2002

Effects of Management Practices on Grassland Birds: Northern Harrier

Jill A. Dechant
Marriah L. Sondreal
Douglas H. Johnson
Lawrence D. Igl
Christopher M. Goldade

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/usgsnpwrc

Part of the Other International and Area Studies Commons

http://digitalcommons.unl.edu/usgsnpwrc/138

This Article is brought to you for free and open access by the Wildlife Damage Management, Internet Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Northern Prairie Wildlife Research Center by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
EFFECTS OF MANAGEMENT PRACTICES ON GRASSLAND BIRDS: NORTHERN HARRIER

Grasslands Ecosystem Initiative
Northern Prairie Wildlife Research Center
U.S. Geological Survey
Jamestown, North Dakota 58401
This report is one in a series of literature syntheses on North American grassland birds. The need for these reports was identified by the Prairie Pothole Joint Venture (PPJV), a part of the North American Waterfowl Management Plan. The PPJV recently adopted a new goal, to stabilize or increase populations of declining grassland- and wetland-associated wildlife species in the Prairie Pothole Region. To further that objective, it is essential to understand the habitat needs of birds other than waterfowl, and how management practices affect their habitats. The focus of these reports is on management of breeding habitat, particularly in the northern Great Plains.

Suggested citation:

Species for which syntheses are available or are in preparation:

- American Bittern
- Mountain Plover
- Marbled Godwit
- Long-billed Curlew
- Willet
- Wilson’s Phalarope
- Upland Sandpiper
- Greater Prairie-Chicken
- Lesser Prairie-Chicken
- Northern Harrier
- Swainson’s Hawk
- Ferruginous Hawk
- Short-eared Owl
- Burrowing Owl
- Horned Lark
- Sedge Wren
- Loggerhead Shrike
- Sprague’s Pipit

- Grasshopper Sparrow
- Baird’s Sparrow
- Henslow’s Sparrow
- Le Conte’s Sparrow
- Nelson’s Sharp-tailed Sparrow
- Vesper Sparrow
- Savannah Sparrow
- Lark Sparrow
- Field Sparrow
- Clay-colored Sparrow
- Chestnut-collared Longspur
- McCown’s Longspur
- Dickcissel
- Lark Bunting
- Bobolink
- Eastern Meadowlark
- Western Meadowlark
- Brown-headed Cowbird
EFFECTS OF MANAGEMENT PRACTICES ON GRASSLAND BIRDS:

NORTHERN HARRIER

Jill A. Dechant, Marriah L. Sondreal, Douglas H. Johnson, Lawrence D. Igl, Christopher M. Goldade, Melvin P. Nenneman, and Betty R. Euliss

Series Coordinator: Douglas H. Johnson
Series Assistant Coordinator: Lawrence D. Igl

Reviewer: Robert K. Murphy

Range Map: Jeff T. Price

Cover Art: Christopher M. Goldade

Major Funding: Prairie Pothole Joint Venture, U.S. Fish and Wildlife Service
U.S. Geological Survey

Funding also provided by: U.S. Forest Service

Collaborators:

Louis B. Best, Iowa State University
Carl E. Bock, University of Colorado
Brenda C. Dale, Canadian Wildlife Service
Stephen K. Davis, Saskatchewan Wetland Conservation Corporation
James J. Dinsmore, Iowa State University
James K. Herkert, Illinois Endangered Species Protection Board
Fritz L. Knopf, Midcontinent Ecological Science Center
Rolf R. Koford, Iowa Cooperative Fish and Wildlife Research Unit
David R. C. Prescott, Alberta NAWMP Centre
Mark R. Ryan, University of Missouri
David W. Sample, Wisconsin Department of Natural Resources
David A. Swanson, Ohio Division of Wildlife
Peter D. Vickery, Massachusetts Audubon Society
John L. Zimmerman (retired), Kansas State University

February 1998
(revised January 2002)
ORGANIZATION AND FEATURES OF THIS SPECIES ACCOUNT

