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Polarimetric Processing of Coherent Random Noise
Radar Data for Buried Object Detection

Yi Xu, Ram M. NarayananFellow, IEEE Xiaojian Xu, and John O. Curtis

Abstract—Random noise polarimetry is a new radar technique published in [7]. In this paper, we present examples from the
for high-resolution probing of subsurface objects and interfaces. entire data set collected that demonstrate the usefulness of the

The University of Nebraska has developed a polarimetric random jaqe processing and Stokes matrix presentation to enhance
noise radar system based on the heterodyne correlation technlque.t t detection for th h ¢ d ise GPR
Simulation studies and performance tests on the system confirm arget detection for the conerent random noise :

its ability to respond to phase differences in the received signals. T he remainder of this paper is organized as follows. Section I
In addition to polarimetric processing capability and the simpli-  gives a brief description of the coherent ultra-wideband random
fied system design, random noise radar also possesses other desirnoise radar system. A simplified theoretical development of the
able features, such as immunity from radio frequency interference random noise polarimetry is found in Section Ill. In Section IV,

(RFI). The paper discusses the theoretical foundations of random t the Stok Hix i - It I
noise polarimetry, and presents examples out of the entire data set We Presenl ine SIoKES matrix image processing resuits as we

collected that demonstrate the usefulness of the image processingdS Several image preprocessing techniques such as apodization
and Stokes matrix presentation to enhance target detection using filtering, smoothing, and thresholding algorithms, which are im-

the coherent random noise radar. plemented in order to suppress the range sidelobes and enhance

Index Terms—Polarimetry, random noise radar, subsurface detection. We conclude the paper in Section V.
radar, ultrawideband.

Il. DESCRIPTION OFCOHERENT ULTRAWIDEBAND RANDOM
I. INTRODUCTION NOISE RADAR SYSTEM

T HE USE of radar techniques to detect, locate, and identify A plock diagram of the system is shown in Fig. 1. Relevant
buried shallow subsurface objects is of considerable igystem specifications are listed in Table I. The noise source pro-
terestinrecentyears. Various kinds of radars, including impulsgces a signal having a Gaussian amplitude distribution and a
chirp-pulse, coded-pulse, FM-CW, and step-frequency CW oggnstant power spectral density in the 1-2 GHz frequency range.
eration systems, have been developed [1]-[5]. For such apghis signal is divided into two in-phase components by a 3-dB
cations, the use of wideband random noise transmit waveforfgsshase power divider. One component is fed to an amplifier
afford simplified system designs while yielding good depth regghich has a power output of greater thad0 dBm at its 1-dB
olution [6] and also being exempt from radio frequency integain compression point. The average power output of the ampli-
ference (RFI) at lower radar bands. fier is+30 dBm (1 W), and it can thus amplify noise spikes that
The University of Nebraska, Lincoln, has developed a p@re as high as 10 dB above the mean noise power. The output
larimetric random noise radar system used mainly for detectiggthis amplifier is connected to either the V or H polarization
shallowly buried minelike objects. Simulation studies and pejypyt on the dual-polarized broadband log-periodic transmit an-
formance tests on the system confirm its ability to respond {gnna.
phase differences in the received signal despite the fact of therhe second component is connected to a combination of a
probing waveform in random noise. This ground penetratifged and a digitally controlled variable delay line. The fixed
radar (GPR) system uses a wide bandwidth random noise sigi@hy line serves to ensure that the correlation operation is per-
operating within the 1-2 GHz frequency range. High spatial régymed in a manner as to avoid antenna-to-antenna direct cou-
olution in the depth (range) dimension is achieved due to tbﬁng_ The variable delay provides the delay of the transmit
wide bandwidth of the transmit signal. The polarimetric randog]gna| in order to correlate it with the received signal from ob-
noise radar system was used to gather data from a variety@iis or interfaces at that depth corresponding to that delay. The
buried targets at different depths and with different relative Or&relay line can be programmed for delays from O to 19.84 ns
entations. A detailed description of the noise radar system afdy 156 ns steps. This step size ensures that the depth reso-
some simulation and preliminary experimental results have bggfion of the system as governed by its 1-GHz bandwidth is

not compromised. The output of the delay line is then mixed

Manuscript received November 9, 1999; revised July 10, 2000. This work wadth a 160-MHz coherent stable signal from a phase lock oscil-

supported by Contract DACA39-93-K-0031 awarded by the U.S. Army Watepator, This is done in order to perform coherent processing of the
ways Experiment Station. ived . . Is. Th f hi . is divided
Y. Xu, R. M. Narayanan, and X. Xu are with the Department of Electricdi€C€IVEU NOISe signals. e output from this mixer Is divided,

