1988

Extremely large and slowly processed precursors to the *Euglena* light-harvesting chlorophyll a/b binding proteins of photosystem II

Arnon Rikin
University of Nebraska - Lincoln

Steven D. Schwartzbach
University of Nebraska at Lincoln

Follow this and additional works at: http://digitalcommons.unl.edu/bioscifacpub
Part of the *Life Sciences Commons*
Extremely large and slowly processed precursors to the *Euglena* light-harvesting chlorophyll a/b binding proteins of photosystem II
(chloroplast biogenesis/photosynthesis/nuclear-coded chloroplast proteins)

ARNON RIKIN AND STEVEN D. SCHWARTZBACH
School of Biological Sciences, University of Nebraska, Lincoln, NE 68588

Communicated by Myron Brakke, April 1, 1988 (received for review January 21, 1988)

ABSTRACT Antibody to the *Euglena* light-harvesting chlorophyll a/b binding protein of photosystem II (LHCPII) immunoprecipitated 207-, 161-, 122-, and 110-kDa proteins from total *Euglena* proteins pulse-labeled for 10 min with [35S]sulfate. The 25.6- and 27.2-kDa LHCPII were barely detectable in the immunoprecipitate. During a 40-min chase with unlabeled sulfate, the amount of radioactivity in the high molecular mass proteins decreased, and the amount of radioactivity in the 25.6- and 27.2-kDa LHCPII increased with kinetics consistent with a precursor–product relationship. The half-life of the high molecular mass proteins was ≈20 min. The major proteins immunoprecipitated from a nuclease-treated rabbit reticulocyte cell-free translation system programmed with *Euglena* whole cell or poly(A) + RNA had molecular masses corresponding to the molecular masses of the proteins immunoprecipitated from the pulse-labeled in vivo translation products. RNAs of 6.6 and 8.3 kilobases were the only *Euglena* whole cell and poly(A) + RNAs that hybridized to a 0.7-kilobase EcoRI–BamHI fragment of plasmid pAB165, which contains a portion of the coding sequence for Arabidopsis LHCPII. RNAs of this size are more than sufficient to code for proteins of 207 kDa. Taken together, these findings demonstrate that the LHCPIIIs of *Euglena* are initially synthesized as slowly processed precursors with molecular masses of 207, 161, 122, and 110 kDa.

Chloroplast biogenesis requires the coordinated expression of the nuclear and chloroplast genomes. Nuclear-coded chloroplast-localized proteins are synthesized on cytoplasmic ribosomes as higher molecular mass precursors (reviewed in ref. 1). These precursors contain an amino-terminal extension called the transit sequence, which can range in size from 3.5 to 15 kDa (1). The transit sequence enables the precursor to bind to specific receptors on the chloroplast envelope (2), to be transported through the envelope into the chloroplast stroma, and to be localized within the proper intrachloroplast compartment (3). The transit sequence is proteolytically removed by a specific chloroplast protease (4) in what appears to be at least a two-step process (5, 6). Although transit peptides do not have a common amino acid sequence, specific conserved domains required for uptake and processing have been identified (1, 7).

The light-harvesting chlorophyll a/b binding proteins of photosystem II (LHCPIIIs) are the major protein component of the light-harvesting chlorophyll protein complex. They are nuclear-coded proteins that are synthesized as precursors (pLHCPIIIs) about 5 kDa larger than the mature protein (reviewed in refs. 1 and 7–10). The amino-terminal portion of the LHCPII is thought to be responsible for grana stacking (11). In both green algae and plants, the LHCPIIIs represent a heterogeneous mixture of immunologically related proteins ranging in size from 20 to 30 kDa (12, 13).

The identified nuclear genes coding for LHCPII comprise a multigene family containing from 3 to 20 members depending on the species studied (9, 14–17). Based on nucleotide sequences and derived amino acid sequences, the LHCPII genes can be divided into two lineages (type I and type II LHCPII) (17, 18). At the level of the mature protein, the greatest amino acid sequence divergence between type I and type II LHCPIIIs is seen in the amino-terminal portion of the protein (8, 17), the region thought to be involved in grana stacking (11).

