Oscillation of Certain Emden-Fowler Dynamic Equations on Time Scales

Qiaoshun Yang
Jishou University

Lynn Erbe
University of Nebraska-Lincoln, lerbe@unl.edu

Baoguo Jia
Zhongshan University, mcsjbg@mail.sysu.edu.cn

Follow this and additional works at: http://digitalcommons.unl.edu/mathfacpub

Yang, Qiaoshun; Erbe, Lynn; and Jia, Baoguo, "Oscillation of Certain Emden-Fowler Dynamic Equations on Time Scales" (2014). Faculty Publications, Department of Mathematics. 147.
http://digitalcommons.unl.edu/mathfacpub/147

This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications, Department of Mathematics by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Research Article

Oscillation of Certain Emden-Fowler Dynamic Equations on Time Scales

Qiaoshun Yang, 1 Lynn Erbe, 2 and Baoguo Jia 3

1 Department of Mathematics and Computer Science, Normal College, Jishou University, Jishou, Hunan 416000, China
2 Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588-0130, USA
3 School of Mathematics and Computer Science, Zhongshan University, Guangzhou 510275, China

Correspondence should be addressed to Baoguo Jia; mcsjbg@mail.sysu.edu.cn

Received 4 April 2014; Accepted 19 May 2014; Published 26 May 2014

Academic Editor: Douglas R. Anderson

Copyright © 2014 Qiaoshun Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We deal with the oscillation of a generalized Emden-Fowler dynamic equation in the form

\[r(t) \left| Z^\Delta(t) \right|^{\alpha-1} Z^\Delta(t) + f(t, x(\sigma(t))) = 0, \]

where \(t \in [t_0, \infty)_T \).

1. Introduction

The theory of time scales has attracted a great deal of attention since it was first introduced by Hilger [1] in order to unify continuous and discrete analysis. For completeness, we recall the following concepts related to the notion of time scales; see [2, 3] for more details. A time scale \(\mathbb{T} \) is an arbitrary nonempty closed subset of the real numbers \(\mathbb{R} \). In this paper, since we shall be concerned with the oscillatory behavior of solutions, we shall also assume that \(\sup \mathbb{T} = \infty \). We define the time scale interval \([t_0, \infty)_T \) by \([t_0, \infty)_T := [t_0, \infty) \cap \mathbb{T} \). The forward and backward jump operators are defined by

\[\sigma(t) := \inf \{ s \in \mathbb{T} : s > t \}, \]
\[\rho(t) := \sup \{ s \in \mathbb{T} : s < t \}, \]

where \(\inf \emptyset := \sup \mathbb{T} \) and \(\sup \emptyset := \inf \mathbb{T} \); here \(\emptyset \) denotes the empty set. A point \(t \in \mathbb{T} \) and \(t > \inf \mathbb{T} \) is said to be left-dense if \(\rho(t) = t \), right-dense if \(t < \sup \mathbb{T} \) and \(\sigma(t) = t \), left-scattered if \(\rho(t) < t \), and right-scattered if \(\sigma(t) > t \). The graininess function \(\mu \) for the time scale \(\mathbb{T} \) is defined by \(\mu(t) := \sigma(t) - t \), and for any function \(f : \mathbb{T} \to \mathbb{R} \), the notation \(f^\Delta(t) \) denotes \(f(\sigma(t)) \). A function \(g : \mathbb{T} \to \mathbb{R} \) is said to be rd-continuous provided \(g \) is continuous at right-dense points and at left-dense points in \(\mathbb{T} \) and left-hand limits exist and are finite. The set of all such rd-continuous functions is denoted by \(C_{\text{rd}}(\mathbb{T}) \). We say that \(x : \mathbb{T} \to \mathbb{R} \) is differentiable at \(t \in \mathbb{T} \) provided

\[x^\Delta(t) := \lim_{s \to t} \frac{x(t) - x(s)}{t - s}, \]

exists when \(\sigma(t) = t \) (here by \(s \to t \) it is understood that \(s \) approaches \(t \) in the time scale) and when \(x \) is continuous at \(t \) and \(\sigma(t) > t \)

\[x^\Delta(t) := \frac{x(\sigma(t)) - x(t)}{\mu(t)}. \]

Note that if \(\mathbb{T} = \mathbb{R} \), then the delta derivative is just the standard derivative and when \(\mathbb{T} = \mathbb{Z} \) the delta derivative is just the forward difference operator. The set of functions \(f : \mathbb{T} \to \mathbb{R} \) which are differentiable and whose derivative is rd-continuous is denoted by \(C_{\text{rd}}^1(\mathbb{T}, \mathbb{R}) \).