Information on the habitat requirements and effects of habitat management on grassland birds were summarized from information in more than 4,000 published and unpublished papers. A range map is provided to indicate the relative densities of the species in North America, based on Breeding Bird Survey (BBS) data. Although birds frequently are observed outside the breeding range indicated, the maps are intended to show areas where managers might concentrate their attention. It may be ineffectual to manage habitat at a site for a species that rarely occurs in an area. The species account begins with a brief capsule statement, which provides the fundamental components or keys to management for the species. A section on breeding range outlines the current breeding distribution of the species in North America, including areas that could not be mapped using BBS data. The suitable habitat section describes the breeding habitat and occasionally microhabitat characteristics of the species, especially those habitats that occur in the Great Plains. Details on habitat and microhabitat requirements often provide clues to how a species will respond to a particular management practice. A table near the end of the account complements the section on suitable habitat, and lists the specific habitat characteristics for the species by individual studies. A special section on prey habitat is included for those predatory species that have more specific prey requirements. The area requirements section provides details on territory and home range sizes, minimum area requirements, and the effects of patch size, edges, and other landscape and habitat features on abundance and productivity. It may be futile to manage a small block of suitable habitat for a species that has minimum area requirements that are larger than the area being managed. The Brown-headed Cowbird (Molothrus ater) is an obligate brood parasite of many grassland birds. The section on cowbird brood parasitism summarizes rates of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species’ nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species’ response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species’ breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management is posted at the Web site mentioned below.

This report has been downloaded from the Northern Prairie Wildlife Research Center World-Wide Web site, www.npwrc.usgs.gov/resource/literatr/grasbird/grasbird.htm. Please direct comments and suggestions to Douglas H. Johnson, Northern Prairie Wildlife Research Center, U.S. Geological Survey, 8711 37th Street SE, Jamestown, North Dakota 58401; telephone: 701-253-5539; fax: 701-253-5553; e-mail: Douglas_H_Johnson@usgs.gov.
NORTHERN HARRIER
(Circus cyaneus)

Key to management is providing extensive wetlands or tall, densely vegetated mesic or xeric grasslands.

Breeding range:
Northern Harriers breed from central Alaska and western Northwest Territories to southern Quebec and Nova Scotia, south to southern California, northern Texas, central Illinois; and east to New Jersey and Maine (National Geographic Society 1987). (See figure for the relative densities of Northern Harriers in the United States and southern Canada, based on Breeding Bird Survey data.)

Suitable habitat:
Although cropland and fallow fields are used for nesting, most nests are found in undisturbed wetlands or grasslands dominated by thick vegetation (Duebbert and Lokemoen 1977, Apfelbaum and Seelbach 1983, Kantrud and Higgins 1992). Nest success may be lower in cropland and fallow fields than in undisturbed areas (Kibbe 1975).

Northern Harriers nest on the ground or over water on platforms of vegetation in stands of cattail (*Typha*) or other emergent vegetation (Saunders 1913, Bent 1961, Sealy 1967, Clark 1972, Stewart 1975, MacWhirter and Bildstein 1996). Ground nests are well-concealed by tall, dense vegetation, including living and residual grasses and forbs, or low shrubs, and are located in undisturbed areas with much residual cover (Hecht 1951, Duebbert and Lokemoen 1977, Hamerstrom and Kopeny 1981, Kantrud and Higgins 1992, Herkert et al. 1999). In the northern Great Plains, few nests were found in croplands or in areas where litter cover was <12% of total cover; areas with >40% residual cover were commonly used (Kantrud and Higgins 1992). In planted grass/legume fields in North Dakota and South Dakota, most nests (52% of 27) were in cover >60 cm tall and were surrounded by smooth brome (*Bromus inermis*), intermediate wheatgrass (*Agropyron intermedium*), and forbs (Duebbert and Lokemoen 1977). In the northern Great Plains, harrier nests were often associated with western snowberry (*Symphoricarpos occidentalis*) (Messmer 1990, Kantrud and Higgins 1992, Murphy 1993, Sedivec 1994). In northwestern North Dakota, nests were placed in 0.05-0.5 ha stands of western snowberry or snowberry/other shrub with forbs and grass (Murphy 1993). In Saskatchewan, success of nests in shrub patches was highly variable, with fledgling success from 0 to 100% (Sealy 1967). Harrier nests in southwestern Missouri were found almost exclusively in blackberry (*Rubus*) patches with a mean size of 98 m² (Toland 1986). Northern Harriers may have chosen these sites for their protective value (Toland 1986). On an 11-km² island in North Dakota, harriers nested in tame grass/legume and western snowberry areas more commonly than predicted by availability of that habitat type (Sutherland 1987). In Illinois, nest placement by Northern Harriers was influenced less by whether the dominant grass cover in fields was native or introduced than by whether the field was idle or disturbed by burning, mowing, seed-harvesting, or grazing (Herkert et al. 1999).

