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Batch U(VI) sorption/reduction experiments were completed on sterilized and non-sterilized sediment
samples to elucidate biological and geochemical reduction mechanisms. Results from X-ray absorption near-
edge structure (XANES) spectroscopy revealed that γ-sterilized sediments were actually better sorbents of
U(VI), despite the absence of any measurable biological activity. These results indicate that γ-irradiation
induced significant physico-chemical changes in the sediment which is contrary to numerous other
studies identifying γ-sterilization as an effective and minimally invasive technique.
To identify the extent and method of alteration of the soil as a result of γ-sterilization, untreated soil
samples, physically separated size fractions, and chemically extracted fractions of the soil were analyzed
pre- and post-sterilization. The effects of sterilization on mineralogy, pH, natural organic matter (NOM),
cation exchange capacity (CEC), and iron oxidation state were determined. Results indicated that major
mineralogy of the clay and whole sediment samples was unchanged. Sediment pH decreased only slightly
with γ-irradiation; however, irradiation produced a significant decrease in CEC of the untreated sediments
and affected both the organic and inorganic fractions. Mössbauer spectra of non-sterile and γ-sterilized
sediments measured more reduced iron present in γ-sterilized sediments compared to non-sterile samples.
Our results suggest that sterilization by γ-irradiation induced iron reduction that may have increased
the sorption and/or reduction of U(VI) onto these sediments. However, Mössbauer and batch sorption
data are somewhat contradictory, the former indicates that the iron oxide or iron hydroxide minerals are
more significantly reduced while the later indicates that reduced clay minerals account for greater sorption
of U(VI).

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Sterile laboratory methods are needed to elucidate biological and
abiological processes that occur in sedimentary systems. Particularly
in the field of remediation, more detail is needed on the rate and
extent of biological and abiological geochemical reactions that occur
indigenously and can be stimulated. To achieve this, a non-invasive
method for soil sterilization is needed. Ideally, sterilization should
cause no measurable changes in the physical or chemical properties of
the soil while completely eliminating all viable organisms. However,

with the possible exception of mercuric chloride, all known steriliza-
tion methods cause some secondary effect on the soil (Wolf et al.,
1989; Lotrario et al., 1995; Trevors, 1996; McNamara et al., 2003).
While poisons and fumigants are highly effective sterilizers, they leave
behind toxic residues which may cause contamination and lead to
difficult disposal (Trevors, 1996; McNamara et al., 2003). Autoclaving,
which is the more commonly used method of sterilization, kills cells
by raising temperatures to 121 °C at 103.4 kPa. Although the efficiency
of autoclaving is low, it is significantly improved by repeated
autoclaving two or three times. Unfortunately, repetition results in
more significant structural soil damage (Wolf et al., 1989). Autoclaving
can cause aggregation of clay particles which leads to a decrease in soil
surface area and significant changes in the adsorption of organic
compounds (Lotrario et al., 1995; Trevors, 1996). Additionally, the
chemical affects of triplicate autoclaving are significant. Extractable
Mn levels were reported to increase by an average of 500% while
extractable Fe decreased significantly in one study of the effects of
sterilization on various soil types (Wolf et al., 1989).
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Though autoclaving tends to be more commonly used, some
studies have found sterilization by exposure to γ-irradiation emitted
by cobalt-60 to be less destructive and more effective (Bowen and
Rovira, 1961; McLaren, 1969; Allen et al., 1999; ; Lotrario et al., 1995;
Trevors, 1996; McNamara et al., 2003; Herbert et al., 2005). Small
doses of γ-irradiation are capable of sterilizing large soil samples
without increasing soil temperature or pressure. For determining
abiotic reaction rates in mine tailings, γ-radiation was suggested as
the most effective sterilization method (Herbert et al., 2005).
Sterilization by γ-irradiation was recently popularized when it was
suggested as a suitable technique for sterilization of Mars samples
(Allen et al., 1999). Experiments showed that a dose of 30 Mrad of γ-
irradiation caused no measurable changes in isotopic signature,
chemical composition, crystallographic structure, or homogenization
temperatures of fluid inclusions in rocks and minerals analogous to
those found on Mars. Recently, the use of γ-irradiation in studies of
microbial respiration rates and geochemical reaction rates of natural
soils has gained popularity (Golde et al., 1994; Apitz et al., 1999;
Getenga et al., 2004; Herbert et al., 2005; Manning et al., 2006).
However, descriptions of the effects of moderate doses of ionizing
radiation on whole soils or even naturally occurring minerals remain
incomplete.

