
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Technical reports Computer Science and Engineering, Department of

2011

A Degree of Conflict Model for Workspace
Awareness
Bakhtiar Khan Kasi
University of Nebraska-Lincoln, bkasi@cse.unl.edu

Anita Sarma
University of Nebraska-Lincoln, asarma@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/csetechreports

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Kasi, Bakhtiar Khan and Sarma, Anita, "A Degree of Conflict Model for Workspace Awareness" (2011). CSE Technical reports. 138.
http://digitalcommons.unl.edu/csetechreports/138

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports/138?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages

A Degree of Conflict Model for Workspace Awareness
Bakhtiar Khan Kasi and Anita Sarma

Computer Science and Engineering Department
University of Nebraska-Lincoln

Lincoln, NE – 68588-0115
{bkasi, asarma}@cse.unl.edu

Tech Report: TR-UNL-CSE-2011-0002

ABSTRACT
Workspace awareness solutions provide ongoing change informa-
tion at the level of files. This makes the user responsible for iden-
tifying how current changes affect their tasks and provides no
guidance for planning their (future) tasks. Here, we present our
approach to task-based awareness that calculates a degree-of-
conflict for tasks and recommends an optimum set of tasks that
minimizes the risk of conflicts. Specifically, we present three
novel research ideas: (1) transition from the current file-based
awareness systems to task-based awareness, (2) transition from
reactive conflict detection to proactive conflict prediction, and (3)
a degree-of-conflict model that models conflicts per task per
workspace, which can be used to recommend an optimum task list
for a developer.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
Programmer workbench. D.2.7 [Software Engineering]: Distri-
bution, Maintenance, and Enhancement – version control.

General Terms
Management, Measurement, Human Factors.

Keywords
Workspace awareness, conflicts, degree of conflict model.

1. INTRODUCTION
Software conflicts can arise when developers work on parallel
changes in their distributed workspaces. Case studies have shown
a high incidence of such conflicts in the software industry [2, 7].
These conflicts are often a result of coordination breakdowns and
a lack of understanding of how one’s work fits with other parallel
changes in the project. An example of such a breakdown is when
two developers inadvertently edit the same file in parallel or when
an API that was declared to be stable is changed without appro-
priate notifications to developers using it. In fact, coordination
activities constitute a significant portion of a developer’s day-to-
day activities (sometimes taking up to 78% of their time) [9].

In large distributed projects, developers typically have difficulty
in identifying their impact network – individuals on whom they

are dependent and individuals who are dependent on them [2].
Current workspace awareness tools attempt to alleviate this prob-
lem by (continuously) providing change information of which
artifact is being changed by whom and by how much. Some also
warn developers of potential conflicts that might occur when the
changes are put together [1, 3]. The intention is to enable a devel-
oper to realize the significance of the conflict and prod them into
self-coordinating [8].

There are several drawbacks to this approach. First, it places the
responsibility of understanding the impact of a change and the
best possible course of action on the user. Now, in addition to the
challenging cognitive task of writing code, a developer also has to
“keep an eye out” for relevant changes and determine the best
coordination strategy to mitigate the effects of emerging conflicts.
Further, this strategy of individuals determining the best course of
action for themselves might not be what is the best for the team.

Second, current tools provide awareness at the file level. This is
the status quo since files are the basic unit of operation for most
development editors and configuration management systems.
However, awareness provision at the file level means developers
are responsible for reconstructing the change information to iden-
tify the effects of ongoing changes on their tasks.

Finally, workspace awareness tools are reactive, that is, they only
help identify conflicts once changes are already in progress. While
this is helpful, it is insufficient in helping a developer to plan their
tasks. Our experiment results of a large scale usability study on
workspace awareness shows that users frequently contacted their
team members to determine which files others were intending to
edit and for which tasks, so as to better plan own their tasks [8].

In this paper, we propose a task-based awareness system that is
geared towards overcoming these drawbacks. Our approach tracks
resources that are associated with a task and based on the current
information of which tasks are being performed in which work-
space, recommends the optimum task for a developer such that
she faces a minimum chance of a conflict. Through our approach
we provide awareness at the task level, which is better aligned
with a developer’s cognitive unit of work. Further, we push the
state-of-art in workspace awareness from being reactive to proac-
tive, by determining which resources will be changed based on
their association with tasks that are currently being performed.