Nests in wet sites may have an advantage in that fewer predators have access to them (Sealy 1967, Simmons and Smith 1985). Placement of nests in wet versus dry sites may have been dictated by proximity to vole (*Microtus*) populations, such that a compromise was made between nesting in wet areas where predation was lower and nesting closer to upland areas where vole populations were higher (Simmons and Smith 1985). The relationship between ground moisture and vegetation on fledgling success was examined in New Brunswick (Simmons and Smith 1985). Females preferred wet areas relative to availability, and nests in cattails and wetland grasses (bluejoint [*Calamagrostis canadensis*] and prairie cordgrass [*Spartina pectinata*]) were more successful than those in shrubs (speckled alder [*Alnus incana*] and meadow-sweet [*Spiraea*]) or in upland areas. Contrary to results from upland ground nests, the most successful wet-site nests were less concealed (Simmons and Smith 1985). Similar studies are lacking in the Great Plains. In Alberta, Manitoba, and Montana, nests have been found on platforms of vegetation over standing water in cattail/rush (*Juncus*) wetlands (Saunders 1913, Sealy 1967, Clark 1972). A mean of 83% of young survived to fledging from nine nests in an Alberta cattail wetland, whereas the young disappeared from two nests in wheatgrasses (*Agropyron*) (Sealy 1967). In Alberta, Northern Harriers were more abundant in large (>8 ha) than in small (<1 ha), fresh wetlands (Prescott et al. 1995). Northern Harriers may nest semi-
colonially, even when large tracts of apparently suitable habitat are available, and also have been found to nest in close association with ducks and Greater Prairie-Chickens (*Tymanuchus cupido*) (Bildstein and Gollop 1988).

Northern Harriers adapt to changes in nesting habitat. In a Wisconsin wetland subjected to chemical shrub control, willows (*Salix*), bulrushes (*Schoenoplectus*) and sedges (*Carex*) were reduced as goldenrod (*Solidago*) and white meadow-sweet (*Spiraea alba*) increased; harriers subsequently switched from nesting in the former to nesting in the latter (Hamerstrom and Kopeny 1981). A table near the end of the account lists the specific habitat characteristics for Northern Harriers by study.

Prey habitat:
Voles and other small rodents are primary prey of Northern Harriers in the northern Great Plains; other mammals, birds, and occasionally reptiles and frogs are also taken (Sutherland 1987, MacWhirter and Bildstein 1996). Insects compose only a small part of the diet, and are most frequently taken by recently fledged young (MacWhirter and Bildstein 1996). In Wisconsin, changes in vole abundance were closely paralleled by corresponding changes in numbers and productivity of nesting harriers (Hamerstrom 1979, Hamerstrom et al. 1985). Northern Harriers forage over open habitats of moderate to heavy cover, such as ungrazed prairies and wetlands (MacWhirter and Bildstein 1996). On an 11-km² island in North Dakota, Northern Harriers foraged in tame grass/legume fields, wetlands, and native prairie (Sutherland 1987). In shrubsteppe habitat in Idaho, Northern Harriers foraged over alfalfa (*Medicago sativa*) fields until the crop reached 46 cm, then shifted to foraging in open shrubsteppe (Martin 1987).

Area requirements:
Studies in Conservation Reserve Program fields in North Dakota indicated that Northern Harriers were uncommon in blocks of contiguous grassland <100 ha (D. H. Johnson, *unpublished data*). In Illinois, grassland size did not influence nest placement (Herkert et al. 1999). Northern Harriers nested in grassland fragments ranging from 8 to 120 ha; five of 29 nests were in grassland tracts <45 ha. However, the authors suggested that Northern Harriers may be responding more to the total amount of grassland available in the surrounding landscape than to the sizes of individual grassland fragments; small fragments may be used if located close to larger blocks of contiguous grassland. One nest per 11-54 ha was typical in cool-season grasses on the southeastern end of the Missouri Coteau of North Dakota (Duebbert and Lokemoen 1977). In the tallgrass prairie of southwestern Missouri, nesting density was 121 ha/pair, and male home ranges averaged 256 ha (Toland 1985). A pair in central Wisconsin used approximately 890 ha (Hamerstrom and DeLaRonde Wilde 1973). In Manitoba, males defended 27.7 ha, centered on the nest (Hecht 1951). Harriers hunted over 259 ha in Minnesota (Breckenridge 1935). In Idaho, home ranges averaged 1,570 ha for males and 113 ha for females (Martin 1987).