The members of both type I and type II LHCPII gene families are expressed (17, 18). It is not known if the proteins coded by the different members of the LHCPII gene family have different functions. The relative level of expression of members of the maize LHCPII multigene family does differ between bundle sheath and mesophyll cells, suggesting that functional differences may exist among this family of related proteins (13).

Euglena is a unicellular alga, which has been extensively utilized for studies of chloroplast biochemistry and molecular biology (reviewed in ref. 19). The chloroplast of *Euglena* is surrounded by a triple rather than a double membrane as is found in most other eukaryotic photosynthetic organisms (20). *Euglena* contains less than one-half of the amount of chlorophyll b relative to chlorophyll a as compared to higher plants (21). The thylakoids of *Euglena* differ from those of higher plants in that they are unstacked (22, 23). The three LHCPIIIs of *Euglena* have molecular masses of 26–28 kDa (24). Immunological studies suggest that the major LHCPII of *Euglena* is only distantly related to the LHCPII of spinach and *Chlamydomonas* (24). The LHCPIIIs of *Euglena* are phosphorylated (25) as found in higher plants (26) and, although distinct grana stacks are missing, mobile and immobile LHCPIIIs are present at various stages of the cell cycle (27).

Exposure of dark-grown nondividing *Euglena* to light induces the transformation of the proplastid into a photosynthetically competent chloroplast (reviewed in ref. 19). A comparison by two-dimensional gel electrophoresis detected major light-induced differences in the *in vivo* translation products within the first 0.5 hr of light exposure (28). At all times after light exposure, there were no detectable differences in the major *in vitro* translation products, indicating that translation rather than transcription is the major site at which light controls chloroplast biogenesis in *Euglena* (28, 29). During a study of LHCPII photoinduction in *Euglena*, a monospecific antibody to *Euglena* LHCPII immunoprecipitated from pulse-labeled cells 207-, 161-, 122-, and 110-kDa proteins in addition to the 25.6- and 27.2-kDa LHCPIIIs. In the present paper, we demonstrate by *in vivo* pulse-chase

Abbreviations: LHCPII, light-harvesting chlorophyll a/b binding protein of photosystem II; pLHCPII, the precursor of the light-harvesting chlorophyll a/b binding protein of photosystem II.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.
experiments and by cell-free translation of Euglena mRNA that the four immunoprecipitated high molecular mass proteins are slowly processed precursors to Euglena LHCP II. Gel blot analysis shows that a major 6.6-kilobase (kb) and a minor 8.3-kb Euglena poly(A)+ RNA are the only detectable RNAs homologous to an Arabidopsis LHCP II gene probe, indicating that Euglena contains LHCP II mRNAs of sufficient size to code for pLHCP IIIs of 110–207 kDa. A brief report of this work has appeared (30).

MATERIALS AND METHODS

Cell Growth and Labeling Conditions. Euglena gracilis klebs variety bacillaris Cori maintained in our laboratory in the dark for many years was used throughout this work. Conditions for cell growth, preparation of resting cells, and light-induced chloroplast development were as described (31). Cells to be labeled with [35S]sulfate were grown on low sulfate medium (28).

Cells (5 ml) were pulse-labeled with [35S]sulfate (20 μCi/ml, specific activity = 200 nCi/μmol; IC = 37 GBq). The specific activity of the carrier-free H2 35SO4 (ICN) was adjusted with MgSO4. For pulse-chase experiments, cells were labeled with carrier-free [35S]sulfate (160 μCi/ml), and the chase was initiated by the addition of MgSO4 to a final concentration of 0.1 M. The addition of MgSO4 immediately inhibited any further incorporation of [35S]sulfate into trichloroacetic-acid-precipitable material. Cells were harvested by centrifugation at 2000 x g for 2 min, and total protein was extracted by resuspending the pellet in 60 mM Tris-HCl, pH 8.6/2% (wt/vol) NaDodSO4 and boiling for 2 min.