Designing a task-based awareness system raises many questions
such as: how to provide automated support to associate resources
with tasks; how to create an optimum task order that takes into
consideration the chances of conflicts and their impact, developer
and team priorities; how to provide information without overload-
ing the developer; scalability; and the general effectiveness of the
approach in helping a team navigate through their development

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

proyster2
Typewritten Text
Department of Computer Science & Engineering, University of Nebraska-Lincoln,
Technical Report, TR-UNL-CSE-2011-0002

tasks. This paper, serves as an initial investigation of the feasibil-
ity of designing a task-based awareness system.

The rest of the paper is organized as follows. In Section 2 we
discuss background information on workspace awareness and
Mylyn [6], a task centric Eclipse extension. Section 3 presents an
illustrative example that is used through the paper. We present our
approach in Section 4 and conclude with a discussion on the chal-
lenges in creating task-based awareness in Section 5.

2. Background
Our work builds on two main bodies of work. First, workspace
awareness, which provides awareness of emerging conflicts as
changes take place in private workspaces. Second, Mylyn – a task
centered Eclipse extension that uses a degree-of-interest model to
identify artifacts that are relevant for a particular developer task.

2.1 Workspace Awareness
Working in a distributed team requires an understanding of how
one’s own work fits in the context of other ongoing parallel
changes and the overall project direction. Obtaining such an un-
derstanding of ongoing changes and their impact is difficult [2],
and becomes much more difficult in large distributed teams [4].

Many different kinds of conflicts can arise in parallel work when
it is performed in distributed workspaces. The impact of each type
of conflict and the effort to resolve them vary. We identify three
major categories of conflicts (see Section 3 for an example of
each kind). First, merge conflicts arising because of parallel
changes to the same artifact. This type of conflict is typically
identified when a developer attempts to check-in their changes
while a newer version already exists in the repository. Second,
build failures arising because of parallel changes to two different
artifacts that cause syntactic mismatches and ensuing compilation
errors. Such conflicts are typically identified during a system-
wide build. Finally, test failures arising because of parallel
changes to two different artifacts that cause mismatches in pro-
gram behavioral. Such conflicts are only detected during testing
(integration) or may remain as defects in the field.

Workspace awareness tools (e.g., CollabVS [3], FastDash [1],
Palantír [8]) attempt to identify such conflicts early while devel-
opers are still making changes. The premise of these tools is that
conflicts do not appear instantaneously, but occur slowly at the
pace of human development. The goal of workspace awareness
tools is to prod a developer into taking coordination actions while
changes are still work-in-progress and the conflicts still small and
relatively easy to resolve. Most tools use visualization cues to
notidy developers of impending conflicts.

2.2 Mylyn
Mylyn [6] provides a task-centric interface for the Eclipse IDE,
which allows developers to view their tasks (either local tasks or
from a remote repository such as Bugzilla), select a task on which
they would like to work, and identify the resources associated
with that task. Each task has an associated context that includes
resources (files or methods) that are: (1) explicitly selected, (2)
undergoing edits, or (3) being referenced. Mylyn monitors devel-
oper activities to identify relevant resources for the task context.

More specifically, Mylyn monitors direct and indirect interactions
of a developer. A direct interaction occurs when a developer ex-
plicitly selects a particular file or edits it. An indirect interaction

refers to a class of event where program elements and relation-
ships are selected for the task context because Mylyn anticipates
them to be of interest. For example, a propagation event occurs
when a developer navigates to a different file by using the “open
declaration” shortcut in Eclipse. Similarly, Mylyn generates a

prediction event to include the parent class of a file that is cur-
rently being edited.

Additionally, Mylyn uses a degree-of-interest (DOI) model to
determine the degree of relevance of a resource in the task context
[5]. The model associates an interest value with each resource in
the task context. As a user interacts with a program element it’s
DOI value increases (or gains interest). Similarly DOI values
decay when a user does not explicitly select or edit a resource. A
resource is removed from the task context if its DOI value falls
below a set threshold. Mylyn uses text cues to highlight resources
that are of higher interest in the task context.