In this paper, we consider the oscillatory behavior of the nontrivial solutions of the second-order Emden-Fowler dynamic equation of the form

\[\left(r(t) \left| Z^\Delta(t) \right|^{\alpha-1} Z^\Delta(t) \right)^\Delta + f(t, x(\sigma(t))) = 0, \]

where \(t \in [t_0, \infty)_T \).
on an arbitrary time scale \mathbb{T}, with $\sup \mathbb{T} = \infty$, where $Z(t) = x(t) + p(t)x(\tau(t))$, and $\alpha > 0$ is a constant. Throughout this paper, we always assume that

- (A1) $r \in C_{rd}(I_{0,\infty})_{\mathbb{T}}, (0, \infty) \cup \{0\}$ with $\int_{t_0}^{\infty} r^{-1/\alpha}(s) \Delta s = \infty$;
- (A2) $p \in C_{rd}(I_{0,\infty})_{\mathbb{T}}$ with $0 \leq p(t) < 1$;
- (A3) $r, \delta \in C_{rd}(I_{0,\infty})_{\mathbb{T}}$, $\tau(t) \leq t$, $\delta(t) \leq t$, and $\lim_{t \to \infty} \tau(t) = \lim_{t \to \infty} \delta(t) = \infty$;
- (A4) $f(t, u) \in C(I_{[t_0,\infty)}_{\mathbb{T}} \times \mathbb{R}, \mathbb{R})$ is a continuous function such that $uf(t, u) > 0$, for all $u \neq 0$ and there exists a positive right-dense continuous function $q(t)$ defined on $I_{[t_0,\infty)}_{\mathbb{T}}$ such that $|f(t, u)| \geq q(t)|u|^{\beta}$ for all $t \in [t_0, \infty)$ and for all $u \in \mathbb{R}$, where $\beta > 0$ is a constant. Throughout this paper, we assume that $r(t)$ is a continuous function such that $r(t) = 0$ for all $t \geq t_0$.

We begin with the following lemmas.

Lemma 1. Assume that (4) has a positive solution $x(t)$ on $[t_0, \infty)$, Then for sufficiently large T, one has

$$Z(t) > 0, \quad Z^\Delta(t) > 0, \quad \left(r(t) \left|Z^\Delta(t)\right|^{\alpha-1}Z^\Delta(t)\right)^\Delta \leq 0, \quad t \in [T, \infty)_{\mathbb{T}}. \tag{8}$$

Proof. Assume that (4) has a nonoscillatory solution on $[t_0, \infty)$. Without loss of generality, we assume that there exists a $T \in I_{[t_0,\infty)}_{\mathbb{T}}$ such that $x(t), x(\tau(t)), x(\delta(t)) > 0$ for all $t \in [t_0, \infty)$ and for all $u \in \mathbb{R}$, where $\beta > 0$ is a constant.

By a solution of (4), we mean a nontrivial real-valued function $x \in C^1_{rd}(I_{[\tau(t),\infty)}_{\mathbb{T}})$, $\tau(t) \geq t_0$ which has the property that $r(t)(Z^\Delta(t))^{\alpha} \in C_{rd}(I_{[\tau(t),\infty)}_{\mathbb{T}})$ and satisfies (4) that holds on $(\tau(t), \infty)$.