Brown-headed Cowbird brood parasitism:
No known records of brood parasitism by Brown-headed Cowbirds (*Molothrus ater*) exist.
Breeding-season phenology and site fidelity:

Northern Harriers arrive on the breeding grounds between late March and early April, and nest from April through July (Hammond and Henry 1949, Stewart 1975, Duebbert and Lokemoen 1977, Linner 1980, Murphy and Ensign 1996, Bildstein and Gollop 1988). Harriers produce only one brood per breeding season; however, renesting may occur if the nest is destroyed or deserted during egg laying (Bildstein and Gollop 1988, MacWhirter and Bildstein 1996). Of nine nests that failed during egg laying, 44% of pairs renested elsewhere in their territory (MacWhirter and Bildstein 1996). In Michigan, one pair out of eight renested after nest destruction (Bildstein and Gollop 1988). Harriers leave for the wintering grounds between August and November (Saunders 1913, Bent 1961, Bildstein and Gollop 1988).

Northern Harriers may return to the same general area to breed as the previous year (Hamerstrom 1969, Burke 1979). Polygyny has been reported in this species (Hecht 1951, Hamerstrom et al. 1985).

Species’ response to management:

Northern Harriers generally prefer grasslands and associated wetlands with dense cover. During extensive nest-searching in North Dakota, Duebbert and Lokemoen (1977) found few Northern Harrier nests in annually grazed, hayed, burned, or tilled areas. Similarly, in Delta Marsh, Manitoba, no nests were found in burned or mowed areas (Hecht 1951). Although Northern Harriers avoid disturbed areas, periodic disturbance may be necessary to maintain suitable habitat. Berkey et al. (1993) suggested that dense nesting cover (DNC) in uplands could be hayed periodically to stimulate plant growth. Burning or mowing every 3-5 yr is recommended to maintain habitat for Northern Harriers and their principal small rodent prey (Lemen and Clausen 1984, Hands et al. 1989, Kaufman et al. 1990). Disturbances such as burning, haying, and mowing should be avoided during the nesting period (Toland 1986).

Use of prescribed burning in drier, more northern areas may have immediate detrimental effects as it reduces litter accumulation and may destroy nests (Kruse and Piehl 1986, Berkey et al. 1993). Three of four active nests were destroyed by June prescribed burns in North Dakota; one nest hatched (Kruse and Piehl 1986). In Kansas, harriers used both annually burned and unburned areas for foraging, but nested only in unburned areas (Zimmerman 1993). In Missouri, harriers preferred large areas of idle prairie with patches of invading woody plants, and avoided areas that were annually burned (Toland 1986). Reducing cattails through burning or herbicides could eliminate nesting cover (Berkey et al. 1993). In Illinois and South Dakota, Northern Harriers preferred idle areas to areas mowed for forage or seed production (Luttschwager and Higgins 1992, Herkert et al. 1999). In Illinois, Northern Harriers preferred fields that had been idle <2 yr; only one field had been idle >3 yr (Herkert et al. 1999). Early mowing can destroy nests (Hamerstrom 1986). Delaying haying until 15 July may allow Northern Harriers to nest successfully (Berkey et al. 1993). In Manitoba, Northern Harriers were absent from idle mixed-grass, and were as abundant in native as in tame DNC (Dhol et al. 1994). In Alberta, however, they preferred native over tame DNC (Prescott et al. 1995).

Northern Harriers do not use heavily grazed habitats (Stewart 1975, Berkey et al. 1993, Bock et al. 1993), but may use lightly to moderately grazed grasslands (Kantrud and Kologiski 1982, Bock et al. 1993). In North Dakota, Northern Harriers had significantly higher nesting density on ungrazed areas than areas grazed season-long or under a twice-over rotation (Messmer 1990, Sedivec 1994). In aspen parkland of Alberta, Northern Harriers were most
abundant in deferred grazed (grazed after 15 July) mixed-grass, but were absent from continuously grazed mixed-grass and deferred or continuously grazed tame pasture (Prescott et al. 1995).

Management Recommendations:

Preserve native grassland. Collaborate with ranching and farming interests to maintain native rangeland and pasture land (Johnson 1996).