RNA Isolation and Cell-Free Translation. Whole cell Euglena RNA was extracted (29), and poly(A)+ RNA was isolated as described (32). RNA was translated in a nuclease-treated rabbit reticulocyte lysate (Promega Biotech, Madison, WI) as recommended by the manufacturer. Reactions were terminated by addition of NaDodSO4 to a final concentration of 2% (wt/vol) and boiling for 1 min.

Immunoprecipitation. Cell-free extracts and in vitro translation mixtures in 100 μl of 60 mM Tris-HCl, pH 8.6/2.5% (wt/vol) NaDodSO4 were mixed with 1350 μl of RIPA buffer (1.0% Nonidet P-40/1.0% sodium deoxycholate/0.1% NaDodSO4/0.05 M NaCl/0.05 M Tris, pH 7.0). Samples were preadsorbed with 30 μl of protein A-Sepharose (Sigma) for 20 min at 4°C and then centrifuged for 2 min at 10,000 × g. The pellet was discarded, and 2 μl of polyclonal monospecific antibody against Euglena LHCP II (24) was added to the supernatant. After incubation for 30 min at 4°C, 30 μl of protein A-Sepharose was added, and the mixture was incubated for 30 min at 4°C with shaking. The antigen–antibody–protein A-Sepharose complex was recovered by centrifugation for 2 min at 10,000 × g. The pellet was washed four times with RIPA buffer containing 1 M NaCl and twice with RIPA buffer. The antigen–antibody complexes in the final pellet were eluted with 30 μl of 180 mM Tris-HCl, pH 6.8/30% (vol/vol) glycerol, 6% (wt/vol) NaDodSO4/5% 2-mercaptoethanol/0.003% bromophenol blue for 15 min at 37°C. The protein A-Sepharose was removed by centrifugation for 2 min at 10,000 × g, and the supernatant was transferred to a new test tube and was heated for 2 min at 95°C prior to electrophoresis.

Electrophoretic Analysis of Immunoprecipitated Protein and Peptide Mapping. The immunoprecipitated proteins were separated by NaDodSO4/polyacrylamide gel electrophoresis (33). Gels were impregnated with 1.0 M sodium salicylate (34), dried, and exposed to preflashed Kodak X-Omat AR film at −70°C (35). The autoradiograms were scanned with a Visage BT image analyzer (Bio Image, Ann Arbor, MI). For peptide mapping, proteins were excised from gels and subjected to partial proteolysis in situ using Staphylococcus aureus V8 protease (36).

RNA Blot Analysis. RNA was denatured and size fractionated on 0.8% agarose/2.2 M formaldehyde gels (37). RNA was electrophoretically transferred at 4°C to a nylon membrane (Zeta-Probe; Bio-Rad) by using a buffer containing 40 mM Tris, pH 7.4/1 mM EDTA/20 mM sodium acetate. Electrotransfer was for 30 min at 10 V and 3.5 hr at 40 V.

The plasmid pAB165 (9) was isolated (37), and a 0.7-kb EcoRI-BamHI fragment containing a portion of the coding sequence of an Arabidopsis LHCP II gene was purified on 0.8% low melting temperature agarose (37). The DNA fragment was labeled with [32P]dCTP by using a random-primed DNA labeling kit as described by the manufacturer (Boehringer Mannheim) to a specific activity of 1.36 × 106 dpm/μg of DNA. Unincorporated nucleotides were removed by chromatography on a Sephadex G-75 spin column (37). Prehybridization and hybridization were performed in 50% (vol/vol) formamide at 42°C in 0.9 M NaCl/50 mM sodium phosphate, pH 7.7/5 mM EDTA/5× Denhardt’s solution (1× Denhardt’s = 0.02% polyvinylpyrrolidone/0.02% Ficoll/0.02% bovine serum albumin)/0.1% (wt/vol) NaDodSO4 (37). The two final washes were for 20 min at 50°C with 15 mM NaCl/1.5 mM sodium citrate, pH 7.0/0.15% (wt/vol) NaDodSO4. Autoradiography was done at −70°C using Kodak X-Omat AR film and two intensifying screens.