Engineering, Center for Electro-Optics, University of Nebraska, Lincoln, Nemplified, and then fed into the co-polarized and cross-polar-

68588-0511 USA. . ized receive channels. The co-polarized channel corresponds to
J. O. Curtis is with the Environmental Laboratory, U.S. Army Waterwayt<h h | d h larizati h
Experiment Station, Vicksburg, MS 39180-6199 USA. e channe connected to the same antenna po arization as the
Publisher Item Identifier S 0196-2892(01)02089-7. transmit antenna. The cross-polarized channel is orthogonal to

0196-2892/01$10.00 © 2001 IEEE
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can be related to the polarimetric co-polarized or cross-polar-
ized scattering characteristics of the buried object or interface.
The current coherent random radar system provides a sim-
plified system design while preserving all the advantages and
avoiding the drawbacks that impulse and linear frequency-mod-
ulated (LFM) or step-frequency CW GPR systems possess.
These include yielding high depth resolution, preservation of
scattering phase characteristics, and immunity from the impacts
of antenna coupling and RFI, and so on. For example, since
the usual ultra-wideband GPR has much broader bandwidth
than conventional radar and operates at lower radar frequency
bands, it is extremely vulnerable to RFI. The GPR with its
higher resolution requirement must reject these RFI signals
by using a notch filter or other adaptive filtering techniques.
This causes an obvious increase of the range sidelobes. On the

Fig. 1. Block diagram of the coherent polarimetric ultrawideband random noise radar system.
TABLE |
POLARIMETRIC RANDOM NOISE RADAR
SYSTEM SPECIFICATIONS
Parwinrier [ Aperificalisu
Frompumcy Banps HII ] Iilll: -
Bystem IF | s waEe
Symirm J.'r.ull..:. W -u.-..'..T' g "l\.-u1|.| s oy
Modostian - B "':_:ll SEARO e
Traasmit Pow 1 Wit 130 dlemn| &verages
Hex 7 Dhebesei I" e 53 dBlim Mindin
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contrary, the random noise radar is immune from the impact
of such RFI signals. This is due to the fact that since the

the transmit antenna polarization. The noise signal in each RFI signals are uncorrelated with the transmit waveform, any
ceiver chain is amplified and then mixed with the coherent noisgixing operation at the receiver of the noise radar system will
signal. The output of the mixer is passed through a bandpégsally produce an output voltage of zero. Fig. 2 compares the
filter and then divided by a 3-dB power divider. One output gogserformance of a LFM and a random noise radar operating over
to a logarithmic amplifier, which ensures that a wide range tie same bandwidth under RFI conditions using simulation.
scattered power levels can be processed. The second output gdés simulation shows that, when twenty percent of the radar
to the inputs of the I/Q detector, from where the | and Q outpuiandwidth is interfered by RFI, with an integration number
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Fig. 2. Impact of RFI on (a) UWB LFM radar and (b) UWB random noise radar.

of 512, a random noise radar will have at least a 10-dB lowerlf Ry is the characteristic impedance of the system, the av-

sidelobe level than a conventional LFM radar. erage power transmittef}, is given by
vi(t)
[ll. THEORY OF RANDOM NOISE POLARIMETRY P, = R (2)
0

Assuming that the transmitted signal has a Gaussian A -h can be shown to reduce to 7]
plitude distribution and a uniform power spectral density, we
model the transmit voltage wave(t) as P = L a2(t). ©)

2Ry
Let e.(= €. — je’) be the complex dielectric constant of
whereq(t) takes into account the amplitude distribution, anthe soil medium, from which the attenuation constantand
dw(t) takes into account the frequency spectrune@f). wo is  the phase constarit can be deduced. Further assume that the
the center frequency of transmission. We assumedtiatand object is buried at a deptfy and its complex refiectivities are
dw(t) are ergodic processes. Furthermore, we assumethat R.exp{j¢..} and R, exp{j,.} for co-polarized and cross-
andéw(t) are uncorrelated and statistically independent. polarized backscatter, respectively. Under these circumstances,

ve(t) = a(t) cos(wp + bw)t Q)
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Fig. 3. True PSFs before and after filtering processing. (a) Derived coefficients for the apodization filter, (b) impulse response beforerafibbelizadi (c)
impulse response after apodization filtering, (d) impulse response after median filtering, and (e) impulse response after apodization dtidrmgdian f

we can show that the outputs of the logarithmic amplifiers AMRIso, the outputs of the 1/Q detectors IQD1 and IQD2 are, re-
7 and AMP 6 are, respectively spectively