Protect grasslands through conservation easements, land purchases, and development of farm programs that hold conservation of wildlife habitat in high priority (Hands et al. 1989, Johnson 1996). Continue the Conservation Reserve Program to provide nesting and foraging habitat (Kantrud and Higgins 1992, Bock et al. 1993).

Maintain a mosaic of grasslands and wetlands so that while some units are being treated to halt succession, other units are available (Hands et al. 1989, Ryan 1990, Murphy 1993). Treated units should be small (100-200 ha) to minimize the number of displaced nesting harriers. Untreated units should be large enough to meet the requirements of multiple female harriers during the nesting season (Hands et al. 1989). In tallgrass areas, provide native and/or tame grasslands that have been recently (<3 yr) idled. Harriers preferred nesting in idle areas over nesting in mowed areas in Illinois (Herkert et al. 1999), and preferred idle areas over annually burned areas in Missouri (Toland 1986).

In the northcentral United States, periodically mow, burn, or graze to maintain the 2-5 yr old accumulations of residual vegetation preferred by Northern Harriers in this region (Duebbert and Lokemoen 1977, Hands et al. 1989, Berkey et al. 1993, Murphy 1993). Where natural vegetation has been destroyed by drainage, burning, tillage, overgrazing, or conversion to cropland, plant warm-season grasses and legumes. Mowing, burning, or grazing is recommended every 3-5 yr to maintain habitat for small mammal prey (Leman and Clausen 1984, Kaufman et al. 1990).

Provide large areas (≥ 100 ha) of idle prairie with patches of woody plants, such as western snowberry or blackberry (Toland 1986; Messmer 1990; Kantrud and Higgins 1992; Sedivec 1994; D. H. Johnson, unpublished data).

Increase the amount of western public rangeland from which livestock are excluded, especially in U.S. Forest Service National Grasslands (Bock et al. 1993). Northern Harriers preferred idle areas to grazed areas in North Dakota (Sedivec 1994).
Avoid disturbing nesting areas during the breeding season, about April through July (Hamerstrom 1986, Toland 1986, Berkey et al. 1993).

Where water levels are artificially maintained, do not allow water levels to rise \(\geq 15 \) cm from April to August. Otherwise, nests in wetland habitat may become submerged (Hands et al. 1989).

On large islands, maintain tame grass/legume and brush cover and reduce mammalian predators (Sutherland 1987).