The ionizing radiation produced by cobalt-60 generates radicals
that are capable of cleaving carbon–carbon bonds thereby destroying
cellular DNA and leaving cells non-viable (Tuominen et al., 1994;
Trevors, 1996). At the low doses of irradiation required to kill cells in
most soil types (b50 kGy (McNamara et al., 2003)), γ-sterilization
causes minimal perturbations to the physical properties of soils (Wolf
et al., 1989; Lotrario et al., 1995). Although some chemical alterations
have been reported, the effects on bulk soils are minimal compared to
other sterilizingmethods (for a complete review see (McNamara et al.,
2003)). At high doses of γ-irradiation (N50 kGy), however, changes in
clay mineral chemistry and organic matter have been observed. These
changes include reduction of trivalent iron to the divalent state
(Gournis et al., 2001; Plotze et al., 2003), change in clay mineral
solubility (Pushkareva et al., 2002), migration of lattice cations in
smectites (Gournis et al., 2001), and reduction of dissolved organic
concentrations (Bunzl and Schimmack, 1988; Kreller et al., 2005). One
study of the effects of irradiation on five layered silicate minerals
found structural properties remained unaltered while some minerals
experienced a change in the oxidation state of iron (Negron et al.,
2002).

In this study, experiments to elucidate biological and abiological U
(VI) reductionwere completed using γ-sterilized, autoclaved and non-
sterile sediment samples. U(VI) sorption results suggested that
sterilization by moderate doses of γ-irradiation induced chemical
changes in certain fractions of these sediment samples that were not
previously reported, specifically the iron oxides and iron hydroxide
minerals. To understand the physico-chemical changes induced in
natural sediments by γ-irradiation, major mineralogy, soil pH, UV–Vis
absorbance, cation exchange capacity (CEC), and the oxidation state of
Fe were measured on non-sterile, autoclaved, and γ-irradiated soil
samples, physically separated size fractions of the soil, and chemically
treated sub-samples.

2. Materials and methods

2.1. Sample collection

Bulk soil samples were collected from an interbedded sequence of
weathered shale and limestone at the Melton Branch Watershed on
the Oak Ridge Reservation in eastern Tennessee. The shale has been
extensively weathered to saprolite and the limestone has been
completely weathered to massive clay lenses. Soils that exhibited
the grey-green coloring typical of reducing conditions were removed
from the transition zone located immediately above and below the

water table. Soil samples were stored at 4 °C before processing. A
complete description of the soil geochemistry and hydrodynamics is
given in Jardine et al. (Jardine et al., 1988; Jardine et al., 2001).

2.2. Soil sterilization and analysis

To obtain a more homogenous representation of the complex
sediment, soil samples were air-dried, large aggregates were crushed,
and sediments sieved to less than 2 mm prior to all analyses. Selected
sub-samples of the soil were also treated with 30% H2O2 to remove
and quantify the NOM content. Additional sub-samples of H2O2-
treated soils were treated with dithionite-citrate-bicarbonate (DCB)
solution to remove and quantify the reducible Fe(III) content of the
soil, predominantly as iron oxides (Jackson et al., 1986). In addition,
sub-samples of soil were prepared for mineralogical analyses and the
sand, silt, and clay fractions were separated bymechanical sieving and
by centrifugation (Klute, 1986).