From the developers’ perspective, Mylyn recommends relevant
program elements for their current task and provides an unclut-
tered package explorer interface, which displays only relevant
resources. Mylyn helps improve productivity by reducing the time
that a developer spends on searching, scrolling, and navigating.
Additionally, Mylyn allows developers to easily switch their ac-
tive tasks by maintaining a record of the task context of each task.

3. Example
Consider a very simplified scenario where Alice and Bob are
working on a hypothetical project involving polygons, where
classes Square.java, Rectangle.java, and Triangle.java inherit
from the abstract class Shape.java. Table 1 summarizes their
tasks, the order in which they will be implemented, and the task
type (R - refactor, M - modification, F - Feature).
To plan for future additions of new shapes in the code base Alice
in method TA1 refactors Shape.java to combine the implementa-
tions of methods area(float l, float w), which calculates area for a
rectangle and area (float s), which calculates area for a square into
a single method. This new method uses an additional parameter
for the type of shape (shape_type), which is used to calculate the
appropriate area. She also modifies Rectangle.java to update its
call to shape.area() method and commits all her changes.
Meanwhile, Bob in TB1 adds new functionality to Rectangle.java
(adds perimeter() method) and Square.java(adds area() method,
which in turn calls shape.area()). He is unaware of the parallel
changes by Alice. On completing his changes he faces a merge
conflict and realizes that his copy of Rectangle is out of date and
needs to be reconciled with changes in the repository. He also
faces a build failure for Square.java since he used the earlier ver-
sion of shape.area(), which lacked the shape_type parameter.
In TB2, Bob creates a new class Triangle.java. Bob ensures that he
is calling the new shape.area() with the shape_type parameter set

Table 1. Task list of Bob and Alice.
Alice’s Workspace Bob’s Workspace

Shape.java (C) Rectangle.java (E)
Square.java (S) TA1 R Rectangle.java

(C)
TB1 M

Shape.java (P)
TA2 F Draw.java (S) TB2 F Triangle.java (S)
TA3 F Plane.java (S) TB3 F Plot.java(S)

as ‘T’. However, Alice did not create functionalities for the area
of a triangle in Shape.java, which defaults the shape to a rectan-
gle. Bob’s changes would therefore lead to a test failure.
For simplicity, we assume that Alice’s and Bob’s other tasks (TA2,
TA3, TB3) do not have any dependencies and are independent.

4. Approach
Our work builds on two key insights. First, workspace awareness
will be more meaningful when it is aligned with a developer’s
cognitive unit of work – a development task (i.e., a bug fix, an
issue, or a modification request). Second, one can generate an
optimal task list, which minimizes the number of conflicts that a
developer may face by analyzing ongoing and intended changes.
Here, we present our approach that realizes these two insights
through a degree-of-conflict (DOC) model. Our degree-of-conflict
model creates a single conflict metric per task. The DOC metric
characterizes the number, type, severity, and status (planned edits,
workspace edits, commit) of potential conflicts per program ele-
ment (e.g., files, methods, or variables). From here on, we use the
generic term “resource” to refer to a program element. The re-
source level DOCs are then aggregated for each task across all
workspaces that contain the resource. This per task DOC can be
used to create a task list that minimizes the possibility of conflicts.
A key step in our approach is to determine early those resources
that are likely to be changed for a task, so the system can recom-
mend an optimum task list. This can be done through several
ways. First, we can initialize a task context with resources that we
can identify by analyzing the description of the bug or issue in the
bug repository. Second, we can use the description of a bug to
identify similar archived bugs. Then use the resource list of the
archived bugs to seed the originals bug’s task context. Finally, we
can recommend a social process wherein developers start their
day by selecting and filtering the task context for their daily task
list. We will explore a combination of automated and social proc-
esses to determine the best approach.
Figure 1 presents our proposed architecture underlying the DOC
model. The Workspace Wrapper intercepts Mylyn-generated or
user-generated events and sends them to the central server. The
Event Handler component maintains the current state of changes
per workspace in the Event database and archives older events in
the History database. The Event Handler is also responsible for
transmitting event notifications to relevant workspaces, where
events regarding a file are considered relevant for a workspace if
that workspace includes that file in any active task context. Our
client extensions per workspace include the Internal State compo-

nent that keeps a local cache of all events; the DOC component
that calculates the DOCs for different entities (tasks, files, work-