RESULTS

Identification of pLHCP II by Pulse–Chase Labeling. When total cellular protein extracted from cells pulse-labeled for 10 min with [35S]sulfate was immunoprecipitated with monospecific antibody to Euglena LHCP II, four proteins with molecular masses of 207, 161, 122, and 110 kDa were the major proteins immunoprecipitated (Fig. 1). Proteins in the molecular mass range of the mature Euglena LHCP IIIs, 26–28 kDa, could barely be detected in the immunoprecipitate (Fig. 1). The high molecular mass proteins were not immunoprecipitated by nonimmune serum (Fig. 1) or by serum

![Fig. 1. Identification of a group of extremely high molecular mass Euglena pLHCP IIIs. Dark-grown resting cells were exposed to light for 20 hr and were pulse-labeled with [35S]sulfate for 10 min. At the end of the pulse, unlabeled sulfate was added to a final concentration of 0.1 M, which prevented the further incorporation of [35S]sulfate into protein. At the end of the pulse and at various times during the chase, proteins were immunoprecipitated from equal portions of the culture with a LHCP II-specific antibody. The immunoprecipitates were analyzed on an 8–12% NaDodSO4/polyacrylamide gradient gel, and the proteins were visualized by fluorography. Im-munoprecipitate obtained with nonimmune serum.](image-url)
prepared against Euglena fumarase (data not shown), indicating that they are specific immunoprecipitation products.

Immunoblots of unlabeled Euglena protein and on immunoblots prepared using unlabeled immunoprecipitated proteins, the Euglena LHCPII antibody only detected two polypeptides with molecular masses of 25.6 and 27.2 kDa corresponding to the mature LHCPIIs (data not shown). Thus, the antibody used is highly specific, and the higher molecular mass proteins that are immunoprecipitated do not appear to be LHCPII aggregates produced by the immunoprecipitation procedure.

The addition of unlabeled sulfate at the end of a 10-min pulse with [35S]sulfate prevented all further incorporation of [35S]sulfate into trichloroacetic acid-precipitable material. During a 40-min chase with unlabeled sulfate, the amounts of the four high molecular mass proteins immunoprecipitated with anti-LHCPII decreased, and the amounts of the two LHCPIIs immunoprecipitated increased with kinetics that were consistent with a precursor–product relationship (Fig. 1). Approximately 30–40% of the radioactivity present in all four high molecular mass proteins at the end of the 10-min pulse was chased into the 25.6- and 27.2-kDa LHCPIIs (Fig. 1). Radioactivity was not chased from the 207-kDa protein into the 161-, 122-, and 110-kDa proteins, indicating that these proteins are not intermediates in the LHCPII maturation process. The high molecular mass proteins disappeared with a half-life of ~20 min. By comparison, maximal levels of the mitochondrial enzyme fumarase are immunoprecipitated from Euglena after a 10-min pulse, the precursor is undetectable, and the amount of the mature protein does not increase during a 40-min chase (data not shown). Based on the results of these pulse–chase experiments, the 207-, 161-, 122-, and 110-kDa proteins appear to be extremely large and slowly processed pLHCPIIs.

Identification of pLHCPII by in Vitro Translation. A direct determination of the size of the primary translation product of the mRNA for Euglena pLHCPII was obtained by translation of poly(A)+ RNAs in a rabbit reticulocyte lysate. The major protein immunoprecipitated from cell-free translation products by anti-LHCPII antibody had a similar mobility to the major protein (207 kDa) immunoprecipitated from total cellular protein labeled in vivo for 30 min (Fig. 2A) or 10 min (Fig. 2B) with [35S]sulfate. Lesser amounts of other proteins were synthesized in vivo, and a protein of similar mobility was seen among the immunoprecipitated in vitro translation products. A series of proteins with molecular masses smaller than 110 kDa were immunoprecipitated from the in vitro translation products. These proteins are not seen in the immunoprecipitates of in vivo labeled protein, and they most likely represent prematurely terminated translation products. The in vitro translation products having molecular masses of 30–35 kDa, the molecular mass of other pLHCPIIs identified (1), were not found. Nonimmune serum did not immunoprecipitate any protein from the cell-free translation product (Fig. 2C). These results have been confirmed in over 10 cell-free translation experiments with both whole cell and poly(A)+ RNA samples. The in vitro translation experiments are consistent with the results of the pulse–chase experiments in identifying the major Euglena pLHCPII as a 207-kDa protein.