Untreated, H2O2-treated, and H2O2 plus DCB-treated soil samples
were sterilized by either autoclave or γ-irradiation. Soils were steam
sterilized three times in polypropylene Oak Ridge tubes at 121 °C for
20 min. Soils were stored at room temperature for 24 h between each
autoclave run. A J. L. Shepherd model 109 60Co irradiator was used to
sterilize samples by γ-irradiation. Irradiated samples were contained
in vented polypropylene tubes during sterilization and irreversible
temperature labels (Omega Engineering Inc.) were used to record the
maximum temperature reached during sterilization (b40 °C). Samples
were sterilized for 40 h at a rate of 50 krad/h for a total γ-ray dosage of
20 kGy. The success rate of soil sterilizationwasmeasured by counting
viable cells using the most probable number (MPN) technique before
and after sterilization. Cells were enumerated aerobically in tryptic
soy broth (TSB). MPNs were also completed on the sand and clay
fractions of the soil separately.

To determine the effects of sterilization on the sediment samples,
major mineralogy and clay mineralogy were identified by X-ray
diffraction (XRD). The major mineralogy of the sand, silt and clay
fractions was identified by XRD using a Scintag theta-2-theta
goniometer and X-ray tube with a copper target. Separate clay
samples were also KCl saturated and heat treated to 400 °C and others
were MgCl2 saturated and solvated with ethylene glycol to identify
expanding clay minerals. Jade 5.1 software was used to suggest
mineral matches for each XRD pattern.

Soil pH was measured in a 1:2 weight to volume solution of 0.01 M
CaCl2. Cation exchange capacities of sterile and non-sterile soils as
well as H2O2-treated soils were measured in duplicate after saturation
with 0.5 M MgCl2. Entrained salts were removed by rinsing with
distilled water. Surface bound Mg was measured by inductively
coupled plasma-mass spectrometry (ICP-MS) following sequential
rinses using 0.5 M CaCl2. Total organic carbonwas determined using a
LECO analyzer. Soil NOM was analyzed by UV–Vis spectroscopy
following extraction in 0.01 M CaCl2. Non-crystalline iron phases were
quantified by ammonium oxalate in the dark (AOD) extractions
(Jackson et al., 1986).

2.3. Uranium batch sorption experiments

Batch sorption experiments were completed using sterile and non-
sterile unaltered soils and pre-treated soils in polypropylene Oak
Ridge tubes. Experiments were completed at room temperature in a
reciprocating shaker using a solid/solution ratio of 20 g/L. Experiments
were conducted at constant ionic strength (0.1MNaNO3) and buffered
to a constant pH of 7.6 using 25 mmol/L HEPES. Preliminary
experiments were conducted to determine the duration required to
reach adsorption equilibrium (~48 h). After the reactions were
completed, suspensions were removed from the shaker and centri-
fuged (1500 rpm for 15 min) and the supernatants were sampled for
pH and U(VI) measurements. U(VI) concentrations were measured
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using a kinetic phosphorescence analyzer (KPA) and inductively
coupled plasma-mass spectrometry (ICP-MS). The total amount of U
(VI) removed from solution was calculated from the difference
between the initial and final aqueous concentrations. Batch experi-
ments were completed in duplicate with initial U(VI) concentrations
ranging from 0.1 to 10 ppm. Anaerobic batch experiments were
completed in an anaerobic glove bag with N2/H2 atmosphere and the
O2 concentration in the bag was monitored at 0 ppm for the duration
of the experiment.

Aerobic batch experiments were also completed on separate size
fractions of the sediment. The two size fractions used were N50 µm
(sand fraction) and b2 µm (clay fraction). Experiments were allowed
to react for 300 h using 10 mmol/L HEPES buffer and initial U(VI)
concentrations between 0.1 and 4 ppm. X-ray absorption near-edge
structure (XANES) spectroscopy was performed on select samples
from various batch reactions to determine the valence state of
uranium on the solid phase.