spaces) per workspace; the Task Recommender that component
determines an optimum list of tasks with minimum conflicts,
which is then presented to the user via the Visualization widgets.
We are in the process of implementing our approach and investi-
gating its feasibility. More specifically, we have designed the
theoretical framework of the proposed system and some initial
user interfaces through paper prototyping (see Fig. 2 for one such
example). We plan on interviewing developers to obtain feedback
on the UI and determining what information would prove helpful
to them. We have also implemented the workspace wrapper,
which intercepts user interactions from Mylyn and the CM system
and stores them in a central event server. We have modeled the set
of events that are necessary for our DOC model, which we are
currently implementing. We plan on fine-tuning the DOC model
based on our experiences and future use. In the rest of the section
we present our degree-of-conflict model.

4.1 Degree of Conflict Model
The DOC model consists of three steps: (1) identify files that are
being edited or will be edited for each task, (2) identify the kinds
of conflicts and their impact, (3) create a model characterizing
different user actions and conflicts into a single DOC metric.
For the first step, we determine program elements that are associ-
ated with a task by building on Mylyn’s active task context func-
tionality. More specifically, we will initially seed the task contexts
with information from the bug repository. Then we depend on a
user’s interaction with Mylyn’s task context for further refine-
ment. The user interactions that we track through include “select”,
“edit”, and “propagation” actions. For example, let us assume
Alice in TA1 selects Shape.java and Rectangle.java. She then be-
gins to edit Shape.java. In the meantime, Bob selects Square.java
and Rectangle.java for TB1. He realizes that both these files inherit
from Shape.java so he investigates the methods provided by
Shape.java, which is then added to the active task context as a
result of a propagation event (see Table 2).
We categorize events concerning a resource into five classes: (1)
propagation (P), (2) selection (S), (3) workspace edit (E), (4)
check-in (C), and (5) removal (R). The first two events in the list
are treated as planned changes and the rest as ongoing changes.
Note that the initial seeding of a task context will be treated as
propagation events. Each change is associated with a “change
type” value: [P:0.5, S:1, E:0.7+, C:10, R:0*]. Our model keeps a
running total of each change event per resource, per workspace to
create a DOC model for the resource. Therefore, when a resource

Figure 1. System Architecture.

Figure 2. UI Mockup. (a) active task context, (b) editor, (c)
user’s task list with DOCs along with number of conflicting

workspaces, and (d) related conflicting tasks for TB1

(a)

(b)

(c)

(d)

is added because of a propagation or select event, the DOC num-
ber for that resource is 0.5 or 1, respectively. Each time a user
saves her changes in the editor the model adds 0.7 to the resource
total. A commit leads to a 10-point addition since it represents
changes that definitely will need reconciliation. Removal of a
resource causes the DOC to drop to 0. In our example, let us as-
sume that Alice selects Rectangle.java, saves her edits twice, and
then commits it, the DOC for Rectangle.java as calculated by
Bob’s workspace will be fDOCRec= 1 + 0.7*2 +10 =12.4.
Additionally, our model increases the DOC values for changes
that are conflicting (or may conflict). For example, changes that
cause a merge conflict (MC) incur a 1 point increase. Build fail-
ures (BF) or test failures (TF), being more difficult to resolve
incur higher penalties – 5 and 10 points, respectively. Using our
example, Alice’s changes to Rectangle.java will cause a merge
conflict for Bob, so we add 1 more point making fDOCRec to go
from 12.4 to 13.4. Points allocated to a conflict can also be
weighted with the magnitude of the change, for example, multi-
plying a merge conflict or a build failure with the lines of non-
comment lines causing the conflict. Currently, we do not consider
such a weighting scheme in our model.
The DOC component for each workspace analyzes the change
events transmitted by remote workspaces to calculate the file
DOCs, fDOC, for every file in the user’s task. It then aggregates
the fDOCs across all workspaces that contain that file – FDOC. That
is, Bob’s workspace calculates all changes from remote work-
spaces (in this case, only Alice) for each file in TB1 (Rectan-
gle.java, Square.java, Shape.java).