On immunoblots of the size of Euglena LHCPII mRNA, the size of Euglena LHCPII mRNA was determined by hybridization of a gel blot of size-fractionated Euglena RNA with a heterologous probe consisting of a 0.7-kb EcoRI–BamHI fragment containing a portion of the coding sequence of an Arabidopsis LHCPII gene. Euglena poly(A)+ RNAs of 6.6 and 8.3 kb were the only Euglena RNAs that hybridized to the heterologous probe (Fig. 3). A 1.2-kb RNA was the only sweet clover RNA that hybridized to the Arabidopsis LHCPII gene (Fig. 3), indicating that the absence of hybridization to lower molecular mass Euglena RNAs was not an artifact of the electrophoresis or hybridization procedure. Assuming that 1 kb of RNA codes for a protein with a molecular mass of 37 kDa, the 6.6-kb Euglena LHCPII mRNA is large enough to code for the 207-kDa pLHCPII.

Structural Homology of the pLHCPIIs. Structural relationships among the pLHCPIIs of Euglena were determined by comparing their partial proteolytic digestion patterns. Partial digestion of the 207-, 161-, and 122-kDa pLHCPIIs with S. aureus V8 protease produced identical peptide maps that
Fig. 4. Similarity of the pLHCPiIs of Euglena inferred from S. aureus V8 protease digestion patterns. Dark-grown resting cells exposed to light for 20 hr were pulse-labeled with $[^35]S$ sulfate, and the labeled proteins were immunoprecipitated with an LHCPiI-specific antibody. (A) The pLHCPiIs and LHCPiIs were separated by electrophoresis on an 8–12% gradient NaDodSO4/polyacrylamide gel. (B) Bands containing the different molecular mass pLHCPiIs and LHCPiIs were excised from the gel, digested by coelectrophoresis with S. aureus V8 protease, and separated on a 15–20% gradient NaDodSO4/polyacrylamide gel. The proteins were visualized by autoradiography. Arrows indicate the positions of undigested proteins.

DIFFER from the peptide map obtained by partial digestion of the 110-kDa pLHCPiI by a single peptide, the largest (Fig. 4). Although exhibiting large differences in molecular mass, the four pLHCPiIs of Euglena are structurally related. The major peptides obtained by limited proteolysis of the pLHCPiI were within the molecular mass range of the LHCPiIs of Euglena (Fig. 4). Digestions with larger amounts of protease did not increase the amount of digestion products smaller than mature LHCPiI, which precludes a comparison of the peptide maps of pLHCPiI and LHCPiI.

DISCUSSION

Immunoprecipitation of cell-free translation products initially identified the pLHCPiIs of Euglena as 90- to 110-kDa proteins encoded by RNAs with sediments coefficients greater than 25S (38). Subsequent experiments questioned the specificity of the LHCPiI antibody that precipitated the 90- to 110-kDa cell-free translation products and suggested that these were not the pLHCPiIs (39). It was proposed that the pLHCPiI was a 28-kDa cell-free translation product encoded by an mRNA whose concentration in the polysomal fraction increased when LHCPiI synthesis was preferentially induced by transferring intermittently illuminated cells to continuous illumination (39). Present results show that the pLHCPiIs are indeed large, up to twice as large as previously reported (30, 38), and that they are produced and slowly processed to LHCPiIs in vivo.

