
  Neuroblastoma    40.63     &      &     39.91    70.11    153.60  
   Combined     8.69     11.24     20.63     9.58 *      12.47      *   

    Note :    &  indicates BMD and BMD U  for neuroblastoma could not be determined for 40% of simulations; 
 * indicates lower confi dence bound on BMD is obtained with a BMDS module that is still under develop-
ment. This software does not calculate BMD U .   
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 TABLE 5.3     Statistics for individual and combined extra risks for the nectorine 
example 

   Approach  

   WinBUGS     BMDS  

   5th 
Percentile     Mean  

   95th 
Percentile  

   5th 
Percentile     MLE  

   95th 
Percentile  

  Adenoma    0.055    0.076    0.099    0.048    0.072    0.097  
  Neuroblastoma    0    0.011    0.028    0.007    0.016    0.028  
   Combined     0.059     0.086     0.135      *      0.088     0.115 *   

    Note :   For  * , see caption for Table  5.2 .   

tumor in BMDS. Also note that for the extra risk WinBUGS provides estimates 
of average extra risk, whereas BMDS provides estimates of MLE extra risk.   

 Interestingly, while BMD L s calculated by two methods are quite close for 
individual tumors, there is a difference in combined BMD L  (Table  5.2 ) and 
upper bound on extra risk (Table  5.3 ). 

 It is clear from the fi gures that risk of adenoma dominates the risk of neu-
roblastoma. However, even for this example, with markedly unequal risks from 
the tumors, the extra risk can be substantially greater when risks are combined. 
For example, Table  5.3  shows that the 95th percentile risk at 11   ppm is about 
35% greater for combined risk than for adenoma alone (WinBUGS computa-
tion). The difference for average risk is less pronounced (13% larger) but still 
nontrivial.  

  DISCUSSION 

 In this chapter, an application of Bayesian methods for calculating probability 
distributions for composite cancer risk estimates is proposed. Advantages of 
the proposed approach are that the concept can easily be extended to a more 
general case, such as a Bayesian hierarchical model with covariates, and com-
putations are easy to implement. 

 As NRC  (1994)  stated, ignoring issues about combining tumors could lead 
to underestimation of risk. In this example with an order of magnitude differ-
ence between individual tumors, the underestimation was moderate, compared 
to other uncertainties inherent to extrapolating risk from animals to humans. 
It is easy to see that in some situations (e.g., more than two tumors or tumors 
of similar potency), ignoring additional tumors could lead to a serious under-
estimation of risk from a toxic substance. 

 It is very important to choose an appropriate prior when parameter esti-
mates are either on the boundary of the parameter space or are near the 
boundary for a fi nite sample. We chose a prior that is a mixture of a diffuse 
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continuous prior over the nonnegative real line and a small point mass at 0. 
In limited Monte Carlo simulations such mixture priors performed reasonably 
well in a frequentist sense. Using a continuous prior over the nonnegative real 
line could lead to undesirable frequentist properties of the posterior when 
model parameters are at or near the boundaries of parameter space (zero for 
parameters of the multistage model). However, further research is needed to 
determine the optimal way of allocating prior density to the point mass at 0 
and the continuous nonnegative part. 

 The approach presented in this chapter provides statistical uncertainty in 
risk estimates conditional on the data set and multistage models of specifi ed 
order. The approach can be straightforwardly extended to models other than 
the multistage model; Bayesian model selection could also be used. However, 
the uncertainty discussed in this article is only for a particular dose – response 
model and does not address uncertainty associated with the selection of a 
particular model, or a set of models. 

 The approach assumes independence of tumors given dose. Independence 
may not be true for some types of tumors. Possible next steps include investi-
gation of consequences of violation of independence assumption, and ways to 
evaluate and incorporate dependence in the methodology.  
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