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11

Rotational Motion
(The Dynamics of a Rigid Body)

11-1 Motion about a Fixed Axis

The motion of the flywheel of an engine and of a pulley on its axle are
examples of an important type of motion of a rigid body, that of the motion
of rotation about a fized axis. Consider the motion of a uniform disk rotat-
ing about a fixed axis passing through its center of gravity C perpendicular
to the face of the disk, as shown in Figure
11-1. The motion of this disk may be de-
v scribed in terms of the motions of each of its
R individual particles, but a better way to
describe the motion is in terms of the angle
through which the disk rotates. Calling
two successive positions of a point in the
plane of the disk P; and Py, we find the
angle of rotation by drawing radial lines
from C to P; and to P,. The angle 8 be-
tween these two lines is the angle through
Fig. 11-1 Angle of rotation of which the disk has rotated; every point in
a disk. the plane of the disk has rotated through the
' same angle 8 in the same interval of time.
The angle 0 is called the angular displacement of the body. Both the
angle 6 and the direction of the axis of rotation must be given in order to
specify properly a rotational displacement.

In spite of the apparent similarity between the specification of a ro-
tational displacement and a linear displacement, an arbitrary rotational
displacement is not a vector quantity, for one cannot add rotational dis-
placements in the same way that linear displacements are added. Let us
imagine that a blackboard eraser has its length initially directed along the
x axis, and that the top face of the eraser is initially perpendicular to the
198
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y axis. If we rotate the eraser first about the y axis by 90°, then about the
z axis by 90°, the eraser lies on its side. If the rotation is first performed
about the z axis, then about the y axis, the eraser will stand on end. The
resultant of these two operations depends on the order in which they are

y
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Original position

z
First rotated 90°about y

First rotated 90° about z Then rofated 90° about y

Fig. 11-2 The result of two finite rotations depends upon the order in which they
are performed.

performed, as shown in Figure 11-2. As we have already seen, the resultant
of two vectors, or of two linear displacements, does not depend on the order
in which the sum is taken. Thus, although angular displacements involve
both direction and magnitude, angular displacements of arbitrary magni-
tude cannot be true vectors.

If the rotational motion is restricted to rotation about a single fixed
axis, it is possible to represent angular displacement as a vector quantity
whose direction is parallel to that axis, in accordance with the right-hand
rule previously given in the discussion of circular motion, for then the



200 ROTATIONAL MOTION §11-2

resultant of two angular displacements does not depend on the order of
rotations.

When the angular displacement of a body is restricted to ¢nfinitesimal
rotations, these infinitesimal rotations may be thought of as vector angular
displacements, for it may be shown that the sum of two infinitesimal rota-
tions does not depend upon the order in which these rotations are performed.
For this reason angular velocity is a vector quantity, for it is the result of
dividing an infinitesimal angular displacement, a vector, by time, a scalar.

11-2 Kinetic Energy of Rotation

A rigid body rotating with uniform angular speed « about a fixed axis
possesses kinetic energy of rotation. Its value may be calculated by sum-
ming up the individual kinetic energies of all the particles of which the
body is composed. A particle of mass m; located at distance r; from the
axis of rotation has kinetic energy given by $myvi, where v; is the speed of
the particle. There will be a similar term for each particle making up the
body, so that we may write, for the total kinetic energy &%,

Ey = Fmp + Fmgd 4 - + Fmaoy,
so that Ep = S Emal.
Each particle of a rigid body rotates with uniform angular speed w. Let us
express the instantaneous linear speed of each particle in terms of the

common angular speed. Remembering that v = wr, we substitute for » in
the above equation to find

Er = %mﬂ%oﬂ + %mﬂng + -+ %mnriw‘z’
or Ep = %wQ(mlr% + m2r% 4+ o 4 mnri)
Let us denote the factor in parentheses by the letter I'; that is,
I = mIT% —|—m2rg 4+ - 4 mnri,
or i I = Zmir?’J .

so that the kinetic energy of the rotating body may be written as

Ep = 1l (11-2)

[

The factor I is called the moment of ineriza of the rotating body with
respect to the particular axis of rotation. The moment of inertia depends
upon the manner in which the mass is distributed with respect to the axis.
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Clearly, the moment of inertia will be greatest when the mass is farthest
from the axis of rotation. In the motion of rotating systems, the moment
of inertia plays a role analogous to that of the mass in translational systems
or in linear motion. Unlike the mass, which is a constant for a particular
body, the moment of inertia depends upon the location and direction of the
axis of rotation as well as upon the way the mass is distributed.

11-3 Moments of Inertia of Simple Bodies
The moment of inertia of a system of particles is given by Equation (11-1) as
I =3 ma} = my + mory + -+ + myra.

Let us calculate the moment of inertia of several simple distributions
of particles.

7
3
SLHEEN

(d)

Fig. 11-3 Moments of inertia of some bodies of simple geometrical shapes. The axis
is perpendicular to the paper and passes through P in (a), (b), and (¢). In (d) the
axis is the geometrical axis of the cylinder.

Consider a small stone of mass m attached to a long weightless string
of length s, whose other end is fixed to a pivot P, as in Figure 11-3(a). Since
there is only one mass to consider, the summation reduces to a single term,
and the moment of inertia is given by I = msZ.

A dumbbell, consisting of two equal masses m separated by a long
weightless bar of length s free to rotate about its center of gravity at the
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point P midway between the two masses, as shown in Figure 11-3(b), has
a moment of inertia given by

7 s\2 n 8)2 ms>
=m{- mi— = —.
2 2 2
A thin ring of mass M and mean radius K which is free to rotate about
its center may be thought of as a collection of segments of mass m;, mg, mg,
and so on, as shown in Figure 11-3(c), each of which is located at a distance

R from the axis of rotation. Applying Equation (11-1) to the ring, con-
sidered as a collection of particles, we find

I =mR? + meR? + mgR* + -+ - + m,R?
= (my + mg +mg + -+ + m,)R?,

and since the summed mass of the segments is equal to the mass M of the
ring, we find, for the moment of inertia of a hollow ring,

I = MR

A hollow cylinder of mass M which is free to rotate about an axis
through its center may be thought of as a stack of rings, as shown in Figure
11-3(d). From Equation (11-1) we see that the moment of inertia of a
collection of matter about a given axis is simply the sum of the moments of
inertia of each of the separate parts about the same axis. Thus the moment
of inertia of a hollow cylinder of radius R about its axis is given by the same
formula as the moment of inertia of a hollow ring, I = M R?, where M
now represents the mass of the eylinder.