2. Main Results

For notational simplicity, define

$$R(t) := \int_{t_0}^{t} r^{-1/\alpha}(s) \Delta s; \tag{12}$$

$$\theta(t, u) := \left(\int_{u}^{t} r^{-1/\alpha}(s) \Delta s\right)^{-1} \int_{u}^{t} r^{-1/\alpha}(s) \Delta s, \tag{13}$$

$$t > u \geq t_0.$$
Since \(r(t)(Z^\Delta(t))^\alpha\) is decreasing on \([t_1, \infty)_T\), we can choose \(t_2 > t_1\) so that \(\delta(t) \geq t_1\), for \(t \geq t_2\). Then
\[
Z(t) - Z(\delta(t)) = \int_{\delta(t)}^t \frac{1}{r^{1/\alpha}(s)} \left[r(s)(Z^\Delta(s))^\alpha\right]^{1/\alpha} \Delta s \leq \left[r(\delta(t))(Z^\Delta(\delta(t)))^\alpha\right]^{1/\alpha} \int_{\delta(t)}^t \frac{1}{r^{1/\alpha}(s)} \Delta s.
\]
(15)

consequently,
\[
\frac{Z(t)}{Z(\delta(t))} \leq 1 + \left[r(\delta(t))(Z^\Delta(\delta(t)))^\alpha\right]^{1/\alpha} \int_{\delta(t)}^t \frac{1}{r^{1/\alpha}(s)} \Delta s.
\]
(16)

Also, we have, for \(t \geq t_2\)
\[
Z(\delta(t)) > Z(\delta(t)) - Z(t_1) = \int_{t_1}^{\delta(t)} \frac{1}{r^{1/\alpha}(s)} \left[r(s)(Z^\Delta(s))^\alpha\right]^{1/\alpha} \Delta s \geq \left[r(\delta(t))(Z^\Delta(\delta(t)))^\alpha\right]^{1/\alpha} \int_{t_1}^{\delta(t)} \frac{1}{r^{1/\alpha}(s)} \Delta s,
\]
(17)

hence,
\[
\frac{r(\delta(t))(Z^\Delta(\delta(t)))^\alpha}{Z(\delta(t))} \leq \left(\int_{t_1}^{\delta(t)} \frac{1}{r^{1/\alpha}(s)} \Delta s\right)^{-1}.
\]
(18)

Therefore, by combining inequalities (16) and (18) we have
\[
\frac{Z(t)}{Z(\delta(t))} \leq \left(\int_{t_1}^{\delta(t)} \frac{1}{r^{1/\alpha}(s)} \Delta s\right)^{-1},
\]
(19)

from which we have
\[
\frac{Z(\delta(t))}{Z(t)} \geq \theta(t, t_1).
\]
(20)

This completes the proof. \(\Box\)

Lemma 3 (see [11]). Let \(\phi(u) = au - bu^{(\lambda+1)/\lambda}\), where \(a \geq 0\), \(b > 0\), \(\lambda > 0\), and \(u \in [0, \infty)\). Then
\[
\phi(u) \leq \frac{\lambda^\lambda}{(\lambda + 1)^{\lambda+1}} \frac{a^{\lambda+1}}{b^\lambda}.
\]
(21)

For the positive solution \(x(t)\) of (4), it follows from \(Z(t)\) and Lemma 1 that, for \(t \geq T\),
\[
x(t) = Z(t) - p(t)x(\tau(t)) \geq Z(t) - p(t)Z(\tau(t)) \geq (1 - p(t))Z(t),
\]
(22)

which implies
\[
x^\Delta(\delta(t)) \geq (1 - p(\delta(t)))^\alpha Z^\Delta(\delta(t)).
\]
(23)

Combining (23) (A4), (4) one obtains
\[
(r(t)(Z^\Delta(t))^\alpha)^\Delta \leq -q(t)(1 - p(\delta(t)))^\beta Z(\delta(t)) \leq -\overline{p}(t)Z^\beta(\delta(t)),
\]
(24)

where \(\overline{p}(t) := q(t)(1 - p(\delta(t)))^\beta\).

One may now state and prove the main results. In these, one shall consider the two cases \(\alpha \geq \beta\) and \(\alpha < \beta\).

Theorem 4. Let \(\alpha \geq \beta\). Assume that there exist a positive rd-continuous differentiable function \(\xi(t)\) and a constant \(M > 0\) such that, for some \(T \in [t_0, \infty)_T\),
\[
\limsup_{t \to \infty} \int_{t_2}^t \left(\xi(s)\overline{p}(s)\theta^\beta(s, T) - \frac{M\alpha r(s)(R(\sigma(s)))^\alpha\beta(\xi_{\alpha}^+(s))^{\alpha+1}}{(\alpha + 1)^\alpha \beta^\alpha\xi_{\alpha}^+(s)}\right) \Delta s = \infty,
\]
(25)

where \(\xi_{\alpha}^+(s) := \max[\xi^+(s), 0]\). Then (4) is oscillatory on \([t_0, \infty)_T\).