2.4. Mössbauer spectroscopy

57Fe Mössbauer spectroscopy was used to characterize Fe-miner-
alogy and to identify any changes in the valence state of Fe caused by
exposure to γ-irradiation. Mössbauer spectroscopy was performed on
6 samples including 2 non-sterile untreated soil samples, 2 samples
which had been irradiated for 40 h, one non-sterile H2O2 plus DCB-
treated sample, and one H2O2 plus DCB-treated irradiated soil.
Approximately 100 mg of air-dried sample was used for each analysis.
Spectra were collected at room temperature (RT) and at 12 K. Details
of Mössbauer instrumentation, sample preparation procedure, and
model (Voigt-based method (Rancourt and Ping, 1991)) employed

for fitting were reported by Kukkadapu et al. (Kukkadapu et al.,
2004; Kukkadapu et al., 2006). Briefly, spectra were collected using a
57Co/Rh source with an initial activity of 50 mCi in the constant-
acceleration mode (23 Hz) with metallic Fe-foil (25-micron) at RT
used for calibration. The coefficients of variation of the spectral areas
of the individual sites generally varied by less than 1% of the fitted
value.

3. Results and discussion

3.1. Soil analysis

The soil consisted mainly of quartz with some albite and illite,
interlayered illite/smectite, and minor amounts of kaolinite. The Fe
content of the sediment was approximately 4.0 weight % and less than
0.1 weight % occurred in non-crystalline Fe phases. The total organic
carbon concentration of the soil is low (0.1%). XRD analyses did not
detect any changes in major mineralogy, including clay mineralogy,
due to sterilization.

The results of selected soil analyses are presented in Table 1. Soil
pH decreased slightly from about 7.6 to about 7.5 after γ-sterilization
and no changes occurred due to autoclaving. Sediment samples
that were exposed to γ-rays displayed lower CEC values compared
to those that were not sterilized or were sterilized by autoclave
(Table 1). CECwas also determined using sampleswhichwere H2O2-
treated to determine the relative contribution of NOM to cation
exchange. After NOM removal, CEC decreased in both the sterile
and non-sterile samples. However, CEC decreased more significantly
in the non-sterile sediments compared to the γ-irradiated sedi-
ments. These results suggested that exposure to irradiation may
have caused a decrease in the CEC of the organic fraction of the
sediments and an overall increase in the CEC of the mineral fraction
of the soil.

To investigate the possible breakdown of NOM by γ-irradiation,
organic matter from sterile and non-sterile samples was examined by
UV–Vis spectroscopy after extraction by 0.01 M CaCl2 (Schaumann,
2000). Absorption was measured at a wavelength of 254 nm (Table 1)
which correlates to the total organic carbon component of aqueous
samples (Deflandre and Gagne, 2001). Specifically, decreased UV

Table 1
Select soil properties of non-sterile, autoclaved, and irradiated sediments

Sample pH CEC
(cmolc/kg)

CEC (NOM removed)
(cmolc/kg)

UV Absorbance @
254 nm

Cells/g
soil

Non-sterile soil 7.6 39±3 12±.7 1.16 21,000
Autoclaved soil 7.6 39± .3 Not measured .98 0
Irradiated soil 7.5 31± .1 19±4 .91 0

Fig. 1. Results of U(VI) sorption reactions using γ-irradiated (◆), autoclaved (●), and non-sterile sediments (▲). Aerobic experiments were completed on A) untreated soil, B) H2O2-
treated soil, and C) both H2O2 and DCB-treated soil. Anaerobic batch experiments were completed on D) untreated soils. kd values were calculated from Langmuir isotherms.
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absorption at 254 nm indicated fewer carbon–carbon double bonds
(Ghosh and Schnitzer, 1979; Traina et al., 1990; Pushkareva et al.,
2002) and suggested that large NOM molecules were broken into
smaller fragments after exposure to ionizing radiation. The break-
down of organic matter may cause a release of H+ which would
slightly lower the irradiated soil pH as observed in this study.
Breakdown of NOMmay have also occurred in autoclaved soil but to a
lesser extent. A more detailed study of the NOM is needed to fully
understand the effects of γ-sterilization on these samples, but these
preliminary results suggest that the breakdown of NOMmay cause the
decrease in CEC that was measured in untreated but irradiated
sediment samples. In samples that were treated to chemically remove
the NOM, a significant increase in CEC is measured after γ-irradiation.