A body which is composed of a distribution of matter rather than a
collection of mass points must be imagined as segmented into small pieces
approximating point masses. The moment of inertia is calculated by
summing the quantity mr? over each of the imagined segments. Better
approximations to the true moment of inertia of the body may be made by
imagining the body to be broken up into finer and finer subdivisions. In
the limit of an infinitesimally fine subdivision, the sum is replaced by an
integral, and in the language of the calculus, if dm represents the mass of
one element of the body of volume d, located at a distance r from the axis
of rotation, the moment of inertia of the body is given by

I =fr2 dm. (11-3a)

If the body is a homogeneous one of density p, the mass of a small element
of volume dv is given by

dm = pdv,



§11-3 MOMENTS OF INERTIA OF SIMPLE BODIES 203

and the moment of inertia may be written as
I =jﬁpr2 dv. (11-3b)

For bodies of complicated shape, the evaluation of the integral may be quite
difficult, but for bodies of simple geometric shape, the evaluation of the
integral is well within the reach of an introductory course in the calculus.

Tllustrative Example. Calculate the moment of inertia of a rod of length L
and cross-sectional area 4 about an axis perpendicular to the rod through one end,
as shown in Figure 11-4. Suppose the density of the rod is p; the volume of an

Axis of
rotation
L
A
Fig. 11-4 Determining the moment of Fig. 11-5 Determining the moment
inertia of a rod. of inertia of a solid disk.

element of length dz is given by A dz, and the mass dm of the element is pA dz.
The moment of inertia of this element, located at a distance x from the axis of
rotation, is dI = pAz? dx, and the moment of inertia of the entire rod is obtained
by summing, or integrating, the contributions to the moment of inertia of each
element of the rod. Thus

L L et
I=f dl=f prde=|:pA—:'
0 0 3 _Jo
3

L
pA 3
Remembering that AL is the volume of the rod, the mass of the rod M is given
by pAL. We write for the moment of inertia of the rod about a perpendicular
axis through one end,
_ ML?
3

Hlustrative Example. Calculate the moment of inertia of a flat solid disk
of radius B and mass M about an axis through its center of mass and perpendicular
to the plane of the disk. Let us suppose the disk to be of thickness ¢, and made
of a homogeneous material of density p. To calculate the moment of inertia of
the disk, we imagine the disk to be made up of a set of nested rings, as shown in
Figure 11-5. The surface area of a ring of mean radius r and width dr is given by

I
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27r dr, and the mass dm of such a ring is the product of its volume by its density;
that is, dm = 2xrap dr. The moment of inertia of a ring is its mass times the
square of its radius, and the contribution of the moment of inertia of any one
such ring to the moment of inertia of the disk is

dl = (27r dr ap)r® = 2wardp dr.

The moment of inertia of the entire disk is found by adding the moments of

I=-£ MR I=£MR?
Thin hollow sphere Solid sphere
Y. L { N
 I=+m I= M
A [
Rod pivoted at one end Rod pivoted at its center

Hollow ring or cylinder Solid disk or cylinder
= F-M(R{+R;3) I= 4 MR?

b >| b >

Thin rectangular sheet
( Axis through P)

I=-Ma® I=715-M(az+b2)

Thin rectangular sheet

Fig. 11-6 Moments of inertia of several bodies of simple geometrical shapes.
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inertia of all the rings which are imagined to constitute the disk. Thus

R R R

f dl = f 2mraprd dr = [27rap —:I

0 0 4 lo
R2

TR2p — -
P

I

The factor mR2%ap may be recognized as the volume of the disk times density, or
the mass M of the disk, and we have

_ MR*
2

I

The moment of inertia of a solid disk about a central axis perpendicular to its
face is half that of a hollow ring having the same mass and the same radius.

The moments of inertia of several bodies of simple geometric shapes
are given in Figure 11-6. The moment of inertia is a useful and important
concept in the study of the strength of materials, for it figures prominently
in formulas for the strength of such members as angles and 1 beams.

The units for moment of inertia are those of mass multiplied by the
square of a distance, for example, gm ecm?, or kgm m?, or slugs ft2.

11-4 The Parallel Axis Theorem

A theorem in mechanics which is very useful in the study of rotational mo-
tion 1s called the parallel axis theorem which states that if the moment of
inertia of a body about an axis through its center of mass ts known, the moment
of wnertia of the body about any axis parallel to the first is given by the moment
of wnertia about the axis through the center of mass plus the product of the mass
of the body by the square of the perpendicular distance between the two axes.
In the form of an equation we write

I=1,+ MR? (11-4)

where [, is the moment of inertia of the body about an axis through its
center of mass, M is the mass of the body, and R is the perpendicular dis-
tance from the center of mass to the axis of rotation.

Hlustrative Example. Find the moment of inertia of a hollow ring about an
axis perpendicular to the plane of the ring which passes through a point on the
circumference.

The moment of inertia of a hollow ring of mass M and radius R about an
axis through its center of mass I, perpendicular to the face of the ring has been
shown to be equal to M R%. The moment of inertia I of the ring about a parallel
axis through its circumference is equal to

I=1,+ MR?
MR? + MR?
= 2M R2.
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11-5 Torque and Angular Acceleration

In our discussion of the equilibrium of a rigid body, we found that, when
the vector sum of all the torques acting on a body is zero, the body is in.
equilibrium as far as rotational motion is concerned. If an external torque
acts on the body, it will acquire an angular acceleration a given by

G = Ia, (11-5)

where G is the sum of all the external torques acting on the body about

a fixed axis, and [ is the moment of inertia of the body about the same axis.