Proof. Let \(x(t)\) be a nonoscillatory solution \(x(t)\) of (4) on \([t_0, \infty)_T\). Without loss of generality, we assume that there exists a \(T \in [t_0, \infty)_T\) (sufficiently large) such that \(x(t), x(\tau(t)), x(\delta(t)) > 0\) on \([T, \infty)_T\), and \(Z(t)\) satisfies the conclusions of Lemmas 1 and 2 on \([T, \infty)_T\). Consider the Riccati substitution
\[
w(t) = \xi(t) \frac{r(t)(Z^\Delta(t))^\alpha}{Z^\beta(t)}, \quad t \geq T.
\]
(26)

Then \(w(t) > 0\). By [2, Theorem 1.20], Lemma 2, and (24), we have
\[
w^\Delta(t) \leq \left(r(t)(Z^\Delta(t))^\alpha\right)^\Delta \frac{\xi(t)}{Z^\beta(t)} + \left(r(t)(Z^\Delta(t))^\alpha\right)^\sigma \left(\frac{\xi(t)}{Z^\beta(t)}\right)^\Delta
\]
\[
\leq -\xi(t)\overline{p}(t) \left(\frac{Z(\delta(t))}{Z(t)}\right)^\beta + \frac{\xi^\alpha(t)(Z^\beta(t))^{\alpha}}{Z^\beta(t)}\overline{p}(t) \theta^\beta(t, T) + \frac{\xi^\alpha(t)}{\xi(\sigma(t))\theta^\sigma(t)} w^\sigma(t)
\]
\[
= -\xi(t)\overline{p}(t) \theta^\beta(t, T) + \frac{\xi^\alpha(t)}{\xi(\sigma(t))\theta^\sigma(t)} w^\sigma(t)
\]
(27)
By the Pötzsche chain rule [2, Theorem 1.87],
\[
(Z^\beta(t))^\Delta = \beta \left\{ \int_0^1 [(1-h)Z(t) + hZ(\sigma(t))]^{\beta-1} \, dh \right\} Z^\Delta(t)
\]
(28)
Thus,
\[
\frac{(Z^\beta(t))^\Delta}{Z^\beta(t)} \geq \begin{cases} \beta Z^\Delta(t), & \beta > 1, \\ \left(\frac{Z(\sigma(t))}{Z^\beta(t)}\right)^{\beta-1} Z^\Delta(t), & 0 < \beta \leq 1. \end{cases}
\]
Noting that \(Z(t)\) is increasing on \([T, \infty)_T\), we get \(Z(t) \leq Z(\sigma(t))\) for \(t \in [T, \infty)_T\). Thus,
\[
\frac{(Z^\beta(t))^\Delta}{Z^\beta(t)} \geq \beta \frac{Z^\Delta(t)}{Z(\sigma(t))}.
\]
Substituting (30) into (27), we obtain
\[
\omega^\Delta(t) \leq -\xi(t) \overline{\rho}(t) \theta^\beta(t, T) + \frac{\xi^\Delta(t)}{\xi(\sigma(t))} w^\sigma(t) + \frac{\beta \xi(t) w^{(\alpha+1)/\alpha}(\sigma(t))}{M_2^1 r^{1/\alpha}(\xi(\sigma(t))) (R(\sigma(t)))^{(\alpha-\beta)/\alpha}}
\]
(31)
Noting that \(r^{1/\alpha}(t)Z^\Delta(t)\) is decreasing, we have \(r^{1/\alpha}(t)Z^\Delta(t) \geq (r^{1/\alpha}(t)Z^\Delta(t))^\sigma\). It follows from the definition of \(w(t)\) that
\[
Z^\Delta(t) \geq \frac{1}{(r(t) \xi(t))^{1/\alpha}} w^{1/\alpha}(\sigma(t)) Z^{\beta/\alpha}(\sigma(t)).
\]
Substituting (32) into (31), we obtain
\[
\omega^\Delta(t) \leq -\xi(t) \overline{\rho}(t) \theta^\beta(t, T) + \frac{\xi^\Delta(t)}{\xi(\sigma(t))} w^\sigma(t) - \frac{\beta \xi(t) w^{(\alpha+1)/\alpha}(\sigma(t))}{r^{1/\alpha}(t) \xi^{(\alpha+1)/\alpha}(\sigma(t)) Z^{\alpha-\beta/\alpha}(\sigma(t))},