F..= KR<2: (4) gc = ¢oc + d)K (7)

and and

P, = KR? (5) _

939 = d)oa} + ¢K (8)
whereK is some constant. The ratio 8f... to P... gives us the ) i _ _
depolarization ratio of the buried objeEx as follows V\(hered);( Is some constant. The difference b_etw@grandem

yields the polarimetric phase angle of the obfggtas follows
P, R}

-Prc N Fg (6) gc - gw = ¢oc - ¢od = 9d~ (9)

D=
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Fig. 4. Raw and processed images: two metallic plates, round and square, with depths 17.8 and 43.2 cm, respectively, horizontal separatiop-@§.4 cm. (a
Raw images. (a) Co-polarized magnitude, (b) cross-polarized magnitude, (c) polametric phase difference, and (d) depolarization ratiocés¥e(i) iRrages.
(e) Co-polarization magnitude, (f) depolarization ratio, $g) (h) Si, (i) S=, and (j) S; images.

The depth resolutiothd of the radar system is deduced from From the raw data collected by the radar system, we generate
its total bandwidth3 and the dielectric constant of the soil. Thismages based on the Stokes matrix formulation for facilitating
is given by the detection and recognition of targets using the polarimetric

information on the buried target [8]. The Stokes vector is a con-
venient method for representing the polarization state of an elec-

C
Ad= 2B\/Z' (10) tromagnetic wave, and is denoted[4}, given by
So
For dry soil,¢/. ~ 3 and for wet soile!, ~ 25. Thus, the S,
resolution varies between 8.6 cm in dry soil and 3 cm in wet [S]= So | (11)

soil. S3
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The individual elements of thgs] vector are defined as fol- the cross-polarized reflectivities. Alspl| and |E | are the

lows:

So = |Ey|” + |ELI? (12)
S1=1Ey” — |EL|? (13)
SQ 22|E||| |EJ_|COS€d (14)
Sg =2|E||||EL|Sin9d. (15)

electric field amplitudes of the co-polarized and cross-polarized
received voltages, whose squared values represent the co-po-
larized reflected power and cross-polarized reflected power, re-
spectively. We recogniz§, as the total reflected power (sum

of the co-polarized and cross-polarized reflected powgy).

is recognized as the difference between the co-polarized and
cross-polarized reflected powed, is proportional to the co-

In the above equationg, is the polarimetric phase angle, i.esine of the polarimetric phase angle, whifg is proportional
the difference between the phase angles of the co-polarized &mthe sine of the polarimetric phase andle Both S; and Ss
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are weighted by the absolute electric field amplitudes of the re-IV. | MAGE PROCESSINGRESULTS USING STOKES MATRIX

flected co-polarized and cross-polarized signals, as can be seen REPRESENTATION
from their definitions. It is also to be noted that
Sg = 57+ 57+ 53, (16)

In this section, we present the image processing results using
The use ofS; and S3 greatly enhances the detection ofypical images culled out of the entire data set acquired by the
targets, since these parameters move in opposite directicmherent random noise radar system. Although the whole data
and thereby provides additional information about the reflectedt includes data from objects buried in both sand and clay soil,
signal. WhenSs is high, S3 is low, and vice versa. Thus, noall of the data shown in this paper pertain to objects buried in
matter what the polarimetric phase angle is, the target image@nd only, since detectability was very poor in clay soil owing
bound to show up in eithe¥; or S3 or sometimes in both. to the high loss encountered for signals in the 1-2 GHz fre-
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guency range. In order to ensure detectability in clay soil, higherFrom the raw data, the system produces four images corre-

transmit power is necessary. sponding the co-polarized received amplitude, cross-polarized

received amplitude, polarimetric phase difference between the

orthogonally polarized received signals, and the depolarization

ratio. The raw image data were then used for postprocessing by
The system was used to gather data from an assortment/afious image processing algorithms.