Equation (11-5) may be derived from

F Newton’s laws of motion and repre-

sents a special form of Newton’s

8 _F equation applied to rotational motion.

Ft r Suppose that a particle of mass

(3 m 1s constrained to movein a circular

m path by a rigid weightless rod of

length » about a point P, as shown

r in Figure 11-7. An arbitrary force F

can only cause it to move in a tangen-

tial direction, for motion in the ra-

dial direction is not permitted by

the rod. If the angle between the

Fig. 11-7 force F' and the rod is given by 6, we

can resolve the force into a radial

component F, and a tangential component ;. The radial component pro-

duces no torque about the axis through P, hence we need consider only
the effect of the tangential component.

From Newton’s second law we may write, for the tangential com-

ponent,

F = Mday,
where a; is the tangential component of the acceleration of the particle.
We have already seen that the tangential acceleration of a particle moving

in circular motion may be related to its angular acceleration « through
the equation

ag = ar,

and, substituting into the equation above, we find

Ft = Mmar.
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From Figure 11-7, the value of the tangential component of F is given by

Ft = Fsin 4.
Thus
F sin 6 = mar,

and, multiplying both sides of the equation by r, we find

Frsin 0 = mria.

The quantity Fr sin 6 on the left-hand side of the equation is exactly the
torque @ exerted by the force F about the axis through P, while the quantity
mr? is the moment of inertia I of the particle about the same axis. Thus

G = Ia,
and we have verified Equation (11-5) for the simple case of a mass particle
constrained to rotate about a fixed axis. Note that the directions of the

vector G and of the vector a are both perpendicular to the plane of the
paper, pointing outward, in accordance with the right-hand rule.

Fig. 11-8

Suppose we had a system of two particles m; and m; rigidly connected
to each other and to the axis of rotation by a framework of weightless rods,
as shown in Figure 11-8. The two particles and their framework are con-
strained to move in circular motion with a common angular velocity and
common angular acceleration. ILet the external force exerted on the
particle of mass m; be Fy, the external force exerted on the second particle
of mass my be Fy, while the forces exerted by the second particle on the first
is Fo1, and by the first particle on the second is Fy5. From Newton’s third
law these two forces must be equal and opposite to each other. Remem-
bering that neither m; nor my is free to move in the radial direction, we
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apply Newton's second law to the tangential motion of each particle:
(F1)i + (Fa1)0 = my(ay)y,
(F2)i + (F12): = mo(as),.

Let us multiply the first of these equations by r; and the second by 7.
The product (Fy)r; is the torque G, of the force F; about the axis of rota-
tion. Similarly, the produet (Fg;)gr; is the torque Gy of the internal force
Fy1 about the axis of rotation, and we may write

9
Gy + Go1 = myay) gy = myria,

2
G + Gro = my(az) e = Morsa.

Since Fy; and Fys are directed along the same straight line in opposite
directions, and since they have equal magnitudes, the torques Gy and Gy,

are equal and opposite:
Giz = —Gar.

Adding the two equations, we find
Gy + G = (myri + mgrd)a,
or G = la.

Once again we have verified Equation (11-5), that the sum of the external
torques acting on a rigid body is equal to the product of the moment of
Inertia by the angular acceleration. Following the same procedure, the
equation may be shown to be true for an arbitrary number of mass particles
connected by a rigid framework and hence for a continuous rigid body.

The equation G = [a, is the rotational counterpart of the equation
F = Ma. The only assumption which has been introduced in the study of
rotational motion is that the rotating body is a rigid one in which the force
exerted by one part of the body on another lies along the line joining the
two parts. We see also that the rotational equilibrium of a rigid body is a
special case of Equation (11-5). A rigid body is in rotational equilibrium
when its angular acceleration is zero, and hence when the sum of the ex-
ternal torques acting upon it is zero. This is exactly analogous to the trans-
lational equilibrium of a rigid body, which may be considered as a special
case of the equation F = Ma, for a body isin translational equilibrium when
its acceleration is zero, and hence when the sum of the external forces is
Zero.

Tlustrative Example. A disk 30 em in diameter and having a mass of 900 gm
is mounted so that it can rotate about a fixed axis passing through its center, as
in Figure 11-9. A mass of 200 gm hangs from a string which is wound around
the disk. Determine (a) the acceleration of the 200-gm mass, (b) the angular
acceleration of the disk, and (c¢) the tension in the string.
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To solve the problem we first examine the figure to establish a simple sign
convention. The weight will be accelerated in the downward direction by the
force of gravity, and at the same time the
disk will be caused to rotate in a clockwise z
direction. Let us call the clockwise direction
the positive direction of rotation, and the down-
ward direction the positive direction of transla-
tion. From the nature of the force which can be
exerted by a string, the upward force exerted by
the string on the falling mass must be equal in
magnitude to the downward force exerted on
the disk by the string. We shall call the mag-
nitude of this force S and indicate the directions
on the diagram. From the nature of the con-
straints, we note that the only way the mass +
can receive a given downward displacement
ig for a length of string to unroll from the disk. la S
If the radius of the disk is R, the disk must
receive an angular displacement § when the
mass is displaced by a distance s such that

8 = OR. Note that the directions of the angu- m=200gm

lar and linear displacements as well as their

magnitudes are related by this equation, for a ymg
positive value of s implies a positive value of

#. Thus we have v = wR and a = aR, where Fig. 11-9

v and @ are the velocity and acceleration of
the mass, positive downward, and w and a are the angular velocity and angular
acceleration of the disk, positive clockwise. With the relationships of con-
straint and the sign conventions established, we proceed to a formal solution of
the problem.

Let us first consider the forees acting on the 200-gm mass. From Newton’s
second law we can write

mg — S = ma.