\]
(33)
Since \(r^{1/\alpha}(t)Z^\Delta(t)\) is decreasing, there exists a constant \(M_1 > 0\) such that \(r^{1/\alpha}(t)Z^\Delta(t) \leq M_1\) for \(t \geq T\), which implies
\[
Z^\Delta(t) \leq \frac{M_1}{r^{1/\alpha}(t)}, \quad t \geq T.
\]
Integrating both sides of (34) from \(T\) to \(t\), we get
\[
Z(t) \leq Z(T) + M_1 (R(t) - R(T)) = R(t) \left(M_1 + \frac{Z(T) - M_1 R(T)}{R(t)} \right).
\]
(35)
Hence, there exists a \(T_1 \geq T\) such that \(Z(t) \leq (M_1 + 1)R(t)\) for \(t \geq T_1\). Then,
\[
Z^{\alpha-\beta/\alpha}(\sigma(t)) \leq (M_1 + 1)^{\alpha-\beta/\alpha}(R(\sigma(t)))^{(\alpha-\beta)/\alpha}
\]
(36)
where \(M_2 = (M_1 + 1)^{\alpha-\beta/\alpha}\). Substituting (36) into (33), we get
\[
\omega^\Delta(t) \leq -\xi(t) \overline{\rho}(t) \theta^\beta(t, T) + \frac{\xi^\Delta(t)}{\xi(\sigma(t))} w^\sigma(t) - \frac{\beta \xi(t) w^{(\alpha+1)/\alpha}(\sigma(t))}{M_2^1 r^{1/\alpha}(\xi(\sigma(t))) (R(\sigma(t)))^{(\alpha-\beta)/\alpha}}
\]
(37)
where
\[
\Psi(t) := \frac{\beta \xi(t) w^{(\alpha+1)/\alpha}(\sigma(t))}{M_2^1 r^{1/\alpha}(\xi(\sigma(t))) (R(\sigma(t)))^{(\alpha-\beta)/\alpha}}.
\]
Taking \(a = \xi^\Delta(t)/\xi(\sigma(t))\), \(b = \Psi(t)\), from Lemma 3 and (37), we obtain
\[
\omega^\Delta(t) \leq -\xi(t) \overline{\rho}(t) \theta^\beta(t, T) + \frac{\xi^\Delta(t)}{\xi(\sigma(t))} w^\sigma(t) - \frac{\beta \xi(t) w^{(\alpha+1)/\alpha}(\sigma(t))}{(\alpha + 1)^{\alpha+1} \beta^{\alpha+1} \xi^\alpha(t)},
\]
(39)
where \(M = M_2^\alpha\). Integrating both sides of (39) from \(T_1\) to \(t\), we have
\[
\int_{T_1}^t \left(\xi(s) \overline{\rho}(s) \theta^\beta(s, T) + \frac{Ma^\alpha r(s) (R(\sigma(s)))^{\alpha-\beta} \xi^\alpha(s)}{(\alpha + 1)^{\alpha+1} \beta^{\alpha+1} \xi^\alpha(s)} \right) ds
\]
(40)
Taking lim sup of both sides of this last inequality as \(t \to \infty\), we get a contradiction to (25). This completes the proof. □
Theorem 5. Let $\alpha < \beta$. Assume that there exist a positive rd-continuous differentiable function $\xi(t)$ and a constant $K > 0$ such that, for some $T \geq t_0$,

$$\limsup_{t \to \infty} \int_{t_0}^{t} \left(\xi(s) \bar{p}(s) \theta^\beta(s,T) - \frac{\alpha^r \tau(s) \xi^{\alpha+1}(s)}{K(\alpha + 1)^{\alpha+1} \theta^\alpha(s)} \right) \Delta s = \infty,$$

where $\xi^{\alpha}(s)$ is defined as Theorem 4. Then (4) is oscillatory on $[t_0, \infty)$.