3.2. Sterilization efficacy

Viable cell counts were remarkably different in the non-sterilized
clay-rich weathered limestone compared to the shale fractions. Many
more microorganisms were present in the weathered clay fraction
(2×105 cells g−1 soil) compared to the sand fraction (~2×102 cells g−1

soil). After irradiation therewere no viable cells counted in any sample
and our success rate was at least 99.99%. Although no viable cells were
identified in this study after sterilization, it is documented that Ba-
cillus subtilus has survived larger doses of irradiation (Romanovskaia
et al., 2002). Sterilization by three successive autoclave periods was
equally efficient in destroying viable cells in these soils.

3.3. U(VI) sorption

Results from the U(VI) batch sorption experiments are shown in
Figs. 1 and 2. Adsorption constants were calculated using the
Langmuir isotherm. In untreated sediment samples, values of kd did
not vary appreciably due to sterilization (Fig. 1A) indicating that
biological activity did not play a significant role in U(VI) sorption or
reduction in these sediments. The large error values likely reflect
natural heterogeneity in the sediment samples. As expected, after
removal of soil NOM, all kd values decreased significantly (Fig. 1B). As
well, treatment to remove both NOM and iron (hydr)oxide minerals
caused the kd value to decrease by approximately 90% (Fig. 1C). These
results indicated that sorption of U(VI) was largely controlled by the
organic matter and iron oxide minerals present in the sediment,
which is consistent with previous studies on similar sediments
(Yanase et al., 1991; Payne et al., 1994; Lenhart et al., 2000; Roh et
al., 2000; Logue et al., 2004; Liu et al., 2005; Stubbs et al., 2006).

Fig. 2. Results of batch reactions using physically separated clay (●) and sand (▪) size
fractions that were not chemically treated. Closed symbols represent irradiated samples
and open symbols represent non-sterile samples. Autoclaved samples were not used in
this experiment.

Fig. 3. 57Fe transmissionMössbauer spectra showing intensity (Yaxis) versus velocity in mm/s (X axis) of untreated sediment samples A) RT spectrum of non-sterile sediment, B) 12 K
spectrum of non-sterile sediment, C) RT spectrum of irradiated sediment and D) 12 K spectrum of irradiated sediment. Duplicate samples not shown.
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XANES analysis was completed on selected samples and revealed that
uranium existed solely as sorbed U(VI) and that no measurable
amount of reduced U(IV) was produced (spectra not shown). However,
reduced U(IV) may have been present in concentrations below the
detection limit (~10%).

Uranium sorption data collected from anaerobic experiments
showed significant effects associated with sterilization (Fig. 1D).
Significantly more U(VI) was associated with untreated sediments
that were sterilized by γ-irradiation compared to non-sterile samples.
Values of kd associated with γ-irradiated and non-sterile sediments
were 25±3 and 14±1, respectively. Because anaerobic kd values were
significantly smaller than kd values measured under aerobic condi-
tions, sorption experiments were not completed using samples
treated with H2O2 and H2O2 plus DCB.

Sterile and non-sterile sediment samples that were treated with
H2O2 to remove the NOM displayed statistically different U(VI)
sorption behavior; the autoclaved and γ-irradiated sediments were
more effective sorbents of U(VI). Also, kd values indicated that more U
(VI) sorption occurred on γ-irradiated samples treated by both DCB
and H2O2 compared to autoclaved and non-sterile samples. These
results suggested that irradiation may have caused a change in the
chemistry of the soil that increased the sorption capacity, which is in
agreement with CEC measurements. Likely, a change in the physico-
chemical properties of the mineral fraction occurred which made the
sediment samples better U(VI) sorbents. Possibly, iron in the clay and
oxide minerals is reduced during the sterilization and increases the
CEC of the sediments.