Now let us consider the rotation of the disk. The only force acting on the
disk that exerts a torque about the axis of rotation through C is the pull of the
cord S. If R is the radius of the disk and [ is its moment of inertia, we find, on
substituting in Equation (11-5),

G = SR = Iqa,
and, since o = aR,
la
¢ have SR = —-
we hav B

Substituting the value of S into the first equation, we find

1
mg — R ma,
R2
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and, solving for a, we find

a=—"4 7
S . . . . MR?
The moment of inertia of a uniform disk about an axis through C is I = 1
so that a=—9 .
m+ M/2

The numerical values are m = 200 gm, M = 900 gm, B = 15 cm, and ¢ = 980
cm/sec?, and we find

(a) a = 309 om ;
sec?

) a="29 5 radians

R " osee? ]
(c) S = mg — a)

= 200 gm X (980 — 300) =,
sec
so that S = 134,800 dynes.

The tension in the cord is less than the weight of the 200-gm mass hanging from
its end.
11-6 Rotational Energy, Work, and Power

Whenever & rigid body is set into rotation about an axis, work is done by
the torques acting on it to increase its kinetic energy of rotation. Suppose

F —
do 5%
r Fig. 11-10 The work done by a constant
torque G when it acts through an angle
C F dois G dg.

that a force F acts on the rim of a wheel of radius » and rotates the body
through an angle df, as shown in Figure 11-10. The displacement of the
wheel is 7 df, and the work done by this force is

dW = Frdg,
but Fr = G,;
therefore d¥ = G db, (11-6a)
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or the work d)# done by a torque G is equal to the product of the torque
and the angle df through which it acts.

Just as in the case of the work done by a force, the work of an applied
torque is done by the component of the torque parallel to the axis of rota-
tion. In vector notation, if a torque G produces a rotation d6, the work

done is
dy = G.de. (11-6b)

If a constant torque acts on a rigid body which is rotating about a fixed
axis, then, from the principle of conservation of mechanical energy, assum-
ing no loss due to friction, the work done by the torque will produce a
change in the kinetic energy of the body given by

W = Go =3I — 31, (11-7)

in which wy is the final angular speed of the body, w; is the initial angular
speed of the body, and 6 is angular displacement through which the torque
has acted.

Tlustrative Example. The flywheel of a steam engine whose moment of
inertia is 72 kg m? is given an angular speed of 150 rpm in 90 rev, starting from
rest. Determine the torque, assuming it to be constant, which acted on the fly-
wheel.

The angle 6 through which the torque acted is

8 = 90 X 2% = 1807 radians.
The final speed of the flywheel is
rev 1 min _ 27 radians

= 150 — X
d min 60 sec 1rev

radians
- .

I

sec

Applying Equation (11-7) to the solution of the problem,

b

G X 1801 = 3 X 72 kg m? X 2572
sec

G = 15.7 nt m.

If the constant torque @ is applied for a time dt to the rotation about a
fixed axis, then we may find the power # by dividing both sides of Equation
(11-6b) by the time di,

aw d9

P =G (11-8a)
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When the torque is parallel to the axis of rotation,
& = Gu, (11-8b)

for, by definition, the angular velocity is equal to the angular displacement
divided by the time. Thus the power & expended by a constant torque ¢
applied for a time ¢ is equal to the product of the torque by the angular
velocity. Equation (11-8b) is the rotational analogue of the equation
# = Fo.

Ilustrative Example. A 3-hp motor is designed to operate at a speed of
1,750 rpm. What is the torque which the shaft of the motor can exert when
operating at the rated speed?

f .
The power delivered by the motor is £ X 550 il—b , while its angular speed

. 9 . . sec
is 1,750 X 6_7(; M . Substituting in Equation (11-8b), we find
see

EL@ it 1b _ 6 X 1750 X ?3_1(; radians

b
2 sec

(7 = 1.50 b ft.

sec

11-7 Angular Momentum and Angular Impulse

A rigid body rotating with angular velocity w about a fixed axis has an
angular momentum py about this axis given by

po = lo, (11-9)

where [ is the moment of inertia of the body about this axis. Note that
since the angular velocity about a given axis is a vector quantity which lies
parallel to the axis of rotation, in a direction given by the right-hand rule,
and the moment of inertia about this axis is a scalar quantity, the angular
momentum s a vector quantity. To change the angular momentum of a
body, an external torque must be applied to it. Remembering that the
instantaneous angular acceleration is given by the derivative of the angular
velocity with respect to the time, we may write Equation (11-5) as

do d(Iw) ’
dt dt

G=1
Substituting pg for /o from Equation (11-9), we have
d
G = - 11.10
o (po), (11-10)
or the torque acting on a rigid body is equal to the rate of change of the

angular momentum. Although Equation (11-10) was here derived for a
rigid body, it may be shown that a system of particles obeys the same rule;



§11-7 ANGULAR MOMENTUM AND ANGULAR IMPULSE 213

that the rate of change of the total angular momentum of the system of
particles is equal to the sum of the external torques acting on the system
of particles. In the absence of external torques, the angular momentum of a
rigid body must be constant; that is, there is no change in the angular mo-
mentum of a rigid body when the sum of the external torques is zero.
This is known as the principle of conservation of angular momentum, and,
like the principle of conservation of energy and the conservation of linear
momentum, is one of the most important general principles of mechanics.

Just as in the case of linear motion, we may treat impulsive motion in
the case of rotation by examining the incremental form of the equation
relating the torque to the rate of change of angular motion. We may write

G =P,
At

and, multiplying through the equation by the time interval At during which
the torque G is applied, we find the angular impulse AJs to be

AJy = G At = Apy. (11-11)

Thus the change in angular momentum is equal to the angular impulse.

An example of angular-momentum changes due to an angular impulse
is the operation of the clutch in an automobile where a rotating disk con-
nected to the engine engages a second disk connected to the rear wheels.

Since the angular momentum is a vector quantity, a rigid body set
spinning on its axis will maintain its direction of rotation as well as its
angular speed, providing no external torque acts on it.