Proof. Assume that $x(t)$ is a nonoscillatory solution of (4). Proceeding as in the proof of Theorem 4 we get that (33) holds, that is,

$$w^\Delta(t) \leq - \xi(t) \bar{p}(t) \theta^\beta(t,T) + \frac{\xi^{\alpha}(t)}{\xi(\sigma(t))} \theta^\alpha(t) w^\sigma(t)$$

$$- \frac{c_1 \beta \xi(t)}{r^{1/\alpha}(t) \xi^{\alpha+1}(\sigma(t))} Z^{\beta}(\alpha-\alpha)/(\sigma(t)), \quad t \geq T.$$

(42)

Since $\beta > \alpha$ and $Z(t)$ is increasing on $[T, \infty)_T$, then there exist a $T_2 \geq T$ and a positive constant c_1 such that $Z^{\beta}(\alpha-\alpha)/(\sigma(t)) \geq c_1$ for $t \geq T_2$. Consequently,

$$w^\Delta(t) \leq - \xi(t) \bar{p}(t) \theta^\beta(t,T) + \frac{\xi^{\alpha}(t)}{\xi(\sigma(t))} \theta^\alpha(t) w^\sigma(t)$$

$$- \frac{c_1 \beta \xi(t)}{r^{1/\alpha}(t) \xi^{\alpha+1}(\sigma(t))} \xi(\sigma(t)), \quad t \geq T_2.$$

(43)

Let

$$\bar{\Psi}(t) := \frac{c_1 \beta \xi(t)}{r^{1/\alpha}(t) \xi^{\alpha+1}(\sigma(t))},$$

then $\bar{\Psi}(t) > 0$, and

$$w^\Delta(t) \leq - \xi(t) \bar{p}(t) \theta^\beta(t,T) + \frac{\xi^{\alpha}(t)}{\xi(\sigma(t))} \theta^\alpha(t) w(\sigma(t))$$

$$- \bar{\Psi}(t) w^{\alpha+1}(\sigma(t)), \quad t \geq T_2.$$

(44)

The remainder of the proof is similar to that of Theorem 4 and is therefore omitted. This completes the proof for the case $\alpha < \beta$. \hfill \Box

Remark 6. Theorems 4 and 5 remove the Conditions (5) and (6). Moreover, the authors in [5] established oscillation theorems for (4) only for the case $\alpha \geq \beta > 0$. Our results here hold without this assumption, so our results improve the main results [5].

Remark 7. The results established here are valid for general time scales, with no additional restrictions, for example, $\mathbb{T} = \mathbb{R}$, $T = \mathbb{Z}$, and $\mathbb{T} = h\mathbb{Z}$ with $h > 0$, $\mathbb{T} = q\mathbb{N}$ with $q > 1$, and $\mathbb{T} = \mathbb{N}_0$; see [2, 3].

3. Some Examples

In this section, we give two examples to illustrate our main results.

Example 1. Let $T = 2^\mathbb{N}_0$ ($\mathbb{N}_0 = \mathbb{N} \cup \{0\}$), $\alpha = 3$, $\beta = 2$. Consider the neutral nonlinear dynamic equation

$$\Delta_2\left(\Delta_2 x(t)\right) + \frac{\delta^2 (2^k)}{\delta^2 (2^k, 1)} |x(\delta (2^k))| x(\delta (2^k)) = 0,$$

$$k_0 = 0,$$

(46)

where $r(2^k)$ satisfies (A3), and $Z(2^k) = x(2^k) + (2^k - 1)/2^k x(r(2^k))$.

Here,

$$r(2^k) = 1, \quad p(2^k) = \frac{2^k - 1}{2^k}, \quad q(2^k) = \frac{\delta^2 (2^k)}{\delta^2 (2^k, 1)}.$$

(47)

It is clear that (A1) holds, and $\bar{p}(2^k) = q(2^k)(1 - p(\delta(2^k)))^\beta = 1/\theta^2 (2^k, 1), R(\sigma(2^k)) = 2^{k+1} - 1$.