Do not use chemical pesticides in habitats used by harriers (Hamerstrom 1969, Hands et al. 1989).
Table. Northern Harrier habitat characteristics.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Location(s)</th>
<th>Habitat(s) Studied*</th>
<th>Species-specific Habitat Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apfelbaum and Seelbach 1983</td>
<td>Illinois, Indiana, Michigan, Minnesota, Ohio, Pennsylvania, Wisconsin</td>
<td>Cropland, idle, pasture, wetland</td>
<td>Used wet meadows, dry uplands, wetlands, brushy areas, pasture and fallow fields, cultivated hay and wheat; nested in wet or dry sites dominated by thick grass growth, in both open areas and slightly closed forest areas</td>
</tr>
<tr>
<td>Bent 1961</td>
<td>Rangewide</td>
<td>Idle mixed-grass</td>
<td>Used grassy, open areas, wet-meadow zones, grassy swales, or other wet areas</td>
</tr>
<tr>
<td>Clark 1972</td>
<td>Manitoba</td>
<td>Cropland, mixed-grass hayland, mixed-grass pasture</td>
<td>Nested on dry and wet sites; nests in the latter were on platforms of residual vegetation surrounded by water</td>
</tr>
<tr>
<td>Dhol et al. 1994</td>
<td>Manitoba</td>
<td>Dense nesting cover (DNC; idle seeded-native, idle tame), idle mixed-grass</td>
<td>No difference in abundance between native DNC (western wheatgrass [Pascopyrum smithii], thick-spike wheatgrass [Agropyron dasystachyum], slender wheatgrass [Agropyron caninum], streambank wheatgrass [Agropyron riparian], green needlegrass [Stipa viridula], big bluestem [Andropogon gerardii], switchgrass [Panicum virgatum], and purple prairie clover [Dalea purpurea]) and tame DNC (tall wheatgrass [Agropyron elongatum], intermediate wheatgrass [Agropyron intermedium], slender wheatgrass, and alfalfa [Medicago sativa]) was found; were absent from mixed-grass prairie</td>
</tr>
<tr>
<td>Duebbert and Lokemoen</td>
<td>North Dakota</td>
<td>Cropland, idle tame</td>
<td>Preferred tall, dense vegetation in upland areas;</td>
</tr>
<tr>
<td>Year</td>
<td>State/Province</td>
<td>Habitat Description</td>
<td>Nesting Characteristics</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>1977</td>
<td>South Dakota</td>
<td>Idle mixed-grass, mixed-grass pasture, woodland</td>
<td>93% of 27 nests were in cover >30 cm tall</td>
</tr>
<tr>
<td>Faanes 1983</td>
<td>North Dakota</td>
<td>Idle mixed-grass, mixed-grass pasture, woodland</td>
<td>Used lightly grazed native prairie near wooded draws</td>
</tr>
<tr>
<td>Hamerstrom and Kopeny 1981</td>
<td>Wisconsin</td>
<td>Idle</td>
<td>Vegetation around nests shifted to goldenrod (Solidago) and meadow-sweet (Spirea alba) after chemical control reduced former nesting cover of willow (Salix), grasses, quaking aspen (Populus tremuloides), bulrush (Schoenoplectus), and sedges (Carex); vegetation around nests was normally tall and/or dense</td>
</tr>
<tr>
<td>Hecht 1951</td>
<td>Manitoba</td>
<td>Wetland: burned, idle, mowed</td>
<td>Used dry nest sites among reed (Phragmites) and sprangletop (Scolochloa); avoided burned or mowed areas</td>
</tr>
<tr>
<td>Herkert et al. 1999</td>
<td>Illinois</td>
<td>Burned, idle tallgrass, idle tame, pasture, tallgrass hayland, tame hayland, tame seed-harvested</td>
<td>Preferred undisturbed grasslands (grasslands left undisturbed for at least 12 mo before the beginning of the breeding season) over managed grasslands (grasslands managed through rotary mowing, hay mowing, seed-harvesting, grazing, or burning during the 12 mo prior to the breeding season); nest placement was not influenced by whether grass was native or tame</td>
</tr>
<tr>
<td>Kantrud and Kologiski 1982</td>
<td>Colorado, Montana, Nebraska, North Dakota, South Dakota, Wyoming</td>
<td>Mixed-grass pasture, shortgrass pasture, shrubsteppe</td>
<td>Preferred lightly to moderately grazed areas with northern borolic soils; vegetation on these sites averaged 23 to 30 cm in height</td>
</tr>
<tr>
<td></td>
<td>Manitoba</td>
<td>Burned mixed-grass, burned</td>
<td>Preferred tall, dense vegetation in undisturbed tame</td>
</tr>
<tr>
<td>Study</td>
<td>Location</td>
<td>Habitat Description</td>
<td>Nesting and Avoidance Patterns</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Kantrud and Higgins 1992</td>
<td>Montana, North Dakota, South Dakota</td>
<td>Grasslands or native prairie dominated by brush, especially western snowberry (Symphoricarpos occidentalis); used vegetation > 55 cm and containing > 40% residual litter; avoided areas with < 12% residual litter.</td>
<td></td>
</tr>
<tr>
<td>Linner 1980</td>
<td>Utah</td>
<td>Cropland, idle, tame pasture, wetland</td>
<td>Nested in wetlands and oldfields; preferred foraging over wet oldfields, less so over cropland; avoided habitats with short vegetation.</td>
</tr>
<tr>
<td>Luttschwager and Higgins 1992</td>