Examples of the operation of the principle of conservation of angular
momentum are numerous, in everyday life as well as in astronomy and in
atomic and nuclear physics. The force exerted by the sun and by other
celestial bodies on the earth is directed through the center of the earth
(to a good approximation) in accordance with Newton’s law of universal
gravitation. Since the axis of rotation of the earth passes through its center,
these forces exert no torque on the earth about its axis of spin. Conse-
quently, the angular momentum of the earth and the length of the day are
constant.

Consider a stone attached to the end of a string being whirled in a
horizontal circle. If the string is made to wind itself around a vertical stick,
becoming shorter with each revolution, the stone is observed to whirl with
increasing angular speed as the string winds itself up. As the string becomes
shorter, the moment of inertia of the stone about its axis of rotation is
decreased. Since the force exerted on the stone by the string is in the radial
direction, there is no external torque exerted by the string on the stone.
Its angular momentum remains constant, but the decrease in moment of
inertia must be accompanied by an increase in its angular speed.
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A cat manages to fall on its feet, a diver can land in the water headfirst,
an ice skater can execute a pirouette on the toe of one skate, all through the
action of the principle of conservation of angular momentum. The prin-
ciple of conservation of angular momentum explains why the changing
mass distribution of the earth, as the result of volcanoes, tides, and winds,
affects the instantaneous speed of rotation of the earth on its axis. In
atomic and nuclear physics the atom or nucleus is acted upon by external
forces which act through the center of mass of the system. The angular
momentum of an atom or nucleus about its center of mass is constant, and,
in fact, the value of the angular momentum of an atom or a nucleus is one
of the more important pieces of information which can be used to describe
atomic or nuclear systems.

11-8 Rolling Motion

The motion of a wheel which is rolling along the ground, without slipping,
can be considered in one of two ways: either as a rotation of the wheel about
an axis through its center of gravity C and an additional translational
motion of the entire wheel with the same velocity as the center of gravity,

Fig. 11-11  Wheel rolling on the ground.
w is the angular velocity and v is the linear
velocity of the center of gravity.

T

as shown in Figure 11-11, or as a rotation of the wheel about an ¢nstan-
taneous axis through the point of contact O between the wheel and the
ground. A point in the body which is on the instantaneous axis is mo-
mentarily at rest. The instantaneous axis itself moves forward as the
wheel moves forward, but it always remains parallel to itself and to the
axis through the center of gravity. The angular velocity of the wheel
about the instantaneous axis is the same as that about the axis through the
center of gravity.

The general motion of a rigid body may be thought of as made up of
two parts: one a motion of translation of the center of gravity, with the
entire mass of the body acting as though it were concentrated there, and
the other a motion of rotation of the body about an axis through the center
of gravity. The angular velocity and angular acceleration are calculated
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by taking the torques and the moment of inertia about an axis through
the center of gravity. The linear velocity and the linear acceleration of
the center of gravity are then calculated by considering all the forces as
though they acted through the center of gravity, and by applying Newton’s
second law of motion to this case.

Tustrative Example. A disk of radius R and mass M rolls without slipping
down an inclined plane of height 2. Discuss the motion of the disk.

There are three forces acting on the disk, its weight Mg, the normal force N
perpendicular to the plane and passing through the center of the disk, and the

m

O gy

Fig. 11-12 Disk rolling down an inclined plane,

frictional force F acting parallel to the plane at the point of contact O, as illus-
trated in Figure 11-12. The instantaneous axis of rotation passes through point O
and is perpendicular to the plane of the disk.

Let us determine the torques about the instantaneous axis through O. Since
both F and N pass through O, they contribute nothing to the torque about the
axis through O. The moment arm of the force Mg with respect to the axis through
Ois R sin ¢, where ¢ is the angle of the inclined plane. Hence the torque equation
becomes

MgR sin¢ = Ia.

From the parallel axis theorem, the moment of inertia of the disk about an axis
through O is
I=1.+ MR,

where I, is the moment of inertia about the center of gravity. Solving the
torque equation for a, we find
MygR sin ¢
= ——
1
and the acceleration of the center of gravity « is given by
M gR?sin ¢

a=«all
I
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It is interesting to compare the linear acceleration of the center of gravity of a
solid disk of mass M with a hollow ring of the same mass. Note that the analysis
thus far does not specify whether the disk is solid or hollow. For a solid disk we
have seen that I, = M R?, while for a hollow ring of the same mass and radius,
I, = MR? so that for a solid disk I = $M R?, while for a hollow ring I = 2MR2.
Thus for a solid disk

a = 3gsin ¢,
while for a hollow ring
a = jgsin ¢,

so that s solid disk will roll down an incline with greater acceleration than g
hollow disk of the same radius. Note that neither the mass of the disk nor its
radius appears in the expression for the acceleration. Thus all solid disks will
roll down an inclined plane faster than all hollow rings. A similar relationship
may be found for spheres.

It may be observed that the linear acceleration a of the center of gravity is
less than the acceleration of a body which slides down a similar but frictionless
inclined plane.

It is instructive to consider this problem from the energy point of view.
If the disk rolls down the incline without slipping, there is no energy lost in doing
work against the frictional force. If the disk starts at the top of the incline with
zero kinetic energy, its total energy is its potential energy Mgh. At the bottom of
the incline its energy is all kinetic. We may calculate the kinetic energy in two
ways. First, let us consider that the motion of the disk at the bottom of the
incline consists of rotation about the instantaneous point of contact. 'Let us
consider the motion of a solid disk, whose moment of inertia about a point on its
rimis I = $MR2 The kinetic energy is all rotational about the point of contact,
and we have

Mgh = 1lw?
Mgh = 3M R%w?,
. 4gh
w?=—
3R?

4gh
W= /—
3R2

where  is the angular speed of the disk at the bottom of the incline.