In addition to the 25.6- and 27.2-kDa LHCPiI, 207-, 161-, 122-, and 110-kDa proteins were immunoprecipitated by the LHCPiI-specific antibody from total Euglena protein pulse-labeled in vivo for 10 or 40 min with $[^35]S$ sulfate. Three independent lines of evidence demonstrate that the 207-, 161-, 122-, and 110-kDa proteins are the LHCPiIs of Euglena. LHCPiIs (25.6 and 27.2 kDa) are barely detectable after a 10-min pulse. During a 40-min chase, the amount of each high molecular mass protein decreases, and the amount of LHCPiIs increases with kinetics that are consistent with a precursor-product relationship. The high molecular mass proteins synthesized in vivo correspond in their molecular mass to the major proteins produced by in vitro translation of Euglena poly(A)$^+$ RNA and immunoprecipitated with anti-LHCPiI. Euglena poly(A)$^+$ RNAs of 6.6 and 8.3 kb hybridize to a coding portion of an Arabidopsis LHCPiI gene. Such sizes of poly(A)$^+$ RNAs are sufficient to code for the largest precursor (207 kDa). Individually, objections can be raised to the conclusion drawn from each experiment, and alternative explanations of the results are possible. Taken together, these experiments provide strong evidence that, in vivo, Euglena LHCPiIs are produced from an extremely large, slowly processed precursor.

Each of the pLHCPiIs is large enough to contain more than one molecule of LHCPiI. Approximately 30–40% of the $[^35]S$ sulfate found in the four pLHCPiIs after a 10-min pulse was chased into LHCPiI during a 40-min chase. Assuming that $[^35]S$-sulfate-containing amino acids are uniformly distributed throughout each pLHCPiI, two or three molecules of LHCPiI can be produced by posttranslational processing of the 207-kDa pLHCPiI. It is unlikely that the transport of proteins into Euglena chloroplasts requires a transit peptide having a molecular mass of 80–180 kDa when, in all other plants and algae studied, transit peptides have molecular masses of 3.5–15 kDa (1, 7, 9, 10). A more likely explanation for the large size of the Euglena pLHCPiIs is that they are polypeptides that are posttranslationally processed inside the chloroplast to produce more than one molecule of LHCPiI or proteins in addition to LHCPiI.

The transit peptide of nuclear-coded chloroplast proteins appears to contain domains responsible for binding to the chloroplast envelope (2), transfer through the chloroplast envelope, and cleavage by the transit peptidase [i.e., the endoprotease responsible for removal of the transit sequence (3, 4)]. Comparisons of transit peptides have identified a conserved amino acid sequence that may serve as a recognition site for the transit peptidase (1, 7). Several LHCPiIs as well as other chloroplast proteins could be produced from a polypeptide precursor if transit recognition sequences are found at the carboxyl and amino terminus of the proteins that are to be cleaved from the polypeptide precursor. The feasibility of this type of processing is seen in the maturation of a Lema pLHCPiI encoded by gene AB 19 (10). Due to the presence of a translated intron, the in vitro synthesized AB 19 precursor contains a 28-amino acid insertion in the amino-terminal portion of the mature protein. The in vitro synthesized AB 19 precursor is taken up by chloroplasts and a mature AB 19-encoded LHCPiI as well as an incorrectly processed smaller form are incorporated into the light-harvesting complex (10). The smaller form is thought to arise from processing \sim20 amino acids on the carboxyl side of the intron. Due to the insertion of the amino acid sequence coded by the intron, a normally cryptic transit peptidase recognition site is presumably made accessible. Thus, the enzymatic machinery required for the maturation of chloroplast proteins could be used for the processing of the polyprotein precursor of Euglena LHCPiI into a number of molecules of LHCPiI.

Recently, a report appeared (40) showing that the LHCPiI of Euglena gracilis Z was coded by a 7.5-kb mRNA. The cell-free translation products of this RNA were proteins of \approx100 kDa that were immunologically related to LHCPiI.

We thank Dr. J. A. Schill (Brandeis University) for the gift of antiserum against Euglena LHCPiI, Dr. L. Leutwiler (University of California, Los Angeles) for providing us with plasmid pAB165, and Dr. J. Markwell for the sweet clover RNA. This work was supported by grant DMB84-16904 from the National Science Foundation.