<td>South Dakota</td>
<td>Conservation Reserve Program (CRP; idle seeded-native, idle tame, seeded-native hayland, tame hayland)</td>
<td>Nested in idle strips and blocks within mowed fields.</td>
</tr>
<tr>
<td>Messmer 1990</td>
<td>North Dakota</td>
<td>Idle mixed-grass/tame, mixed-grass/tame hayland, mixed-grass/tame pasture, wet-meadow pasture</td>
<td>Preferred idle areas dominated by western snowberry; density was higher on idle areas than on short-duration or twice-over grazing systems; mowing displaced harriers.</td>
</tr>
<tr>
<td>Murphy 1993</td>
<td>North Dakota</td>
<td>Burned mixed-grass, burned tame, idle mixed-grass, idle tame, mixed-grass pasture, tame pasture, woodland</td>
<td>Preferred (92% of nests) 0.05-0.5 ha patches of western snowberry and associated low shrubs for nesting; mean height/density index at nest sites was 35 cm.</td>
</tr>
<tr>
<td>Prescott et al. 1995</td>
<td>Alberta</td>
<td>Cropland, DNC (idle seeded-native, idle tame), idle mixed-grass, idle parkland, idle tame, mixed-grass pasture, parkland pasture, tame hayland, tame pasture, wetland, woodland</td>
<td>Were most abundant in deferred (grazed after 15 July) native mixed-grass and native DNC; were moderately abundant in idle native parkland, large (>8 ha) fresh wetlands, and tame DNC; and were least abundant in small (<1 ha) fresh wetlands; were absent from cropland, idle tame, tame hayland, saline wetlands, continuously grazed.</td>
</tr>
<tr>
<td>Study</td>
<td>Location</td>
<td>Habitat Types</td>
<td>Observations</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Sealy 1967</td>
<td>Alberta, Saskatchewan</td>
<td>Cropland, mixed-grass pasture, wetland</td>
<td>Nested in wetlands dominated by cattail (Typha), wheatgrass (Agropyron), and areas containing western snowberry and rose (Rosa)</td>
</tr>
<tr>
<td>Sedivec 1994</td>
<td>North Dakota</td>
<td>Idle mixed-grass, mixed-grass pasture</td>
<td>Nested significantly more in idle pasture than grazed; used areas dominated by western snowberry</td>
</tr>
<tr>
<td>Stewart 1975</td>
<td>North Dakota</td>
<td>Cropland, idle mixed-grass, idle shortgrass, mixed-grass hayland, shortgrass hayland, tame hayland</td>
<td>Used wetlands, wet-meadow zones, and idle or lightly grazed prairie; occasionally used cropland or fallow areas</td>
</tr>
<tr>
<td>Stewart and Kantrud 1965</td>
<td>North Dakota</td>
<td>Wetland</td>
<td>Highest densities were found on semipermanent wetlands with closed stands of emergent cover or with clumps of emergent cover interspersed with open water, except in saline wetlands (i.e., wetlands dominated by alkali bulrush [Scirpus maritimus])</td>
</tr>
<tr>
<td>Sutherland 1987</td>
<td>North Dakota</td>
<td>Cropland, idle tame, idle shortgrass</td>
<td>Nested in tall, dense vegetation consisting of smooth brome (Bromus inermis), alfalfa, and western snowberry; height of green vegetation (80 cm) and visual obstruction (48.8 cm) were greater than randomly available</td>
</tr>
<tr>
<td>Toland 1986</td>
<td>Missouri</td>
<td>Burned tallgrass, burned tame, idle tallgrass, idle tame</td>
<td>Preferred unburned, idle vegetation; chose areas burned in alternate years over areas burned every year; used large idle prairies with patches (average 98 m²) of blackberry (Rubus); within 90 cm of nests, mean vegetation height was 79.2 cm and</td>
</tr>
<tr>
<td>Zimmerman 1993</td>
<td>Kansas</td>
<td>Burned tallgrass, idle, idle tallgrass, woodland</td>
<td>Used (foraged in) both burned and unburned areas; nests were found only in unburned prairie; were uncommon as summer residents</td>
</tr>
</tbody>
</table>

*In an effort to standardize terminology among studies, various descriptors were used to denote the management or type of habitat. “Idle” used as a modifier (e.g., idle tallgrass) denotes undisturbed or unmanaged (e.g., not burned, mowed, or grazed) areas. “Idle” by itself denotes unmanaged areas in which the plant species were not mentioned. Examples of “idle” habitats include weedy or fallow areas (e.g., oldfields), fencerows, grassed waterways, terraces, ditches, and road rights-of-way. “Tame” denotes introduced plant species (e.g., smooth brome [*Bromus inermis]*) that are not native to North American prairies. “Hayland” refers to any habitat that was mowed, regardless of whether the resulting cut vegetation was removed. “Burned” includes habitats that were burned intentionally or accidentally or those burned by natural forces (e.g., lightning). In situations where there are two or more descriptors (e.g., idle tame hayland), the first descriptor modifies the following descriptors. For example, idle tame hayland is habitat that is usually mowed annually but happened to be undisturbed during the year of the study.
LITERATURE CITED