Now let us consider the rolling disk, alternatively, as having its energy made
up of two parts. The motion may be thought of as a translational motion of the
center of gravity with kinetic energy +Mv? and a rotational motion about the
center of gravity with kinetic energy /w2 The moment of inertia of a solid disk
about its center of gravity is I = M RE2 The total kinetic energy of the disk at
the bottom of the incline is therefore given by

Ek = '12‘M1)2 + %IwZ,

and, remembering that the linear velocity of the center of gravity is related to the
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angular velocity of the disk by
v =wk,
the kinetic energy becomes

Er = tMw?R* + 1 X 1MR? X w?,
Er = SMR%W?,
exactly as before.

11-9 Rotational Motion and Linear Motion

In Section 6-6 we have already seen that many of the equations developed
for linear motion could be transeribed to the problem of angular motion
simply by replacing the symbols used to describe linear motion by a set of
symbols appropriate to angular motion. From the present chapter it is
possible to display some additional analogues. Thus in rotational motion
the moment of inertia I plays a role analogous to that of the mass M in
linear motion. The angular momentum Iw plays a role analogous to that
of the linear momentum Mv. The torque G and the force F play analogous
roles. It isinstructive to transcribe a number of the equations which have
been thus far developed to display the similarity of the equations frequently
used in mechanics for both linear and angular motions, as in Table 11-1.
The formulas in the table have been somewhat simplified over the formulas
developed in the text. In particular, the formulas are all indicated as
relating scalar quantities, and the displacement and velocity are assumed
parallel to the force in the equations for work and power.

Although there are analogous quantities used to describe linear motion
and rotational motion, it must be recognized that these quantities represent
quite different things. The mass is a constant quantity and is independent
of the position of any coordinate frame, but this is distinctly not true of the
moment of inertia. The moment of inertia is a different number for every
different axis of rotation, whether the difference is due to position or to
orientation. Similarly, it is difficult to conceive just how one might trans-
port mechanical energy in the form of linear kinetic energy in a package,
yet every engine has a flywheel which carries rotational kinetic energy.
The behavior of a system having linear momentum in response to an
applied force is very similar to the behavior of the system at rest to the same
applied force. We shall see in the next section that the way a system having
angular momentum responds to an applied torque is far more complex and
more interesting.

11-10 The Gyroscope

We have stressed the fact that the angular momentum of a rigid body about
an axis remains constant unless acted on by an external torque. In the
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TABLE 11-1
Linear Motion Angular Motion
z =17 6= ot
v=u -+ at w=w; + al
z = ut + Lat? 0 = wit + Fat?
v? = u? + 2azx w? = w? + 208
. u—+v __ wi tw
v = ="
2 2
F = ma 7y = la
W = Fs W = G0
p = Fy f = Gw
Ek = lZWUZ (fk = %Iwz
P = my ps = lw
P dp _ dns
dt dt
J =Ap Jo = Apg
x. corresponds to B
V. o v e e e e e e e w
G. . . e Y o'
F. e e e R ¢
M. . ... ... R |
Do e ... . ... pe
J. Ja

previous sections we considered the change in angular momentum about
the same axis as the original direction of the angular momentum. The
direction of the torque vector was parallel to the direction of the angular
momentum vector, and the change in the angular momentum vector was
always an increase or a decrease in its length. Let us consider now the
implications of a change in the direction of the angular-momentum vector.

Suppose that a bicycle wheel is mounted on an axle which protrudes
beyond the end of the wheel, as shown in Figure 11-13 and that it is
spinning in such a direction that its angular-momentum vector is nearly
in the direction of the positive z axis. Let us rotate the axle through a
positive angle A¢ in the z-y plane, as shown in Figure 11-14. Since the rota-
tion is in a direction perpendicular to the direction of spin, the angular
speed w with which the wheel is spinning on its axle will not be altered, and
the angular-momentum vector after the wheel has been rotated will be of
the same length as before but will now point in a different direction. The
change in the angular momentum Apg will be a vector directed from the
head of the initial angular-momentum vector to the head of the final angu-
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lar-momentum vector. Remembering that the torque is equal to the rate
of change of the angular momentum,

dpo
G = "
dt
WA
Z

IUJ=P9
—_—

Fig. 11-13 Gyroscope.

which, for small increments in time A{, may be written as

A
G =P,
At
We see that the torque required to produce the rotation A9 must be parallel

to the change in the angular momentum and must be in the y direction.

s y

(P 9) final

Fig. 11-14

(P 9) initial

In other words, to produce a rotation of the bicycle wheel about the z axis
requires that a torque be applied about the y axis. Such a torque would
produce a rotation about the y axis ¢f the body were not spinning. If the
rotation A@ is produced in a small time interval Af, at a uniform rate Q
(capital omega), then

A0 = Q(AY).
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Referring again to Figure 11-14, for small angular displacement,
Apg
Do

Al =

’

and, substituting from the above equation for A, we have
pof (At) = Apy,

Aps
Q=—=0q
Do At ’
IwQ = G. (11-124)

Thus the applied torque @ is equal in magnitude to the product of the spin
angular momentum by the angular speed with which the axis of rotation is
itself rotated. A rotation of the spin axis is called precession. In this
example the direction of spin is parallel to the x axis, the direction of the
rotation of the axis is in the z direction, while the direction of the torque
which must be applied to produce the rotation is in the y direction. We
might write this in terms of the vector product

as G = Qxpy,

or G =10x%w, (11-12b)

showing that the torque vector is perpendicular to both the spin vector o
and the precession vector Q.

Let us re-examine the problem by considering the effect of a torque on
the bicycle wheel. Suppose that the left end of the axle of the bicycle wheel
is supported by a string which is hung from the ceiling, as shown in Figure
11-13. Once the wheel has been set in motion, spinning about its axle,
the forces acting on it are its weight W, acting through the center of gravity,
and the tension in the string S. The torque produced by these forces about
a horizontal axis through A perpendicular to the plane of the figure (in
the positive y direction) is of magnitude Ws, where s is the distance from
the center of gravity to A. This torque will produce a change of angular -
momentum per unit time in accordance with Equation (11-10). The vector
representing the change of angular momentum per unit time will be parallel
to the torque vector and hence in the positive y direction, directed into the
plane of the paper.