The FDOC of every file in a task (e.g., TB1 for Bob) is aggregated
to create a tDOCTB1 score for that task. This is repeated for all tasks
in the developer’s list and is the basis on which the system can
recommend tasks with minimum conflict.
For a selected task (or the active task) the model presents a list of
the remote tasks and their associated DOCs that are affecting the
task. For example, when Bob selects TB1, all other tasks across all
workspaces that conflict with TB1, their DOC, and the type of
potential conflict is presented. In our example, only Alice’s task
has a conflict with a DOC of 30.1 and includes a potential merge
conflict (Rectangle.java) with DOC = 13.4 and a build failure
(Shape.java) with DOC = 16.7 (1+0.7+10+5) and is displayed as:
TA1: 30.1: MC|BF.
We have modeled our DOC metric on Mylyn’s degree-of-interest
(DOI) model [5]. Specifically, we retain the DOI metrics for
workspace events, but, include new DOC metrics for check-in
events and conflicts. We will fine-tune our model based on our
experiences in building and using the prototype.

5. Conclusions
Current workspace awareness solutions are file-based and reac-
tive, which make the user responsible for determining the impact
of ongoing changes to one’s current tasks and are inadequate for
task planning. We propose a task-based awareness solution that
can recommend an optimum task list to minimize conflicts for
each user. Our DOC model keeps track of resources that are asso-
ciated per task and uses this information to identify tasks that have
the least DOC number, that is, the least potential for conflicts.
We will fine-tune our DOC model based on our own experience
in using it. Currently, we are in the initial phase of implementing
our prototype. One of the key challenges that we face is the initial

seeding of the task context with associated resources, since the
quality of these linkages impacts the quality of the task recom-
mendations. We will explore both automated techniques such as
analyzing archived bug reports as well as social processes such as
developers linking the resources with tasks early on during bug
triaging. Most likely a combination of both approaches will be
needed to create an effective system.
Currently, our model recommends a task solely based on the DOC
metric. In the future, we plan to extend this model to also consider
time and other resource constraints, developer priority, and team
requirements. We will explore modeling this problem as a con-
straint satisfaction problem so that the resulting task recommenda-
tions are optimum for a developer as well as for the team.
Finally, we will explore incremental techniques that analyze on-
going changes to identify emerging build and test failures, such
that it is computationally inexpensive and scalable across large
projects.

6. ACKNOWLEDGMENTS
This research is supported by the National Science Foundation
under Grant CCF-1016134.

7. REFERENCES
[1] J. Biehl, et al., "FASTDash: A Visual Dashboard for

Fostering Awareness in Software Teams," in Human Factors
in Computing Systems 2007, pp. 1313-1322.

[2] C. R. B. de Souza and D. Redmiles, "An Empirical Study of
Software Developers' Management of Dependencies and
Changes," in Thirteeth International Conference on Software
Engineering, 2008, pp. 241-250.

[3] P. Dewan and R. Hegde, "Semi-Synchronous Conflict
Detection and Resolution in Asynchronous Software
Development," in Conference on European Computer
Supported Cooperative Work, 2007, pp. 159-178.

[4] J. D. Herbsleb, et al., "Distance, dependencies, and delay in a
global collaboration," in Proceedings of the 2000 ACM
conference on Computer supported cooperative work, 2000,
pp. 319-328.

[5] M. Kersten and G. C. Murphy, "Mylar: A Degree-of-interest
Model for IDEs," in International Conference on Aspect-
Oriented Software Development, ed. Chicago, Illinois: ACM,
2005, pp. 159-168.

[6] M. Kersten and G. C. Murphy, "Using Task Context to
Improve Programmer Productivity," in Fourteenth ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, 2006, pp. 1-11.

[7] D. E. Perry, et al., "Parallel Changes in Large-Scale Software
Development: An Observational Case Study," ACM
Transactions on Software Engineering and Methodology,
vol. 10, 2001, pp. 308-337.

[8] A. Sarma, et al., "Empirical Evidence of the Benefits of
Workspace Awareness in Software Configuration
Management," in ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2008, pp. 113-123.

[9] N. A. Staudenmayer, "Managing Multiple Interdependencies
in Large Scale Software Development Projects,"
Unpublished Ph.D. Dissertation, Sloan School of
Management, Massachusetts Institute of Technology, 1997.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2011

	A Degree of Conflict Model for Workspace Awareness
	Bakhtiar Khan Kasi
	Anita Sarma

	DOC_5-ref