Less U(VI) was associatedwith NOM in sterilized sediment samples
compared to the non-sterile sediment (32% and 44%, respectively) as
determined by the change in kd values following H2O2 treatment (see
Fig. 1A–B). These results were consistent with UV–Vis spectra which
indicated that NOM was degraded by both sterilization methods.
Differences in the kd values of DCB-treated sediments also suggested
that γ-irradiation may have affected the clay mineral reactivity.
Autoclaved sediment samples that were either untreated or H2O2-
treated arenot statistically different from irradiated samples. However,
there are significant differences in the autoclaved and irradiated kd
values of H2O2 plus DCB-treated sediments suggesting that irradiation
also caused changes in the sediment silicate minerals, possibly
reduction of trivalent iron as determined in previous studies (Gournis
et al., 2000; Plotze et al., 2003).

Uranium sorption was also measured on physically separated sand
and clay size fractions (Fig. 2). Significantly greater sorption occurred
onto the clay-sized fraction compared to the sand, which is likely due
to increased surface area. The γ-irradiated sediments, again, sorbed
significantly more U(VI) compared to the non-sterile samples, and the
effect of irradiation on the clay-sized samples was much greater
compared to the courser size fraction.

3.4. Mössbauer spectroscopy

To test the hypothesis that iron-bearing minerals were chemically
altered by γ-sterilization, 57Fe-Mössbauer spectroscopy was per-
formed on non-sterile and γ-irradiated sediment samples (both
untreated and H2O2 plus DCB-treated). Since the effect of γ-
sterilization on the CEC and uranium sorption was greater than the
effect of autoclaving (see Table 1 and Fig. 1C), only irradiated samples
were analyzed. Mineral assignment was based on published work that
was completed on sediments obtained from the same general locality
(Kukkadapu et al., 2006; Komlos et al., 2007). Duplicate samples were
analyzed with consistent results. Mössbauer spectra convincingly
showed that sterilization by γ-irradiation induced changes in the
oxidation state of iron in the sediment (Fig. 3), which was clearly
evident from room temperature (RT) spectra (compare Fig. 3A and C).
Fe(II) content increased to 16% (18% in duplicate sample) from the
initial 10%. At this measurement temperature, silicate Fe(III) (e.g.,

illite) and small particle/Al-substituted goethite Fe(III) peaks are
indistinguishable from each other (Kukkadapu et al., 2006). At lower
temperatures (below 77 K) however, these peaks are distinct (Murad
and Cashion, 2004), which is evident from the 12 K spectrum (Fig. 3B
and D). The decrease in goethite content (by 6% and 8% in the duplicate
samples) after irradiation closely corresponded to the increase in Fe(II)
measured in both irradiated samples and suggested that goethite is
being principally reduced. Measurements at or near liquid He
temperature (4.2 K) are needed to resolve silicate Fe(II) from other
Fe(II) species. In the present study 4.2 K measurements were not
completed since the changes in silicate Fe(II) content appeared to be
withinmodeling errors. Similar spectra of non-sterile and γ-irradiated
DCB-treated sediments (samples which should contain mostly iron in
clay minerals, see Fig. 4) display no measurable γ-induced iron
reduction. These results suggest that most of the Fe(II) in sterilized
samples was produced by reduction of Fe(III) in goethite, possibly
caused by exposure to γ-irradiation. It is possible that the DCB
treatment used to remove iron oxide minerals from our sediment
samples partially reduced any iron associated with the silicate
minerals, masking any effects of the γ-irradiation in Fig. 4 (Kukkadapu
et al., 2006).