Suppose we consider a very small time interval At during which this
torque acts. The wheel must receive an increment of angular momentum
Apg = G(At), and in Figure 11-14 we add this increment of angular mo-
mentum to the initial angular momentum to find the final angular momen-
tum of the wheel. We see that in the time At the final angular-momentum
vector has been rotated by an angle A8 about the vertical or z axis. The
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average angular speed with which the axis has been rotated € = Af/AL is
the speed of precession. The forces S and W continue to act, and the
rotational motion of the axle of the bicycle wheel will continue in a hori-
zontal plane. Note that our first impression would be to assert that the
wheel would tend to be twisted by the forces W and S so that the axle
should tend to hang vertically. The rotating wheel is sometimes called a
gyroscope, and the motion analyzed above is called gyroscopic motion.

Any rotating body can be considered as a gyroscope. When a torque
acts to change the direction of spin, precessional motion will occur. The
earth’s axis of rotation precesses in the heavens in a circle of 23.5° radius
with a period of 26,000 years. The torques which cause the axis of rotation
to precess are due primarily to the gravitational attraction of the sun and
moon on the earth’s equatorial bulge. The motion of a top whose axis of
spin 1s inclined to the vertical is a common example of precessional motion.
When the top is not spinning, it is in unstable equilibrium when resting
on its point. When the top is spinning, its most stable position is one in
which its center of gravity is directly above the point of support, and when
a spinning top is thrown, it climbs to this position in apparent disregard for
equilibrium conditions; this is owing to the friction between the peg of the
top and the surface. The propeller of an airplane acts like a gyroscope, and
when the airplane turns the gyroscope will precess, unless the airplane has
its propellers in pairs which rotate in opposite directions, so that the total
angular momentum due to spin is zero.

Whenever any piece of rotating machinery is mounted on a moving
platform, such as a ship or an airplane, the bearings of that machine must
exert a torque on the shaft of the machine so that it will precess in the
direction in which the platform is turning. The greater the rotational
speed and the spin angular momentum, the greater is the torque required,
according to Equations (11-12). For this reason, motors mounted on board
ships or aircraft must have specially designed bearings, capable of with-
standing far greater loads than would be required of the same appliance if
the machine were used on a stationary platform.

If a gyroscope is mounted on earth so that its axis is parallel to the
axis of rotation of the earth, that is, in a north-south direction, the rotating
earth does not change the direction of the axis of rotation of the gyroscope
in space, and there is no tendency for the gyroscope to precess. If the
gyroscope is mounted with its axis in some other direction, the rotation of
the earth will cause the gyroscope to precess, so that the direction of the
true north can be recognized from the behavior of a rotating gyroscope.
This is the basis of the gyrocompass.

Gyroscopic motion is the basis of the behavior of the bicycle. If a
rider leans to the left, the front wheel of a bicycle will turn to the left as
though to catch the rider in his fall. The discussion based on Figure 11-13
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1s suitable to a discussion of the behavior of a bieycle advancing in the —y
direction in which the rider leans to his left. From Figure 11-14 we see
that the front wheel will turn into the rider’s fall. A novice learning to ride
must learn to let the bicycle do his thinking for him, while the skilled eyclist
can ride without touching the handle bars by shifting his weight from side
to side.

Problems

11-1. The flywheel of a gasoline engine is built in the form of a uniform disk
of radius 1 ft and weighs 75 lb. The flywheel is rotating with an angular speed
of 3,300 rpm. Determine the kinetic energy of the flywheel.

11-2. A small copper disk of 15 em radius and 350 gm mass is rotating with
an angular speed of 12 radians/sec about an axis through its center. Determine
(a) the kinetic energy of the disk and (b) its angular momentum.

11-3. A pulley 6 in. in diameter is mounted so that it can rotate about a
fixed axis through its center. The pulley weighs 12 Ib and has a moment of inertia
of 0.02 slug ft2. A constant force of 3 Ib is applied to the rim of the pulley by
means of a cord wrapped around it. Determine (a) the angular acceleration of
the pulley and (b) the angular speed it has at the end of 10 sec, assuming that the
pulley was initially at rest.

11-4. Find the moment of inertia of a dumbbell consisting of two spheres of
radius 10 em connected by a cylindrical rod 1 em in radius and 50 em long about
an axis through the center of gravity perpendicular to the rod. The dumbhell
is made of iron of density 7.8 gm/cm?.

11-5. Prove the parallel axis theorem for the case of two equal point masses.

11-6. A wheel in the form of a uniform disk of mass 900 gm and radius 8 cm is
mounted so that it can rotate about a fixed horizontal axis passing through its
center. A cord is wrapped around the circumference of the wheel, and a mass of
50 gm is attached to its free end. (a) Determine the angular acceleration of the
wheel when it is released. (b) Determine the linear acceleration of the 50-gm
mass. (c¢) Determine the tension in the cord. (d) Determine the angular velocity
of the wheel at the end of 5 sec. (e) Determine the kinetic energy of the entire
system when the mass has fallen through a distance of 10 cm. '

11-7. A wheel having a radius of 6 ecm is mounted so that it can rotate about
a fixed horizontal axis passing through its center. A cord wrapped around the
circumference of the wheel has a mass of 250 gm attached to its free end. When
allowed to fall, the mass takes 5 sec to fall a distance of 100 em. Determine (a)
the angular acceleration of the wheel and (b) its moment of inertia.

11-8. A rod 50 em long and weighing 5 Ib is pivoted at one end. The rod is
raised to a horizontal position and released. (a) What is the angular velocity
of the rod when it is at an angle of 45° with the horizontal. (b) What is the
angular acceleration of the rod at the same deflection?

11-9. A solid cylinder 2 ft in diameter and weighing 64 1b starts at the top of
a rough plane 24 ft long and inclined at an angle of 30° with the horizontal and
rolls down without slipping. (a) How much energy did the cylinder have at the
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top of the hill? (b) How much energy will it have at the bottom of the hill? (c)
Determine its angular velocity at the bottom of the hill.