buried objects in a specially designed sand box. The sand box

was 3.5 m_Iong, 1.5 m wide, and 1 m deep. The polarimet@ Image Processing

random noise radar was operated and controlled by a personal

computer (PC), and the data acquired were stored in the hardhe image processing procedure for detection enhancement

drive in real time. The radar antennas were scanned over thas follows. First, the raw data from the radar measurements

surface as data were collected continuously. A variety of targetere preprocessed to suppress the high range sidelobes using

that were buried included metallic as well as nonmetallic objecs apodization filter [9]. Next, the apodization filtered data were

of different sizes and shapes that mimicked land mines and otheed to calculate the Stokes matrix elements and the depolariza-

objects. tion ratio. These data were then used to form the polarimetric

A. Field Test Set-Up
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Stokes matrix images and depolarization ratio images. Lastly,In conventional Fourier harmonic analysis, the frequency
median filtering and thresholding algorithms were applied to tttmmain data is usually multiplied by taper functions [10]. By
images to obtain the enhanced Stokes matrix and depolarizatimurier transforming the windowed data, the sidelobes resulting
ratio images for detection and identification purposes. The cdnem the rectangular window are greatly reduced. In our noise
cept of apodization filtering for sidelobe suppression is brieflsadar system, data sampling is completed in time domain
reviewed below. directly. This makes it impossible to reduce the sidelobes by
It was recognized that the impulse response (IR) or the poimging the same technique as in conventional harmonic analysis.
spread function (PSF) of the radar system is responsible for tHewever, by noting that a multiplication in frequency domain
high range sidelobes. If we can reduce the sidelobes of the HSFequivalent to a convolution in time domain, a different
somehow, then the target response or image contaminatedilbgring technique can be developed. This technique is called
the sidelobes can be restored. apodization filtering. By apodization filtering, we mean that,
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we are going to find a special filtering function, such that bfrom the solution of (17). The digitized version of (17) is a set
convolving the time domain data with this filtering function, af linear equations. An iterative procedure called the projection
new response with much lower sidelobes is obtained. Thus, enethod [11] was used to solve the above set of equations.

objective is to find such a filtering functioff(+) so that the

filtered PSFPr(7) given by

Pr(r) = P(r)©T(r)

has much lower sidelobes than the original PB§;).
To find the filtering functionZ’(7), we setPr(7) to be the apodization and median filtering. This example shows that, by
expected PSF. Then the filter coefficiefit~) can be derived using an apodization filter, there is a sidelobe improvement

7)

Fig. 3 illustrates the real impulse response functions of the
radar system before and after apodization filtering, where (a)
is the derived coefficients for the apodization filter, (b) is the
impulse response before apodization filtering, (c) is the impulse
response after apodization filtering, (d) is the impulse response
after median filtering, and (e) is the impulse response after
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of about 10 dB to the original PSF. This leads to an essentithe object cannot be clearly recognized in the raw images,

enhancement of the image contrast. but the characteristic hyperbolic feature (similar to the images
obtained using impulse radars) is clearly seen in the processed
C. Results images_

In the remainder of this section are presented data sets proFig. 7 shows the image of two plates, one metallic and the
cessed using the Stokes matrix formulation. In Figs. 4-9, fgther wooden, both buried at 22.9 cm depth, separated by 30.5
each data set, the raw and processed images are displaye®@mn From Fig. 7, we observe the metallic object, but not the
the same way as follows. The raw image data for each measw¥oden object in the reflectivity images. However, both objects
ment are first displayed in the format as shown in (a)—(d). Thedgpear in the depolarization ratio image (low depolarization).
consist of (a) the co-polarized received magnitude (power), (blpis indicates that the process of computing the depolariza-
the cross-polarized received magnitude (power), (c) the phdié# assists in enhancing the detectability of nonmetallic objects,
difference of the received co-polarized and cross-polarized sface the same amount of signal loss exists in the co-polarized
nals, and (d) the depolarization ratio. The raw | and Q-chanrfld the cross-polarized reflected signals.
detector outputs pertaining to the co-polarized and the cross-po4) Detection of Polarization-Sensitive Objects1 order to
larized received signals are used in the computation of the jéudy the performance of the system for the detection of long
larimetric phase difference. The apodization filtered co-pola@nd slender objects, the images of a 6-cm diameter metal pipe
ization and depolarization ratio images are then shown in (e) a#d85-cm length buried at a depth of 30.5 cm were acquired.
(f), respectively. Lastly, (g)—(j) show, respectively, the StokeEhese images were obtained for combinations of target orienta-
matrix imagesSo, S1, Sz, andSs. These are calculated from thetion parallel and perpendicular to transmit electric field vector
apodization filtered amplitude and phase data using (12)—(#8)d to the scan direction.
developed in Section IIl. Fig. 8 shows that when the pipe orientation is parallel to the