The iron reduction associated with irradiation of goethite is
possibly due to the formation of UH radicals due to radiolysis of
mineral surface water molecules (Gournis et al., 2000)

Fe3þ þ HU X Fe2þ þ Hþ

Although the sediments were air-dried prior to irradiation some
atmospheric or surface bound water molecules would have remained

Fig. 4. 57Fe transmission Mössbauer spectra showing intensity (Yaxis) versus velocity in
mm/s (X axis) of H2O2 plus DCB-treated sediment samples A) 12 K spectrum of non-
sterile sample and B) 12 K spectrum of irradiated sample.
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with the sample. Irradiation-induced reduction of iron in illite and
smectite minerals may have occurred to a lesser extent, though
Mössbauer data from this study do not report measurable iron
reduction in the clay-sized fraction of the sediment. Previous studies
of the effects of much higher doses of γ-irradiation have found a
partial reduction of Fe(III) to Fe(II) in various clay minerals (Gournis et
al., 2000; Plotze et al., 2003). The interlayer water molecules
associated with clay mineral structure would serve as source of
hydrogen radicals for iron reduction. Uranium sorption data onto clay-
sized sediment fractions hint that clay minerals may be significantly
altered by sterilization (Fig. 2). However, it is also possible that
colloidal iron (hydr)oxide minerals are present in higher concentra-
tions in the finer sediment material compared to the coarser fraction.
Although Mössbauer data do not indicate any measurable γ-induced
iron reduction in the H2O2 and DCB-treated sediment, reduced iron
may occur at levels below the detection limit.

Increased association of uranium with γ-sterilized sediment
samples may be due to several mechanisms. It is possible that
hexavalent uranium may have been reduced to U(IV) by γ-reduced Fe
(II) at concentrations not detectable by XANES (detection limit=10%).
Also, because U(VI) adsorption is very dependent on soil pH and U(VI)
exhibits a reverse adsorption edge in the relatively narrow pH range of
7.5–8, the very small decrease in pH measured after irradiation may
have increased the sorption capacity of the sterilized soils (Barnett et
al., 2000; Barnett et al., 2002). Alternatively, it is possible that
sterilization by irradiation caused changes in the sorption capacity of
the soil unrelated to the drop in pH, as is supported by CEC data.
Because kd values differ significantly in non-sterile versus irradiated
samples treatedwith H2O2 and H2O2 plus DCB, it is possible that the γ-
induced reduction of Fe(III)-bearing oxide and/or silicate minerals
increased U(VI) sorption onto the solid sample. The increased Fe(II)/Fe
(III) ratio of γ-sterilized sediments may slightly decrease the surface
charge of iron-bearing minerals making the solids more conducive to
sorption of any cationic U(VI) species that may be present in the
system (i.e. (UO2)3(OH)5+) (Barnett et al., 2000).

The irradiation dose investigated in this research (20 kGy) is
comparable to the ionizing radiation emitted by a nuclear waste
container over the course of an entire year. A previous study
investigating the geomicrobiology of sediments in the vicinity of
high-level nuclear waste reported very few bacterial isolates capable
of surviving the same dosage of radiation (Fredrickson et al., 2004). It
would also be interesting to determine if the physico-chemical
properties of that soil were altered due to irradiation. Certainly, γ-
irradiation is an efficient sterilizationmethodwithmany benefits over
autoclaving, but its use in geochemical studies of soil reactivity is
questionable. Certainly, the results presented in this study show that
γ-irradiation affects more than just the organic and clay mineral
fractions of complex soils, as previously reported.

The results of this study on natural soils warrant further research
on the effects of small to moderate doses of γ-irradiation on complex
sediment systems. The effects of γ-irradiation on the reduction of Fe
(III) in separate iron oxide and iron silicate minerals could be
investigated to gain a better understanding of the reduction process.
The potential changes in sediment sorption capacity and mineral
oxidation state associated with ionizing radiation in the vicinity of
nuclear waste containers would be of great interest to those studying
contaminant migration and geochemical reactions associated with
metal mobilization and immobilization.
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