11-10. Show that Kepler’s law of areas (Section 6-14) is consistent with the
law of conservation of angular momentum, for circular orbits.

11-11. A steel hoop rolls without sliding down a plane inclined at an angle
of 30° with the horizontal. The mass of the hoop is 600 gm, and its radius is
8 em. Determine (a) its moment of inertia about its instantaneous axis of
rotation, (b) its angular acceleration, (¢) the force of friction between the hoop
and the plane, and (d) the linear veloecity of the center of the hoop when the hoop
has rolled 1 m down the incline.

11-12. A gasoline engine develops 75 hp when turning at 3,300 rpm. Deter-
mine the torque delivered by this engine to the drive shaft.

11-13. A solid spherical ball of radius 1 ft is rolled toward a curb of height
4 in. What must be the speed of the center of gravity of the ball if the ball is to
jump the curb?

11-14. A boy weighing 100 1b stands at the center of a brass turntable 6 in.
thick and 10 ft in diameter. The turntable is rotated with an angular speed of
1 radian/sec. The boy walks out along a radius to a point 5 ft from the center of
the turntable. What is the angular speed with which the disk is now rotating?
The density of brass is 8.6 gm/cm?.

11-15. A solid disk having a mass of 1 kg and a radius of 2 em is wrapped with
string. The free end of the string is supported from a point in the ceiling, and the
disk is released. Determine the angular speed of the disk when the center of
gravity of the disk has fallen 1 m.

11-16. A top having a moment of inertia of 5,000 gm cm? is spinning at a
speed of 25 rev/sec at an angle of 30° with the vertical. The top has a mass
of 500 gm, and its center of gravity is 4 em from its point. The spin is counter-
clockwise, as seen from above. (a) What is the angular velocity of precession of
the top axis? (b) As seen from above, is it clockwise or counterclockwise?

11-17. A unicycle has a wheel 36 in. in diameter and a mass of 1 slug. Neg-
lect the weight of the seat and frame. A man weighing 150 b sits on the unicycle,
so that his center of gravity is 4 ft from the bottom of the wheel, and pedals the
unicycle until it is moving with a speed of 20 ft/sec. The man leans to his right
8o that man and cycle make an angle of 1° with the vertical. What is now the
direction and angular speed of precession of the axle of the unicycle?

11-18. A satellite of mass 10 kg is launched at the equator due north with a
velocity of 10® m/hr. The satellite is to fly along the surface of a sphere of radius
6.5 X 10° m concentric with the earth. (The earth’s radius is approximately
6.4 X 10°m.) When the satellite reaches 37° north latitude, what are the
components of its velocity with respect to the earth (a) in the north-south direc-
tion, and (b) in the east-west direction? Assume that the satellite experiences
no drag. Take into account the necessity to conserve angular momentum,

11-19. When a car is going forward, the engine and flywheel are rotating
counterclockwise as viewed by the driver. In which direction will the car tend
to go if the front wheels are suddenly lifted by a bump in the road?

11-20. Discuss the motion of an airplane whose propellers suddenly stop
rotating from the point of view of the conservation of angular momentum.
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11-21. A man sits on a piano stool holding a spinning bicycle wheel in his
hands. The axis of the bicycle wheel is directed vertically. He turns the wheel
end for end while remaining seated, and finds that he begins to rotate in the same
direction that the wheel was spinning originally. Why? What happens if he
once again reverses the wheel?

11-22. A man sits on a piano stool which is at rest. The man and stool have
a weight of 200 1b, and may be approximated by a vertical eylinder of radius 1 ft.
The man catches a 5-0z baseball moving horizontally with a speed of 80 ft/sec
at a distance of 1 {ft from the axis of rotation of the stool. (a) What is the angu-
lar momentum of the baseball with respect to the axis of the stool at the instant
it is caught? (b) What is the angular velocity of the system consisting of the
man, stool, and ball after the ball is caught?

11-23. Show that the moment of inertia of a thin rectangular sheet of sides
a and bis I = % Ma? when the axis of rotation lies in the plane of the sheet,
through the center of mass, and is parallel to the side b, as in Figure 11-6. [HINT:
Start with the expression for the moment of inertia of a rod and integrate.)

11-24. Find the moment of inertia of a thin flat sheet cut in the form of the
quadrant of a circle of radius R with respect to an axis normal to the plane of the
quadrant and passing through the center of the circle. '

11-25. A 2-kg mass is suspended from a string which is wound over the axle
of a wheel. TItis observed that the mass has a downward acceleration of 2 m/sec?.
The radius of the axle is 0.05 m and the radius of the wheel is 1.5 m. Attt =0
the system is at rest. (a) What is the angular acceleration of the wheel? (b)
What is the angular velocity of the wheel at £ = 5 sec? (¢) What is the radial
acceleration of a point on the rim of the wheel at ¢ = 5 sec? (d) What is the
moment of inertia of the wheel and axle?

11-26. A solid sphere of radius 10 cm and mass 250 gms rolls without slipping
down an inclined plane which makes an angle of 37° with the horizontal. (a)
What is the linear acceleration of the center of mass of the sphere parallel to the
plane? (b) What is the angular acceleration of the sphere about an axis through
its center of mass? (c) What is the angular velocity of the sphere about an axis
through its center of mags when the sphere has rolled a distance of 5 m down the
incline (measured along the incline)?

11-27. An electric motor which turns at a speed of 3600 rpm has an armature
of mass 10 kg. The armature may be approximated by a solid cylinder of radius
5 cm. The motor is mounted on an airplane which turns to the right through a
90° arc in 15 sec. Assume that the airplane turns without banking. What is
the magnitude and direction of the torque exerted on the spinning armature by
the bearings if (a) the axis of the motor is mounted vertically? (b) the motor
is mounted horizontally with its axis parallel to the wings? (c) the motor is
horizontal with its axis perpendicular to the wings?
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