Let $\xi(2^k) = 2^k$. Noting that $\sum_{k=0}^{\infty} r^{-\alpha}(2^k) = \infty$ implies $\lim_{k \to \infty} \bar{\theta}(2^k, 2^k) = 1$ for $k_T \geq 1$, we get

$$\limsup_{t \to \infty} \int_{t_0}^{t} \left(\xi(s) \bar{p}(s) \theta^\beta(s,T) - \frac{\alpha^r \tau(s) \xi^{\alpha+1}(s)}{K(\alpha + 1)^{\alpha+1} \theta^\alpha(s)} \right) \Delta s = \infty$$

$$= \limsup_{k \to \infty} \sum_{i=0}^{k-1} \left(2^i \frac{\theta^2 (2^i, 1)}{\theta^2 (2^i, 1) - 2^{i+1} - 2^i} \right) 2^i = \infty.$$

(48)

Thus, by Theorem 4, (46) is oscillatory.

Example 2. Consider the neutral dynamic equation

$$\left(\frac{1}{\sigma^\alpha(t)} \left| Z^\Delta(t)^{\alpha-1} Z^\Delta(t) \right|^\Delta \right) + \frac{(1 + \delta(t))^\beta}{\delta^\beta(t) \theta^\beta(T, t_0)} |x(\delta(t))|^{\beta-1} x(\delta(t)) = 0,$$

$$t_0 > 0,$$

where $\beta > \alpha > 0$ are constants, $r(t)$ satisfies (A3), and $Z(t) = x(t) + 1/(t+1)x(r(t))$.

(49)
For (4), we let
\[r(t) = \frac{1}{\sigma^{1+\alpha}(t)}, \quad p(t) = \frac{1}{t+1}, \quad q(t) = \frac{(1 + \delta(t))^\beta}{\Theta(t) \theta^\beta(t, t_0)}. \]
Since
\[\int_{t_0}^\infty \frac{1}{r(s)} \Delta s = \int_{t_0}^\infty \frac{1}{\sigma^{1+\alpha}(s)} \Delta s = \infty, \]
then (A1) holds and \(p(t) = q(t) (1 - p(\delta(t)))^{\frac{\beta}{\alpha}} = 1/\theta^2(t, t_0) \).

Let \(\xi(t) = t \). Noting that \(\int_{t_0}^\infty r^{\frac{1}{\alpha}}(t) \Delta t = \infty \) implies
\[\lim_{t \to \infty} \frac{\theta(t, T)}{\theta(t, t_0)} = 1 \text{ for } T \geq t_0, \]
we have
\[\limsup_{t \to \infty} \int_{t_0}^T \left(\xi(s) \Theta(s) \theta^\beta(s, T) \right) \Delta s \]
\[- \frac{\alpha^\alpha r(s) \left(\xi(s) \right)^{\alpha+1}}{K(\alpha + 1)^{\alpha+1} \beta q(s)} \Delta s \]
\[= \limsup_{t \to \infty} \int_{t_0}^t \left(\Theta(s) \theta^\beta(s, t_0) \right) \frac{\alpha^\alpha}{K(\alpha + 1)^{\alpha+1} \beta q(s)} \Delta s \]
\[\geq \limsup_{t \to \infty} \int_{t_0}^t \left(s - \frac{1}{K^2 q(s)} \right) \Delta s \]
\[\geq \limsup_{t \to \infty} \frac{1}{2} \int_{t_0}^t s \Delta s = \infty. \] (52)

Thus, by Theorem 5, (49) is oscillatory.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

Qiaoshun Yang was supported by The Foundation of Hunan Educational Department (no. 13C753) and The Main Foundation of Jishou University (no. 2012SUJGA23). The work of Lynn Erbe was performed during a visit to Zhongshan (Sun Yat-sen) University in Guangzhou, China. Baoguo Jia was supported by The National Natural Science Foundation of China (no. 11271380); The Guangdong Province Key Laboratory of Computational Science; and The Guangdong Province Natural Science Foundation (S2013010013050).

References