1) Detection of Multiple Objectsin Fig. 4, the ability of the transmit polarization and the scan direction, it is clearly dis-
radar system to distinguish between objects separated in deg@fnible in the co-polarized reflectivity and depolarization im-
as well as in the lateral direction is demonstrated. Fig. 4 sho@ges. This is due to the long interaction time that occurs during
the images pertaining to two dissimilar metallic objects, a rours§anning, since the target is oriented along the scan axis. The
metal plate 23 cm dia 2 cm thick, and a square metal platédipe can also be detected from the Stokes imagethrough
27 cm sidex 1 cm thick, separated by 25.4 cm and buried dt2- When the pipe is rotated by 9@ make it perpendicular
different depths of 17.8 cm and 43.2 cm, respectively, i.e.,t@the scan direction but keeping it parallel to the transmit po-
depth separation of 25.4 cm. The co-polarized reflectivity imad@rization, we find that it is still detectable, as shown in Fig. 9.
in Fig. 4(a) clearly shows the presence of the two objects, Hagwever, it now acts more or less like a point target, since there
the objects are not observed in the cross-polarized reflectivig/minimal interaction time during scanning. We note the charac-
image. We also observe that the presence of the object carfejistic hyperbolic response in the co-polarized reflectivity and
clearly discerned in three of the Stokes matrix images, as d@@polarization ratio in Fig. 11(b) and (d), as also in the Stokes
be seen in Fig. 4(g)—(i). This indicates that the polarimetrifrages: and.Ss.
random noise radar does succeed in detecting metallic object®©n the other hand, when the pipe was buried so that its orien-
buried at depths as much as about 50 cm (20 inches) in relativig{jon was orthogonal to the transmit electric field vector, it was
dry sandy soil. In this case, there is no major advantage in preserved that the pipe was virtually undetectable.
larimetric processing. However, the objects are apparent in thdn summary, a long slender object can be detected, irrespec-
Stokes images. tive of its orientation with respect to scan direction, as long as

2) Detection of Near-Surface Object®etection of objects the transmit polarization is parallel to the object orientation.
on the ground surface or buried very close to the ground surfaldais indicates that a dual-polarized transmitter, i.e., one that si-
is a challenging problem because of the high reflectivity due fultaneously transmits and receives vertical and horizontal po-
the air-ground interface. It is expected that substantial blurrit@fized signals, can easily detect such an object.
would occur so as to make object detection difficult, if not im-
possible.

Fig. 5 pertains to two object detection, especially when one
of the objects is buried very close to the ground surface. In thisin this paper, we have demonstrated the potential of random
example, two round metallic plates are buried at depths of 2218ise polarimetry for high-resolution subsurface probing
cmand 7.6 cm, respectively. It must be noted that the range rapplications. This unique concept synergistically combines the
olution in dry sandy soil, assuming a soil dielectric constant aflvantages of a random noise ultrawideband waveform with the
about 4, is approximately 7.5 cm and therefore, this conditiongewer of coherent processing to provide a powerful technique
actually testing the limits of the system resolution. From Fig. 5or obtaining high resolution images. Use of the apodization
we see that the metallic object at 7.6-cm depth is clearly seerfiltering technique and Stokes matrix image representation
the reflectivity and depolarization, as well as the Stokes imageshances the detection of difficult targets over the conventional

3) Detection of Non-Metallic ObjectsFig. 6 shows the images. Other applications being investigated that exploit the
image of distilled water (high dielectric constant) contained in@herency in the system include interferometric (using spaced
plastic container of approximate size 25 enl5 cmx 15 cm. antennas) and synthetic aperture radar (SAR) techniques to
This object was buried at 7.6-cm depth (close to the surfaceharpen the azimuth resolution. In addition, random noise

V. CONCLUSIONS
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polarimetry can be used in foliage penetration (FOPEN) rad
systems by operating at lower frequencies, typically in tf
250-500 MHz frequency range.
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